description: Learn how to use Roboflow for organizing, labelling, preparing, and hosting your datasets for YOLOv5 models. Enhance your model deployments with our platform.
keywords: Ultralytics, YOLOv5, Roboflow, data organization, data labelling, data preparation, model deployment, active learning, machine learning pipeline
You can now use Roboflow to organize, label, prepare, version, and host your datasets for training YOLOv5 🚀 models. Roboflow is free to use with YOLOv5 if you make your workspace public.
- The [AGPL-3.0 License](https://github.com/ultralytics/ultralytics/blob/main/LICENSE), an [OSI-approved](https://opensource.org/licenses/) open-source license ideal for students and enthusiasts.
You can upload your data to Roboflow via [web UI](https://docs.roboflow.com/adding-data), [REST API](https://docs.roboflow.com/adding-data/upload-api), or [Python](https://docs.roboflow.com/python).
You can make versions of your dataset with different preprocessing and offline augmentation options. YOLOv5 does online augmentations natively, so be intentional when layering Roboflow's offline augmentations on top.
We have released a custom training tutorial demonstrating all of the above capabilities. You can access the code here:
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/yolov5-custom-training-tutorial/blob/main/yolov5-custom-training.ipynb)
The real world is messy and your model will invariably encounter situations your dataset didn't anticipate. Using [active learning](https://blog.roboflow.com/what-is-active-learning/) is an important strategy to iteratively improve your dataset and model. With the Roboflow and YOLOv5 integration, you can quickly make improvements on your model deployments by using a battle tested machine learning pipeline.
<palign=""><ahref="https://roboflow.com/?ref=ultralytics"><imgwidth="1000"src="https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/615627e5824c9c6195abfda9_computer-vision-cycle.png"alt="Roboflow active learning"></a></p>
Ultralytics provides a range of ready-to-use environments, each pre-installed with essential dependencies such as [CUDA](https://developer.nvidia.com/cuda), [CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/), and [PyTorch](https://pytorch.org/), to kickstart your projects.
- **Free GPU Notebooks**: <ahref="https://bit.ly/yolov5-paperspace-notebook"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a><ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a><ahref="https://www.kaggle.com/ultralytics/yolov5"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
This badge indicates that all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are successfully passing. These CI tests rigorously check the functionality and performance of YOLOv5 across various key aspects: [training](https://github.com/ultralytics/yolov5/blob/master/train.py), [validation](https://github.com/ultralytics/yolov5/blob/master/val.py), [inference](https://github.com/ultralytics/yolov5/blob/master/detect.py), [export](https://github.com/ultralytics/yolov5/blob/master/export.py), and [benchmarks](https://github.com/ultralytics/yolov5/blob/master/benchmarks.py). They ensure consistent and reliable operation on macOS, Windows, and Ubuntu, with tests conducted every 24 hours and upon each new commit.