|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
|
|
|
import contextlib
|
|
|
|
import urllib
|
|
|
|
from copy import copy
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import yaml
|
|
|
|
from PIL import Image
|
|
|
|
|
|
|
|
from tests import CFG, IS_TMP_WRITEABLE, MODEL, SOURCE, TMP
|
|
|
|
from ultralytics import RTDETR, YOLO
|
|
|
|
from ultralytics.cfg import MODELS, TASK2DATA, TASKS
|
|
|
|
from ultralytics.data.build import load_inference_source
|
|
|
|
from ultralytics.utils import (
|
|
|
|
ASSETS,
|
|
|
|
DEFAULT_CFG,
|
|
|
|
DEFAULT_CFG_PATH,
|
|
|
|
LOGGER,
|
|
|
|
ONLINE,
|
|
|
|
ROOT,
|
|
|
|
WEIGHTS_DIR,
|
|
|
|
WINDOWS,
|
|
|
|
checks,
|
|
|
|
)
|
|
|
|
from ultralytics.utils.downloads import download
|
|
|
|
from ultralytics.utils.torch_utils import TORCH_1_9
|
|
|
|
|
|
|
|
|
|
|
|
def test_model_forward():
|
|
|
|
"""Test the forward pass of the YOLO model."""
|
|
|
|
model = YOLO(CFG)
|
|
|
|
model(source=None, imgsz=32, augment=True) # also test no source and augment
|
|
|
|
|
|
|
|
|
|
|
|
def test_model_methods():
|
|
|
|
"""Test various methods and properties of the YOLO model."""
|
|
|
|
model = YOLO(MODEL)
|
|
|
|
|
|
|
|
# Model methods
|
|
|
|
model.info(verbose=True, detailed=True)
|
|
|
|
model = model.reset_weights()
|
|
|
|
model = model.load(MODEL)
|
|
|
|
model.to("cpu")
|
|
|
|
model.fuse()
|
|
|
|
model.clear_callback("on_train_start")
|
|
|
|
model.reset_callbacks()
|
|
|
|
|
|
|
|
# Model properties
|
|
|
|
_ = model.names
|
|
|
|
_ = model.device
|
|
|
|
_ = model.transforms
|
|
|
|
_ = model.task_map
|
|
|
|
|
|
|
|
|
|
|
|
def test_model_profile():
|
|
|
|
"""Test profiling of the YOLO model with 'profile=True' argument."""
|
|
|
|
from ultralytics.nn.tasks import DetectionModel
|
|
|
|
|
|
|
|
model = DetectionModel() # build model
|
|
|
|
im = torch.randn(1, 3, 64, 64) # requires min imgsz=64
|
|
|
|
_ = model.predict(im, profile=True)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable")
|
|
|
|
def test_predict_txt():
|
|
|
|
"""Test YOLO predictions with sources (file, dir, glob, recursive glob) specified in a text file."""
|
|
|
|
txt_file = TMP / "sources.txt"
|
|
|
|
with open(txt_file, "w") as f:
|
|
|
|
for x in [ASSETS / "bus.jpg", ASSETS, ASSETS / "*", ASSETS / "**/*.jpg"]:
|
|
|
|
f.write(f"{x}\n")
|
|
|
|
_ = YOLO(MODEL)(source=txt_file, imgsz=32)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model_name", MODELS)
|
|
|
|
def test_predict_img(model_name):
|
|
|
|
"""Test YOLO prediction on various types of image sources."""
|
|
|
|
model = YOLO(WEIGHTS_DIR / model_name)
|
|
|
|
im = cv2.imread(str(SOURCE)) # uint8 numpy array
|
|
|
|
assert len(model(source=Image.open(SOURCE), save=True, verbose=True, imgsz=32)) == 1 # PIL
|
|
|
|
assert len(model(source=im, save=True, save_txt=True, imgsz=32)) == 1 # ndarray
|
|
|
|
assert len(model(torch.rand((2, 3, 32, 32)), imgsz=32)) == 2 # batch-size 2 Tensor, FP32 0.0-1.0 RGB order
|
|
|
|
assert len(model(source=[im, im], save=True, save_txt=True, imgsz=32)) == 2 # batch
|
|
|
|
assert len(list(model(source=[im, im], save=True, stream=True, imgsz=32))) == 2 # stream
|
|
|
|
assert len(model(torch.zeros(320, 640, 3).numpy().astype(np.uint8), imgsz=32)) == 1 # tensor to numpy
|
|
|
|
batch = [
|
|
|
|
str(SOURCE), # filename
|
|
|
|
Path(SOURCE), # Path
|
|
|
|
"https://ultralytics.com/images/zidane.jpg" if ONLINE else SOURCE, # URI
|
|
|
|
cv2.imread(str(SOURCE)), # OpenCV
|
|
|
|
Image.open(SOURCE), # PIL
|
|
|
|
np.zeros((320, 640, 3), dtype=np.uint8), # numpy
|
|
|
|
]
|
|
|
|
assert len(model(batch, imgsz=32)) == len(batch) # multiple sources in a batch
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
|
|
def test_predict_visualize(model):
|
|
|
|
"""Test model predict methods with 'visualize=True' arguments."""
|
|
|
|
YOLO(WEIGHTS_DIR / model)(SOURCE, imgsz=32, visualize=True)
|
|
|
|
|
|
|
|
|
|
|
|
def test_predict_grey_and_4ch():
|
|
|
|
"""Test YOLO prediction on SOURCE converted to greyscale and 4-channel images."""
|
|
|
|
im = Image.open(SOURCE)
|
|
|
|
directory = TMP / "im4"
|
|
|
|
directory.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
source_greyscale = directory / "greyscale.jpg"
|
|
|
|
source_rgba = directory / "4ch.png"
|
|
|
|
source_non_utf = directory / "non_UTF_测试文件_tést_image.jpg"
|
|
|
|
source_spaces = directory / "image with spaces.jpg"
|
|
|
|
|
|
|
|
im.convert("L").save(source_greyscale) # greyscale
|
|
|
|
im.convert("RGBA").save(source_rgba) # 4-ch PNG with alpha
|
|
|
|
im.save(source_non_utf) # non-UTF characters in filename
|
|
|
|
im.save(source_spaces) # spaces in filename
|
|
|
|
|
|
|
|
# Inference
|
|
|
|
model = YOLO(MODEL)
|
|
|
|
for f in source_rgba, source_greyscale, source_non_utf, source_spaces:
|
|
|
|
for source in Image.open(f), cv2.imread(str(f)), f:
|
|
|
|
results = model(source, save=True, verbose=True, imgsz=32)
|
|
|
|
assert len(results) == 1 # verify that an image was run
|
|
|
|
f.unlink() # cleanup
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow
|
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
|
|
|
|
def test_youtube():
|
|
|
|
"""
|
|
|
|
Test YouTube inference.
|
|
|
|
|
|
|
|
Note: ConnectionError may occur during this test due to network instability or YouTube server availability.
|
|
|
|
"""
|
|
|
|
model = YOLO(MODEL)
|
|
|
|
try:
|
|
|
|
model.predict("https://youtu.be/G17sBkb38XQ", imgsz=96, save=True)
|
|
|
|
# Handle internet connection errors and 'urllib.error.HTTPError: HTTP Error 429: Too Many Requests'
|
|
|
|
except (urllib.error.HTTPError, ConnectionError) as e:
|
|
|
|
LOGGER.warning(f"WARNING: YouTube Test Error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
|
|
|
|
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable")
|
|
|
|
def test_track_stream():
|
|
|
|
"""
|
|
|
|
Test streaming tracking (short 10 frame video) with non-default ByteTrack tracker.
|
|
|
|
|
|
|
|
Note imgsz=160 required for tracking for higher confidence and better matches
|
|
|
|
"""
|
|
|
|
video_url = "https://ultralytics.com/assets/decelera_portrait_min.mov"
|
|
|
|
model = YOLO(MODEL)
|
|
|
|
model.track(video_url, imgsz=160, tracker="bytetrack.yaml")
|
|
|
|
model.track(video_url, imgsz=160, tracker="botsort.yaml", save_frames=True) # test frame saving also
|
|
|
|
|
|
|
|
# Test Global Motion Compensation (GMC) methods
|
|
|
|
for gmc in "orb", "sift", "ecc":
|
|
|
|
with open(ROOT / "cfg/trackers/botsort.yaml", encoding="utf-8") as f:
|
|
|
|
data = yaml.safe_load(f)
|
|
|
|
tracker = TMP / f"botsort-{gmc}.yaml"
|
|
|
|
data["gmc_method"] = gmc
|
|
|
|
with open(tracker, "w", encoding="utf-8") as f:
|
|
|
|
yaml.safe_dump(data, f)
|
|
|
|
model.track(video_url, imgsz=160, tracker=tracker)
|
|
|
|
|
|
|
|
|
|
|
|
def test_val():
|
|
|
|
"""Test the validation mode of the YOLO model."""
|
|
|
|
YOLO(MODEL).val(data="coco8.yaml", imgsz=32, save_hybrid=True)
|
|
|
|
|
|
|
|
|
|
|
|
def test_train_scratch():
|
|
|
|
"""Test training the YOLO model from scratch."""
|
|
|
|
model = YOLO(CFG)
|
|
|
|
model.train(data="coco8.yaml", epochs=2, imgsz=32, cache="disk", batch=-1, close_mosaic=1, name="model")
|
|
|
|
model(SOURCE)
|
|
|
|
|
|
|
|
|
|
|
|
def test_train_pretrained():
|
|
|
|
"""Test training the YOLO model from a pre-trained state."""
|
|
|
|
model = YOLO(WEIGHTS_DIR / "yolov8n-seg.pt")
|
|
|
|
model.train(data="coco8-seg.yaml", epochs=1, imgsz=32, cache="ram", copy_paste=0.5, mixup=0.5, name=0)
|
|
|
|
model(SOURCE)
|
|
|
|
|
|
|
|
|
|
|
|
def test_all_model_yamls():
|
|
|
|
"""Test YOLO model creation for all available YAML configurations."""
|
|
|
|
for m in (ROOT / "cfg" / "models").rglob("*.yaml"):
|
|
|
|
if "rtdetr" in m.name:
|
|
|
|
if TORCH_1_9: # torch<=1.8 issue - TypeError: __init__() got an unexpected keyword argument 'batch_first'
|
|
|
|
_ = RTDETR(m.name)(SOURCE, imgsz=640) # must be 640
|
|
|
|
else:
|
|
|
|
YOLO(m.name)
|
|
|
|
|
|
|
|
|
|
|
|
def test_workflow():
|
|
|
|
"""Test the complete workflow including training, validation, prediction, and exporting."""
|
|
|
|
model = YOLO(MODEL)
|
|
|
|
model.train(data="coco8.yaml", epochs=1, imgsz=32, optimizer="SGD")
|
|
|
|
model.val(imgsz=32)
|
|
|
|
model.predict(SOURCE, imgsz=32)
|
|
|
|
model.export(format="torchscript")
|
|
|
|
|
|
|
|
|
|
|
|
def test_predict_callback_and_setup():
|
|
|
|
"""Test callback functionality during YOLO prediction."""
|
|
|
|
|
|
|
|
def on_predict_batch_end(predictor):
|
|
|
|
"""Callback function that handles operations at the end of a prediction batch."""
|
|
|
|
path, im0s, _ = predictor.batch
|
|
|
|
im0s = im0s if isinstance(im0s, list) else [im0s]
|
|
|
|
bs = [predictor.dataset.bs for _ in range(len(path))]
|
|
|
|
predictor.results = zip(predictor.results, im0s, bs) # results is List[batch_size]
|
|
|
|
|
|
|
|
model = YOLO(MODEL)
|
|
|
|
model.add_callback("on_predict_batch_end", on_predict_batch_end)
|
|
|
|
|
|
|
|
dataset = load_inference_source(source=SOURCE)
|
|
|
|
bs = dataset.bs # noqa access predictor properties
|
|
|
|
results = model.predict(dataset, stream=True, imgsz=160) # source already setup
|
|
|
|
for r, im0, bs in results:
|
|
|
|
print("test_callback", im0.shape)
|
|
|
|
print("test_callback", bs)
|
|
|
|
boxes = r.boxes # Boxes object for bbox outputs
|
|
|
|
print(boxes)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
|
|
def test_results(model):
|
|
|
|
"""Test various result formats for the YOLO model."""
|
|
|
|
results = YOLO(WEIGHTS_DIR / model)([SOURCE, SOURCE], imgsz=160)
|
|
|
|
for r in results:
|
|
|
|
r = r.cpu().numpy()
|
|
|
|
r = r.to(device="cpu", dtype=torch.float32)
|
|
|
|
r.save_txt(txt_file=TMP / "runs/tests/label.txt", save_conf=True)
|
|
|
|
r.save_crop(save_dir=TMP / "runs/tests/crops/")
|
|
|
|
r.tojson(normalize=True)
|
|
|
|
r.plot(pil=True)
|
|
|
|
r.plot(conf=True, boxes=True)
|
|
|
|
print(r, len(r), r.path)
|
|
|
|
|
|
|
|
|
|
|
|
def test_labels_and_crops():
|
|
|
|
"""Test output from prediction args for saving detection labels and crops."""
|
|
|
|
imgs = [SOURCE, ASSETS / "zidane.jpg"]
|
|
|
|
results = YOLO(WEIGHTS_DIR / "yolov8n.pt")(imgs, imgsz=160, save_txt=True, save_crop=True)
|
|
|
|
save_path = Path(results[0].save_dir)
|
|
|
|
for r in results:
|
|
|
|
im_name = Path(r.path).stem
|
|
|
|
cls_idxs = r.boxes.cls.int().tolist()
|
|
|
|
# Check label path
|
|
|
|
labels = save_path / f"labels/{im_name}.txt"
|
|
|
|
assert labels.exists()
|
|
|
|
# Check detections match label count
|
|
|
|
assert len(r.boxes.data) == len([line for line in labels.read_text().splitlines() if line])
|
|
|
|
# Check crops path and files
|
|
|
|
crop_dirs = list((save_path / "crops").iterdir())
|
|
|
|
crop_files = [f for p in crop_dirs for f in p.glob("*")]
|
|
|
|
# Crop directories match detections
|
|
|
|
assert all(r.names.get(c) in {d.name for d in crop_dirs} for c in cls_idxs)
|
|
|
|
# Same number of crops as detections
|
|
|
|
assert len([f for f in crop_files if im_name in f.name]) == len(r.boxes.data)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
|
|
|
|
def test_data_utils():
|
|
|
|
"""Test utility functions in ultralytics/data/utils.py."""
|
|
|
|
from ultralytics.data.utils import HUBDatasetStats, autosplit
|
|
|
|
from ultralytics.utils.downloads import zip_directory
|
|
|
|
|
|
|
|
# from ultralytics.utils.files import WorkingDirectory
|
|
|
|
# with WorkingDirectory(ROOT.parent / 'tests'):
|
|
|
|
|
|
|
|
for task in TASKS:
|
|
|
|
file = Path(TASK2DATA[task]).with_suffix(".zip") # i.e. coco8.zip
|
|
|
|
download(f"https://github.com/ultralytics/hub/raw/main/example_datasets/{file}", unzip=False, dir=TMP)
|
|
|
|
stats = HUBDatasetStats(TMP / file, task=task)
|
|
|
|
stats.get_json(save=True)
|
|
|
|
stats.process_images()
|
|
|
|
|
|
|
|
autosplit(TMP / "coco8")
|
|
|
|
zip_directory(TMP / "coco8/images/val") # zip
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
|
|
|
|
def test_data_converter():
|
|
|
|
"""Test dataset converters."""
|
|
|
|
from ultralytics.data.converter import coco80_to_coco91_class, convert_coco
|
|
|
|
|
|
|
|
file = "instances_val2017.json"
|
|
|
|
download(f"https://github.com/ultralytics/yolov5/releases/download/v1.0/{file}", dir=TMP)
|
|
|
|
convert_coco(labels_dir=TMP, save_dir=TMP / "yolo_labels", use_segments=True, use_keypoints=False, cls91to80=True)
|
|
|
|
coco80_to_coco91_class()
|
|
|
|
|
|
|
|
|
|
|
|
def test_data_annotator():
|
|
|
|
"""Test automatic data annotation."""
|
|
|
|
from ultralytics.data.annotator import auto_annotate
|
|
|
|
|
|
|
|
auto_annotate(
|
|
|
|
ASSETS,
|
|
|
|
det_model=WEIGHTS_DIR / "yolov8n.pt",
|
|
|
|
sam_model=WEIGHTS_DIR / "mobile_sam.pt",
|
|
|
|
output_dir=TMP / "auto_annotate_labels",
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def test_events():
|
|
|
|
"""Test event sending functionality."""
|
|
|
|
from ultralytics.hub.utils import Events
|
|
|
|
|
|
|
|
events = Events()
|
|
|
|
events.enabled = True
|
|
|
|
cfg = copy(DEFAULT_CFG) # does not require deepcopy
|
|
|
|
cfg.mode = "test"
|
|
|
|
events(cfg)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cfg_init():
|
|
|
|
"""Test configuration initialization utilities."""
|
|
|
|
from ultralytics.cfg import check_dict_alignment, copy_default_cfg, smart_value
|
|
|
|
|
|
|
|
with contextlib.suppress(SyntaxError):
|
|
|
|
check_dict_alignment({"a": 1}, {"b": 2})
|
|
|
|
copy_default_cfg()
|
|
|
|
(Path.cwd() / DEFAULT_CFG_PATH.name.replace(".yaml", "_copy.yaml")).unlink(missing_ok=False)
|
|
|
|
[smart_value(x) for x in ["none", "true", "false"]]
|
|
|
|
|
|
|
|
|
|
|
|
def test_utils_init():
|
|
|
|
"""Test initialization utilities."""
|
|
|
|
from ultralytics.utils import get_git_branch, get_git_origin_url, get_ubuntu_version, is_github_action_running
|
|
|
|
|
|
|
|
get_ubuntu_version()
|
|
|
|
is_github_action_running()
|
|
|
|
get_git_origin_url()
|
|
|
|
get_git_branch()
|
|
|
|
|
|
|
|
|
|
|
|
def test_utils_checks():
|
|
|
|
"""Test various utility checks."""
|
|
|
|
checks.check_yolov5u_filename("yolov5n.pt")
|
|
|
|
checks.git_describe(ROOT)
|
|
|
|
checks.check_requirements() # check requirements.txt
|
|
|
|
checks.check_imgsz([600, 600], max_dim=1)
|
|
|
|
checks.check_imshow(warn=True)
|
|
|
|
checks.check_version("ultralytics", "8.0.0")
|
|
|
|
checks.print_args()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(WINDOWS, reason="Windows profiling is extremely slow (cause unknown)")
|
|
|
|
def test_utils_benchmarks():
|
|
|
|
"""Test model benchmarking."""
|
|
|
|
from ultralytics.utils.benchmarks import ProfileModels
|
|
|
|
|
|
|
|
ProfileModels(["yolov8n.yaml"], imgsz=32, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile()
|
|
|
|
|
|
|
|
|
|
|
|
def test_utils_torchutils():
|
|
|
|
"""Test Torch utility functions."""
|
|
|
|
from ultralytics.nn.modules.conv import Conv
|
|
|
|
from ultralytics.utils.torch_utils import get_flops_with_torch_profiler, profile, time_sync
|
|
|
|
|
|
|
|
x = torch.randn(1, 64, 20, 20)
|
|
|
|
m = Conv(64, 64, k=1, s=2)
|
|
|
|
|
|
|
|
profile(x, [m], n=3)
|
|
|
|
get_flops_with_torch_profiler(m)
|
|
|
|
time_sync()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow
|
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
|
|
|
|
def test_utils_downloads():
|
|
|
|
"""Test file download utilities."""
|
|
|
|
from ultralytics.utils.downloads import get_google_drive_file_info
|
|
|
|
|
|
|
|
get_google_drive_file_info("https://drive.google.com/file/d/1cqT-cJgANNrhIHCrEufUYhQ4RqiWG_lJ/view?usp=drive_link")
|
|
|
|
|
|
|
|
|
|
|
|
def test_utils_ops():
|
|
|
|
"""Test various operations utilities."""
|
|
|
|
from ultralytics.utils.ops import (
|
|
|
|
ltwh2xywh,
|
|
|
|
ltwh2xyxy,
|
|
|
|
make_divisible,
|
|
|
|
xywh2ltwh,
|
|
|
|
xywh2xyxy,
|
|
|
|
xywhn2xyxy,
|
|
|
|
xywhr2xyxyxyxy,
|
|
|
|
xyxy2ltwh,
|
|
|
|
xyxy2xywh,
|
|
|
|
xyxy2xywhn,
|
|
|
|
xyxyxyxy2xywhr,
|
|
|
|
)
|
|
|
|
|
|
|
|
make_divisible(17, torch.tensor([8]))
|
|
|
|
|
|
|
|
boxes = torch.rand(10, 4) # xywh
|
|
|
|
torch.allclose(boxes, xyxy2xywh(xywh2xyxy(boxes)))
|
|
|
|
torch.allclose(boxes, xyxy2xywhn(xywhn2xyxy(boxes)))
|
|
|
|
torch.allclose(boxes, ltwh2xywh(xywh2ltwh(boxes)))
|
|
|
|
torch.allclose(boxes, xyxy2ltwh(ltwh2xyxy(boxes)))
|
|
|
|
|
|
|
|
boxes = torch.rand(10, 5) # xywhr for OBB
|
|
|
|
boxes[:, 4] = torch.randn(10) * 30
|
|
|
|
torch.allclose(boxes, xyxyxyxy2xywhr(xywhr2xyxyxyxy(boxes)), rtol=1e-3)
|
|
|
|
|
|
|
|
|
|
|
|
def test_utils_files():
|
|
|
|
"""Test file handling utilities."""
|
|
|
|
from ultralytics.utils.files import file_age, file_date, get_latest_run, spaces_in_path
|
|
|
|
|
|
|
|
file_age(SOURCE)
|
|
|
|
file_date(SOURCE)
|
|
|
|
get_latest_run(ROOT / "runs")
|
|
|
|
|
|
|
|
path = TMP / "path/with spaces"
|
|
|
|
path.mkdir(parents=True, exist_ok=True)
|
|
|
|
with spaces_in_path(path) as new_path:
|
|
|
|
print(new_path)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow
|
|
|
|
def test_utils_patches_torch_save():
|
|
|
|
"""Test torch_save backoff when _torch_save throws RuntimeError."""
|
|
|
|
from unittest.mock import MagicMock, patch
|
|
|
|
|
|
|
|
from ultralytics.utils.patches import torch_save
|
|
|
|
|
|
|
|
mock = MagicMock(side_effect=RuntimeError)
|
|
|
|
|
|
|
|
with patch("ultralytics.utils.patches._torch_save", new=mock):
|
|
|
|
with pytest.raises(RuntimeError):
|
|
|
|
torch_save(torch.zeros(1), TMP / "test.pt")
|
|
|
|
|
|
|
|
assert mock.call_count == 4, "torch_save was not attempted the expected number of times"
|
|
|
|
|
|
|
|
|
|
|
|
def test_nn_modules_conv():
|
|
|
|
"""Test Convolutional Neural Network modules."""
|
|
|
|
from ultralytics.nn.modules.conv import CBAM, Conv2, ConvTranspose, DWConvTranspose2d, Focus
|
|
|
|
|
|
|
|
c1, c2 = 8, 16 # input and output channels
|
|
|
|
x = torch.zeros(4, c1, 10, 10) # BCHW
|
|
|
|
|
|
|
|
# Run all modules not otherwise covered in tests
|
|
|
|
DWConvTranspose2d(c1, c2)(x)
|
|
|
|
ConvTranspose(c1, c2)(x)
|
|
|
|
Focus(c1, c2)(x)
|
|
|
|
CBAM(c1)(x)
|
|
|
|
|
|
|
|
# Fuse ops
|
|
|
|
m = Conv2(c1, c2)
|
|
|
|
m.fuse_convs()
|
|
|
|
m(x)
|
|
|
|
|
|
|
|
|
|
|
|
def test_nn_modules_block():
|
|
|
|
"""Test Neural Network block modules."""
|
|
|
|
from ultralytics.nn.modules.block import C1, C3TR, BottleneckCSP, C3Ghost, C3x
|
|
|
|
|
|
|
|
c1, c2 = 8, 16 # input and output channels
|
|
|
|
x = torch.zeros(4, c1, 10, 10) # BCHW
|
|
|
|
|
|
|
|
# Run all modules not otherwise covered in tests
|
|
|
|
C1(c1, c2)(x)
|
|
|
|
C3x(c1, c2)(x)
|
|
|
|
C3TR(c1, c2)(x)
|
|
|
|
C3Ghost(c1, c2)(x)
|
|
|
|
BottleneckCSP(c1, c2)(x)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
|
|
|
|
def test_hub():
|
|
|
|
"""Test Ultralytics HUB functionalities."""
|
|
|
|
from ultralytics.hub import export_fmts_hub, logout
|
|
|
|
from ultralytics.hub.utils import smart_request
|
|
|
|
|
|
|
|
export_fmts_hub()
|
|
|
|
logout()
|
|
|
|
smart_request("GET", "https://github.com", progress=True)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def image():
|
|
|
|
"""Loads an image from a predefined source using OpenCV."""
|
|
|
|
return cv2.imread(str(SOURCE))
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"auto_augment, erasing, force_color_jitter",
|
|
|
|
[
|
|
|
|
(None, 0.0, False),
|
|
|
|
("randaugment", 0.5, True),
|
|
|
|
("augmix", 0.2, False),
|
|
|
|
("autoaugment", 0.0, True),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_classify_transforms_train(image, auto_augment, erasing, force_color_jitter):
|
|
|
|
"""Tests classification transforms during training with various augmentation settings."""
|
|
|
|
from ultralytics.data.augment import classify_augmentations
|
|
|
|
|
|
|
|
transform = classify_augmentations(
|
|
|
|
size=224,
|
|
|
|
mean=(0.5, 0.5, 0.5),
|
|
|
|
std=(0.5, 0.5, 0.5),
|
|
|
|
scale=(0.08, 1.0),
|
|
|
|
ratio=(3.0 / 4.0, 4.0 / 3.0),
|
|
|
|
hflip=0.5,
|
|
|
|
vflip=0.5,
|
|
|
|
auto_augment=auto_augment,
|
|
|
|
hsv_h=0.015,
|
|
|
|
hsv_s=0.4,
|
|
|
|
hsv_v=0.4,
|
|
|
|
force_color_jitter=force_color_jitter,
|
|
|
|
erasing=erasing,
|
|
|
|
)
|
|
|
|
|
|
|
|
transformed_image = transform(Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)))
|
|
|
|
|
|
|
|
assert transformed_image.shape == (3, 224, 224)
|
|
|
|
assert torch.is_tensor(transformed_image)
|
|
|
|
assert transformed_image.dtype == torch.float32
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow
|
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
|
|
|
|
def test_model_tune():
|
|
|
|
"""Tune YOLO model for performance."""
|
|
|
|
YOLO("yolov8n-pose.pt").tune(data="coco8-pose.yaml", plots=False, imgsz=32, epochs=1, iterations=2, device="cpu")
|
|
|
|
YOLO("yolov8n-cls.pt").tune(data="imagenet10", plots=False, imgsz=32, epochs=1, iterations=2, device="cpu")
|
|
|
|
|
|
|
|
|
|
|
|
def test_model_embeddings():
|
|
|
|
"""Test YOLO model embeddings."""
|
|
|
|
model_detect = YOLO(MODEL)
|
|
|
|
model_segment = YOLO(WEIGHTS_DIR / "yolov8n-seg.pt")
|
|
|
|
|
|
|
|
for batch in [SOURCE], [SOURCE, SOURCE]: # test batch size 1 and 2
|
|
|
|
assert len(model_detect.embed(source=batch, imgsz=32)) == len(batch)
|
|
|
|
assert len(model_segment.embed(source=batch, imgsz=32)) == len(batch)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="YOLOWorld with CLIP is not supported in Python 3.12")
|
|
|
|
def test_yolo_world():
|
|
|
|
"""Tests YOLO world models with different configurations, including classes, detection, and training scenarios."""
|
|
|
|
model = YOLO("yolov8s-world.pt") # no YOLOv8n-world model yet
|
|
|
|
model.set_classes(["tree", "window"])
|
|
|
|
model(SOURCE, conf=0.01)
|
|
|
|
|
|
|
|
model = YOLO("yolov8s-worldv2.pt") # no YOLOv8n-world model yet
|
|
|
|
# Training from a pretrained model. Eval is included at the final stage of training.
|
|
|
|
# Use dota8.yaml which has fewer categories to reduce the inference time of CLIP model
|
|
|
|
model.train(
|
|
|
|
data="dota8.yaml",
|
|
|
|
epochs=1,
|
|
|
|
imgsz=32,
|
|
|
|
cache="disk",
|
|
|
|
close_mosaic=1,
|
|
|
|
)
|
|
|
|
|
|
|
|
# test WorWorldTrainerFromScratch
|
|
|
|
from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch
|
|
|
|
|
|
|
|
model = YOLO("yolov8s-worldv2.yaml") # no YOLOv8n-world model yet
|
|
|
|
model.train(
|
|
|
|
data={"train": {"yolo_data": ["dota8.yaml"]}, "val": {"yolo_data": ["dota8.yaml"]}},
|
|
|
|
epochs=1,
|
|
|
|
imgsz=32,
|
|
|
|
cache="disk",
|
|
|
|
close_mosaic=1,
|
|
|
|
trainer=WorldTrainerFromScratch,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def test_yolov10():
|
|
|
|
"""A simple test for yolov10 for now."""
|
|
|
|
model = YOLO("yolov10n.yaml")
|
|
|
|
# train/val/predict
|
|
|
|
model.train(data="coco8.yaml", epochs=1, imgsz=32, close_mosaic=1, cache="disk")
|
|
|
|
model.val(data="coco8.yaml", imgsz=32)
|
|
|
|
model(SOURCE)
|