description: YOLOv8 모델을 Ultralytics YOLO를 사용하여 훈련하는 단계별 가이드로, 단일 GPU 및 다중 GPU 훈련의 예제 포함
keywords: Ultralytics, YOLOv8, YOLO, 객체 감지, 훈련 모드, 사용자 정의 데이터셋, GPU 훈련, 다중 GPU, 하이퍼파라미터, CLI 예제, Python 예제
---
# Ultralytics YOLO와 함께 하는 모델 훈련
<imgwidth="1024"src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png"alt="Ultralytics YOLO 생태계 및 통합">
## 소개
딥러닝 모델을 훈련한다는 것은 모델에 데이터를 공급하고 그것이 정확한 예측을 할 수 있도록 매개변수를 조정하는 과정을 말합니다. Ultralytics YOLOv8의 훈련 모드는 현대 하드웨어 기능을 완전히 활용하여 객체 감지 모델의 효과적이고 효율적인 훈련을 위해 설계되었습니다. 이 가이드는 YOLOv8의 강력한 기능 세트를 사용하여 자체 모델을 훈련하는 데 필요한 모든 세부 정보를 다루는 것을 목표로 합니다.
* YOLOv8 데이터셋들은 첫 사용시 자동으로 다운로드됩니다, 예: `yolo train data=coco.yaml`
## 사용 예제
COCO128 데이터셋에서 YOLOv8n을 이미지 크기 640으로 100 에포크 동안 훈련합니다. 훈련 장치는 `device` 인수를 사용하여 지정할 수 있습니다. 인수를 전달하지 않으면 사용 가능한 경우 GPU `device=0`이, 아니면 `device=cpu`가 사용됩니다. 전체 훈련 인수 목록은 아래 Arguments 섹션을 참조하세요.
Ultralytics YOLO 모델에 통합된 Apple M1 및 M2 칩들에 대한 지원을 통해 Apple의 강력한 Metal Performance Shaders (MPS) 프레임워크를 활용하여 장치에서 모델을 훈련할 수 있습니다. MPS는 Apple 사용자 지정 실리콘에서 컴퓨터 및 이미지 처리 작업을 실행하는 고성능 방법을 제공합니다.
Apple M1 및 M2 칩에서 훈련을 활성화하려면, 훈련 과정을 시작할 때 장치로 'mps'를 지정해야 합니다. 아래는 Python 및 명령행 인터페이스를 통해 이를 수행할 수 있는 예제입니다: