|
|
|
#include "inference.h"
|
|
|
|
#include <regex>
|
|
|
|
|
|
|
|
#define benchmark
|
|
|
|
#define min(a,b) (((a) < (b)) ? (a) : (b))
|
|
|
|
YOLO_V8::YOLO_V8() {
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
YOLO_V8::~YOLO_V8() {
|
|
|
|
delete session;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef USE_CUDA
|
|
|
|
namespace Ort
|
|
|
|
{
|
|
|
|
template<>
|
|
|
|
struct TypeToTensorType<half> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; };
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
template<typename T>
|
|
|
|
char* BlobFromImage(cv::Mat& iImg, T& iBlob) {
|
|
|
|
int channels = iImg.channels();
|
|
|
|
int imgHeight = iImg.rows;
|
|
|
|
int imgWidth = iImg.cols;
|
|
|
|
|
|
|
|
for (int c = 0; c < channels; c++)
|
|
|
|
{
|
|
|
|
for (int h = 0; h < imgHeight; h++)
|
|
|
|
{
|
|
|
|
for (int w = 0; w < imgWidth; w++)
|
|
|
|
{
|
|
|
|
iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = typename std::remove_pointer<T>::type(
|
|
|
|
(iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return RET_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
char* YOLO_V8::PreProcess(cv::Mat& iImg, std::vector<int> iImgSize, cv::Mat& oImg)
|
|
|
|
{
|
|
|
|
if (iImg.channels() == 3)
|
|
|
|
{
|
|
|
|
oImg = iImg.clone();
|
|
|
|
cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cv::cvtColor(iImg, oImg, cv::COLOR_GRAY2RGB);
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (modelType)
|
|
|
|
{
|
|
|
|
case YOLO_DETECT_V8:
|
|
|
|
case YOLO_POSE:
|
|
|
|
case YOLO_DETECT_V8_HALF:
|
|
|
|
case YOLO_POSE_V8_HALF://LetterBox
|
|
|
|
{
|
|
|
|
if (iImg.cols >= iImg.rows)
|
|
|
|
{
|
|
|
|
resizeScales = iImg.cols / (float)iImgSize.at(0);
|
|
|
|
cv::resize(oImg, oImg, cv::Size(iImgSize.at(0), int(iImg.rows / resizeScales)));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
resizeScales = iImg.rows / (float)iImgSize.at(0);
|
|
|
|
cv::resize(oImg, oImg, cv::Size(int(iImg.cols / resizeScales), iImgSize.at(1)));
|
|
|
|
}
|
|
|
|
cv::Mat tempImg = cv::Mat::zeros(iImgSize.at(0), iImgSize.at(1), CV_8UC3);
|
|
|
|
oImg.copyTo(tempImg(cv::Rect(0, 0, oImg.cols, oImg.rows)));
|
|
|
|
oImg = tempImg;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case YOLO_CLS://CenterCrop
|
|
|
|
{
|
|
|
|
int h = iImg.rows;
|
|
|
|
int w = iImg.cols;
|
|
|
|
int m = min(h, w);
|
|
|
|
int top = (h - m) / 2;
|
|
|
|
int left = (w - m) / 2;
|
|
|
|
cv::resize(oImg(cv::Rect(left, top, m, m)), oImg, cv::Size(iImgSize.at(0), iImgSize.at(1)));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return RET_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
char* YOLO_V8::CreateSession(DL_INIT_PARAM& iParams) {
|
|
|
|
char* Ret = RET_OK;
|
|
|
|
std::regex pattern("[\u4e00-\u9fa5]");
|
|
|
|
bool result = std::regex_search(iParams.modelPath, pattern);
|
|
|
|
if (result)
|
|
|
|
{
|
|
|
|
Ret = "[YOLO_V8]:Your model path is error.Change your model path without chinese characters.";
|
|
|
|
std::cout << Ret << std::endl;
|
|
|
|
return Ret;
|
|
|
|
}
|
|
|
|
try
|
|
|
|
{
|
|
|
|
rectConfidenceThreshold = iParams.rectConfidenceThreshold;
|
|
|
|
iouThreshold = iParams.iouThreshold;
|
|
|
|
imgSize = iParams.imgSize;
|
|
|
|
modelType = iParams.modelType;
|
|
|
|
env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo");
|
|
|
|
Ort::SessionOptions sessionOption;
|
|
|
|
if (iParams.cudaEnable)
|
|
|
|
{
|
|
|
|
cudaEnable = iParams.cudaEnable;
|
|
|
|
OrtCUDAProviderOptions cudaOption;
|
|
|
|
cudaOption.device_id = 0;
|
|
|
|
sessionOption.AppendExecutionProvider_CUDA(cudaOption);
|
|
|
|
}
|
|
|
|
sessionOption.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
|
|
|
|
sessionOption.SetIntraOpNumThreads(iParams.intraOpNumThreads);
|
|
|
|
sessionOption.SetLogSeverityLevel(iParams.logSeverityLevel);
|
|
|
|
|
|
|
|
#ifdef _WIN32
|
|
|
|
int ModelPathSize = MultiByteToWideChar(CP_UTF8, 0, iParams.modelPath.c_str(), static_cast<int>(iParams.modelPath.length()), nullptr, 0);
|
|
|
|
wchar_t* wide_cstr = new wchar_t[ModelPathSize + 1];
|
|
|
|
MultiByteToWideChar(CP_UTF8, 0, iParams.modelPath.c_str(), static_cast<int>(iParams.modelPath.length()), wide_cstr, ModelPathSize);
|
|
|
|
wide_cstr[ModelPathSize] = L'\0';
|
|
|
|
const wchar_t* modelPath = wide_cstr;
|
|
|
|
#else
|
|
|
|
const char* modelPath = iParams.modelPath.c_str();
|
|
|
|
#endif // _WIN32
|
|
|
|
|
|
|
|
session = new Ort::Session(env, modelPath, sessionOption);
|
|
|
|
Ort::AllocatorWithDefaultOptions allocator;
|
|
|
|
size_t inputNodesNum = session->GetInputCount();
|
|
|
|
for (size_t i = 0; i < inputNodesNum; i++)
|
|
|
|
{
|
|
|
|
Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator);
|
|
|
|
char* temp_buf = new char[50];
|
|
|
|
strcpy(temp_buf, input_node_name.get());
|
|
|
|
inputNodeNames.push_back(temp_buf);
|
|
|
|
}
|
|
|
|
size_t OutputNodesNum = session->GetOutputCount();
|
|
|
|
for (size_t i = 0; i < OutputNodesNum; i++)
|
|
|
|
{
|
|
|
|
Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator);
|
|
|
|
char* temp_buf = new char[10];
|
|
|
|
strcpy(temp_buf, output_node_name.get());
|
|
|
|
outputNodeNames.push_back(temp_buf);
|
|
|
|
}
|
|
|
|
options = Ort::RunOptions{ nullptr };
|
|
|
|
WarmUpSession();
|
|
|
|
return RET_OK;
|
|
|
|
}
|
|
|
|
catch (const std::exception& e)
|
|
|
|
{
|
|
|
|
const char* str1 = "[YOLO_V8]:";
|
|
|
|
const char* str2 = e.what();
|
|
|
|
std::string result = std::string(str1) + std::string(str2);
|
|
|
|
char* merged = new char[result.length() + 1];
|
|
|
|
std::strcpy(merged, result.c_str());
|
|
|
|
std::cout << merged << std::endl;
|
|
|
|
delete[] merged;
|
|
|
|
return "[YOLO_V8]:Create session failed.";
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
char* YOLO_V8::RunSession(cv::Mat& iImg, std::vector<DL_RESULT>& oResult) {
|
|
|
|
#ifdef benchmark
|
|
|
|
clock_t starttime_1 = clock();
|
|
|
|
#endif // benchmark
|
|
|
|
|
|
|
|
char* Ret = RET_OK;
|
|
|
|
cv::Mat processedImg;
|
|
|
|
PreProcess(iImg, imgSize, processedImg);
|
|
|
|
if (modelType < 4)
|
|
|
|
{
|
|
|
|
float* blob = new float[processedImg.total() * 3];
|
|
|
|
BlobFromImage(processedImg, blob);
|
|
|
|
std::vector<int64_t> inputNodeDims = { 1, 3, imgSize.at(0), imgSize.at(1) };
|
|
|
|
TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
#ifdef USE_CUDA
|
|
|
|
half* blob = new half[processedImg.total() * 3];
|
|
|
|
BlobFromImage(processedImg, blob);
|
|
|
|
std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
|
|
|
|
TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
return Ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename N>
|
|
|
|
char* YOLO_V8::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims,
|
|
|
|
std::vector<DL_RESULT>& oResult) {
|
|
|
|
Ort::Value inputTensor = Ort::Value::CreateTensor<typename std::remove_pointer<N>::type>(
|
|
|
|
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
|
|
|
|
inputNodeDims.data(), inputNodeDims.size());
|
|
|
|
#ifdef benchmark
|
|
|
|
clock_t starttime_2 = clock();
|
|
|
|
#endif // benchmark
|
|
|
|
auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(),
|
|
|
|
outputNodeNames.size());
|
|
|
|
#ifdef benchmark
|
|
|
|
clock_t starttime_3 = clock();
|
|
|
|
#endif // benchmark
|
|
|
|
|
|
|
|
Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo();
|
|
|
|
auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo();
|
|
|
|
std::vector<int64_t> outputNodeDims = tensor_info.GetShape();
|
|
|
|
auto output = outputTensor.front().GetTensorMutableData<typename std::remove_pointer<N>::type>();
|
|
|
|
delete[] blob;
|
|
|
|
switch (modelType)
|
|
|
|
{
|
|
|
|
case YOLO_DETECT_V8:
|
|
|
|
case YOLO_DETECT_V8_HALF:
|
|
|
|
{
|
|
|
|
int strideNum = outputNodeDims[1];//8400
|
|
|
|
int signalResultNum = outputNodeDims[2];//84
|
|
|
|
std::vector<int> class_ids;
|
|
|
|
std::vector<float> confidences;
|
|
|
|
std::vector<cv::Rect> boxes;
|
|
|
|
cv::Mat rawData;
|
|
|
|
if (modelType == YOLO_DETECT_V8)
|
|
|
|
{
|
|
|
|
// FP32
|
|
|
|
rawData = cv::Mat(strideNum, signalResultNum, CV_32F, output);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// FP16
|
|
|
|
rawData = cv::Mat(strideNum, signalResultNum, CV_16F, output);
|
|
|
|
rawData.convertTo(rawData, CV_32F);
|
|
|
|
}
|
|
|
|
//Note:
|
|
|
|
//ultralytics add transpose operator to the output of yolov8 model.which make yolov8/v5/v7 has same shape
|
|
|
|
//https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt
|
|
|
|
//rowData = rowData.t();
|
|
|
|
|
|
|
|
float* data = (float*)rawData.data;
|
|
|
|
|
|
|
|
for (int i = 0; i < strideNum; ++i)
|
|
|
|
{
|
|
|
|
float* classesScores = data + 4;
|
|
|
|
cv::Mat scores(1, this->classes.size(), CV_32FC1, classesScores);
|
|
|
|
cv::Point class_id;
|
|
|
|
double maxClassScore;
|
|
|
|
cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
|
|
|
|
if (maxClassScore > rectConfidenceThreshold)
|
|
|
|
{
|
|
|
|
confidences.push_back(maxClassScore);
|
|
|
|
class_ids.push_back(class_id.x);
|
|
|
|
float x = data[0];
|
|
|
|
float y = data[1];
|
|
|
|
float w = data[2];
|
|
|
|
float h = data[3];
|
|
|
|
|
|
|
|
int left = int((x - 0.5 * w) * resizeScales);
|
|
|
|
int top = int((y - 0.5 * h) * resizeScales);
|
|
|
|
|
|
|
|
int width = int(w * resizeScales);
|
|
|
|
int height = int(h * resizeScales);
|
|
|
|
|
|
|
|
boxes.push_back(cv::Rect(left, top, width, height));
|
|
|
|
}
|
|
|
|
data += signalResultNum;
|
|
|
|
}
|
|
|
|
std::vector<int> nmsResult;
|
|
|
|
cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult);
|
|
|
|
for (int i = 0; i < nmsResult.size(); ++i)
|
|
|
|
{
|
|
|
|
int idx = nmsResult[i];
|
|
|
|
DL_RESULT result;
|
|
|
|
result.classId = class_ids[idx];
|
|
|
|
result.confidence = confidences[idx];
|
|
|
|
result.box = boxes[idx];
|
|
|
|
oResult.push_back(result);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef benchmark
|
|
|
|
clock_t starttime_4 = clock();
|
|
|
|
double pre_process_time = (double)(starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000;
|
|
|
|
double process_time = (double)(starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000;
|
|
|
|
double post_process_time = (double)(starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000;
|
|
|
|
if (cudaEnable)
|
|
|
|
{
|
|
|
|
std::cout << "[YOLO_V8(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
std::cout << "[YOLO_V8(CPU)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl;
|
|
|
|
}
|
|
|
|
#endif // benchmark
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case YOLO_CLS:
|
|
|
|
case YOLO_CLS_HALF:
|
|
|
|
{
|
|
|
|
cv::Mat rawData;
|
|
|
|
if (modelType == YOLO_CLS) {
|
|
|
|
// FP32
|
|
|
|
rawData = cv::Mat(1, this->classes.size(), CV_32F, output);
|
|
|
|
} else {
|
|
|
|
// FP16
|
|
|
|
rawData = cv::Mat(1, this->classes.size(), CV_16F, output);
|
|
|
|
rawData.convertTo(rawData, CV_32F);
|
|
|
|
}
|
|
|
|
float *data = (float *) rawData.data;
|
|
|
|
|
|
|
|
DL_RESULT result;
|
|
|
|
for (int i = 0; i < this->classes.size(); i++)
|
|
|
|
{
|
|
|
|
result.classId = i;
|
|
|
|
result.confidence = data[i];
|
|
|
|
oResult.push_back(result);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
std::cout << "[YOLO_V8]: " << "Not support model type." << std::endl;
|
|
|
|
}
|
|
|
|
return RET_OK;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
char* YOLO_V8::WarmUpSession() {
|
|
|
|
clock_t starttime_1 = clock();
|
|
|
|
cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3);
|
|
|
|
cv::Mat processedImg;
|
|
|
|
PreProcess(iImg, imgSize, processedImg);
|
|
|
|
if (modelType < 4)
|
|
|
|
{
|
|
|
|
float* blob = new float[iImg.total() * 3];
|
|
|
|
BlobFromImage(processedImg, blob);
|
|
|
|
std::vector<int64_t> YOLO_input_node_dims = { 1, 3, imgSize.at(0), imgSize.at(1) };
|
|
|
|
Ort::Value input_tensor = Ort::Value::CreateTensor<float>(
|
|
|
|
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
|
|
|
|
YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
|
|
|
|
auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(),
|
|
|
|
outputNodeNames.size());
|
|
|
|
delete[] blob;
|
|
|
|
clock_t starttime_4 = clock();
|
|
|
|
double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
|
|
|
|
if (cudaEnable)
|
|
|
|
{
|
|
|
|
std::cout << "[YOLO_V8(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
#ifdef USE_CUDA
|
|
|
|
half* blob = new half[iImg.total() * 3];
|
|
|
|
BlobFromImage(processedImg, blob);
|
|
|
|
std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) };
|
|
|
|
Ort::Value input_tensor = Ort::Value::CreateTensor<half>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
|
|
|
|
auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size());
|
|
|
|
delete[] blob;
|
|
|
|
clock_t starttime_4 = clock();
|
|
|
|
double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
|
|
|
|
if (cudaEnable)
|
|
|
|
{
|
|
|
|
std::cout << "[YOLO_V8(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
return RET_OK;
|
|
|
|
}
|