|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
import contextlib
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from ultralytics import YOLO, download
|
|
|
|
from ultralytics.utils import ASSETS, DATASETS_DIR, WEIGHTS_DIR
|
|
|
|
from ultralytics.utils.checks import cuda_device_count, cuda_is_available
|
|
|
|
|
|
|
|
CUDA_IS_AVAILABLE = cuda_is_available()
|
|
|
|
CUDA_DEVICE_COUNT = cuda_device_count()
|
|
|
|
|
|
|
|
MODEL = WEIGHTS_DIR / 'path with spaces' / 'yolov8n.pt' # test spaces in path
|
|
|
|
DATA = 'coco8.yaml'
|
|
|
|
BUS = ASSETS / 'bus.jpg'
|
|
|
|
|
|
|
|
|
|
|
|
def test_checks():
|
|
|
|
assert torch.cuda.is_available() == CUDA_IS_AVAILABLE
|
|
|
|
assert torch.cuda.device_count() == CUDA_DEVICE_COUNT
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
|
|
|
|
def test_train():
|
|
|
|
device = 0 if CUDA_DEVICE_COUNT == 1 else [0, 1]
|
|
|
|
YOLO(MODEL).train(data=DATA, imgsz=64, epochs=1, device=device) # requires imgsz>=64
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
|
|
|
|
def test_predict_multiple_devices():
|
|
|
|
model = YOLO('yolov8n.pt')
|
|
|
|
model = model.cpu()
|
|
|
|
assert str(model.device) == 'cpu'
|
|
|
|
_ = model(BUS) # CPU inference
|
|
|
|
assert str(model.device) == 'cpu'
|
|
|
|
|
|
|
|
model = model.to('cuda:0')
|
|
|
|
assert str(model.device) == 'cuda:0'
|
|
|
|
_ = model(BUS) # CUDA inference
|
|
|
|
assert str(model.device) == 'cuda:0'
|
|
|
|
|
|
|
|
model = model.cpu()
|
|
|
|
assert str(model.device) == 'cpu'
|
|
|
|
_ = model(BUS) # CPU inference
|
|
|
|
assert str(model.device) == 'cpu'
|
|
|
|
|
|
|
|
model = model.cuda()
|
|
|
|
assert str(model.device) == 'cuda:0'
|
|
|
|
_ = model(BUS) # CUDA inference
|
|
|
|
assert str(model.device) == 'cuda:0'
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
|
|
|
|
def test_autobatch():
|
|
|
|
from ultralytics.utils.autobatch import check_train_batch_size
|
|
|
|
|
|
|
|
check_train_batch_size(YOLO(MODEL).model.cuda(), imgsz=128, amp=True)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
|
|
|
|
def test_utils_benchmarks():
|
|
|
|
from ultralytics.utils.benchmarks import ProfileModels
|
|
|
|
|
|
|
|
# Pre-export a dynamic engine model to use dynamic inference
|
|
|
|
YOLO(MODEL).export(format='engine', imgsz=32, dynamic=True, batch=1)
|
|
|
|
ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
|
|
|
|
def test_predict_sam():
|
|
|
|
from ultralytics import SAM
|
|
|
|
from ultralytics.models.sam import Predictor as SAMPredictor
|
|
|
|
|
|
|
|
# Load a model
|
|
|
|
model = SAM(WEIGHTS_DIR / 'sam_b.pt')
|
|
|
|
|
|
|
|
# Display model information (optional)
|
|
|
|
model.info()
|
|
|
|
|
|
|
|
# Run inference
|
|
|
|
model(BUS, device=0)
|
|
|
|
|
|
|
|
# Run inference with bboxes prompt
|
|
|
|
model(BUS, bboxes=[439, 437, 524, 709], device=0)
|
|
|
|
|
|
|
|
# Run inference with points prompt
|
|
|
|
model(ASSETS / 'zidane.jpg', points=[900, 370], labels=[1], device=0)
|
|
|
|
|
|
|
|
# Create SAMPredictor
|
|
|
|
overrides = dict(conf=0.25, task='segment', mode='predict', imgsz=1024, model=WEIGHTS_DIR / 'mobile_sam.pt')
|
|
|
|
predictor = SAMPredictor(overrides=overrides)
|
|
|
|
|
|
|
|
# Set image
|
|
|
|
predictor.set_image(ASSETS / 'zidane.jpg') # set with image file
|
|
|
|
# predictor(bboxes=[439, 437, 524, 709])
|
|
|
|
# predictor(points=[900, 370], labels=[1])
|
|
|
|
|
|
|
|
# Reset image
|
|
|
|
predictor.reset_image()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
|
|
|
|
def test_model_ray_tune():
|
|
|
|
with contextlib.suppress(RuntimeError): # RuntimeError may be caused by out-of-memory
|
|
|
|
YOLO('yolov8n-cls.yaml').tune(use_ray=True,
|
|
|
|
data='imagenet10',
|
|
|
|
grace_period=1,
|
|
|
|
iterations=1,
|
|
|
|
imgsz=32,
|
|
|
|
epochs=1,
|
|
|
|
plots=False,
|
|
|
|
device='cpu')
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
|
|
|
|
def test_model_tune():
|
|
|
|
YOLO('yolov8n-pose.pt').tune(data='coco8-pose.yaml', plots=False, imgsz=32, epochs=1, iterations=2, device='cpu')
|
|
|
|
YOLO('yolov8n-cls.pt').tune(data='imagenet10', plots=False, imgsz=32, epochs=1, iterations=2, device='cpu')
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
|
|
|
|
def test_pycocotools():
|
|
|
|
from ultralytics.models.yolo.detect import DetectionValidator
|
|
|
|
from ultralytics.models.yolo.pose import PoseValidator
|
|
|
|
from ultralytics.models.yolo.segment import SegmentationValidator
|
|
|
|
|
|
|
|
# Download annotations after each dataset downloads first
|
|
|
|
url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
|
|
|
|
|
|
|
|
args = {'model': 'yolov8n.pt', 'data': 'coco8.yaml', 'save_json': True, 'imgsz': 64}
|
|
|
|
validator = DetectionValidator(args=args)
|
|
|
|
validator()
|
|
|
|
validator.is_coco = True
|
|
|
|
download(f'{url}instances_val2017.json', dir=DATASETS_DIR / 'coco8/annotations')
|
|
|
|
_ = validator.eval_json(validator.stats)
|
|
|
|
|
|
|
|
args = {'model': 'yolov8n-seg.pt', 'data': 'coco8-seg.yaml', 'save_json': True, 'imgsz': 64}
|
|
|
|
validator = SegmentationValidator(args=args)
|
|
|
|
validator()
|
|
|
|
validator.is_coco = True
|
|
|
|
download(f'{url}instances_val2017.json', dir=DATASETS_DIR / 'coco8-seg/annotations')
|
|
|
|
_ = validator.eval_json(validator.stats)
|
|
|
|
|
|
|
|
args = {'model': 'yolov8n-pose.pt', 'data': 'coco8-pose.yaml', 'save_json': True, 'imgsz': 64}
|
|
|
|
validator = PoseValidator(args=args)
|
|
|
|
validator()
|
|
|
|
validator.is_coco = True
|
|
|
|
download(f'{url}person_keypoints_val2017.json', dir=DATASETS_DIR / 'coco8-pose/annotations')
|
|
|
|
_ = validator.eval_json(validator.stats)
|