description: Explore the Roboflow 100 dataset featuring 100 diverse datasets designed to test object detection models across various domains, from healthcare to video games.
keywords: Roboflow 100, Ultralytics, object detection, dataset, benchmarking, machine learning, computer vision, diverse datasets, model evaluation
Roboflow 100, developed by [Roboflow](https://roboflow.com/?ref=ultralytics) and sponsored by Intel, is a groundbreaking [object detection](../../tasks/detect.md) benchmark. It includes 100 diverse datasets sampled from over 90,000 public datasets. This benchmark is designed to test the adaptability of models to various domains, including healthcare, aerial imagery, and video games.
Dataset benchmarking evaluates machine learning model performance on specific datasets using standardized metrics like [accuracy](https://www.ultralytics.com/glossary/accuracy), [mean average precision](https://www.ultralytics.com/glossary/mean-average-precision-map) and F1-score.
Roboflow 100 is invaluable for various applications related to [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) and [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl). Researchers and engineers can use this benchmark to:
The Roboflow 100 dataset is available on both [GitHub](https://github.com/roboflow/roboflow-100-benchmark) and [Roboflow Universe](https://universe.roboflow.com/roboflow-100?ref=ultralytics).
You can access it directly from the Roboflow 100 GitHub repository. In addition, on Roboflow Universe, you have the flexibility to download individual datasets by simply clicking the export button within each dataset.
Roboflow 100 consists of datasets with diverse images and videos captured from various angles and domains. Here's a look at examples of annotated images in the RF100 benchmark.
The diversity in the Roboflow 100 benchmark that can be seen above is a significant advancement from traditional benchmarks which often focus on optimizing a single metric within a limited domain.
## Citations and Acknowledgments
If you use the Roboflow 100 dataset in your research or development work, please cite the following paper:
If you are interested in exploring more datasets to enhance your object detection and [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) projects, feel free to visit [our comprehensive dataset collection](../index.md).
### What is the Roboflow 100 dataset, and why is it significant for object detection?
The **Roboflow 100** dataset, developed by [Roboflow](https://roboflow.com/?ref=ultralytics) and sponsored by Intel, is a crucial [object detection](../../tasks/detect.md) benchmark. It features 100 diverse datasets from over 90,000 public datasets, covering domains such as healthcare, aerial imagery, and video games. This diversity ensures that models can adapt to various real-world scenarios, enhancing their robustness and performance.
### How can I use the Roboflow 100 dataset for benchmarking my object detection models?
To use the Roboflow 100 dataset for benchmarking, you can implement the RF100Benchmark class from the Ultralytics library. Here's a brief example:
The **Roboflow 100** dataset spans seven domains, each providing unique challenges and applications for [object detection](https://www.ultralytics.com/glossary/object-detection) models:
The **Roboflow 100** dataset is accessible on [GitHub](https://github.com/roboflow/roboflow-100-benchmark) and [Roboflow Universe](https://universe.roboflow.com/roboflow-100?ref=ultralytics). You can download the entire dataset from GitHub or select individual datasets on Roboflow Universe using the export button.