---
comments: true
description: Object Counting Using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Object Detection, Object Counting, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK
---
# Object Counting using Ultralytics YOLOv8 🚀
## What is Object Counting?
Object counting with [Ultralytics YOLOv8 ](https://github.com/ultralytics/ultralytics/ ) involves accurate identification and counting of specific objects in videos and camera streams. YOLOv8 excels in real-time applications, providing efficient and precise object counting for various scenarios like crowd analysis and surveillance, thanks to its state-of-the-art algorithms and deep learning capabilities.
< table >
< tr >
< td align = "center" >
< iframe loading = "lazy" width = "720" height = "405" src = "https://www.youtube.com/embed/Ag2e-5_NpS0"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
< / iframe >
< br >
< strong > Watch:< / strong > Object Counting using Ultralytics YOLOv8
< / td >
< td align = "center" >
< iframe loading = "lazy" width = "720" height = "405" src = "https://www.youtube.com/embed/Fj9TStNBVoY"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
< / iframe >
< br >
< strong > Watch:< / strong > Classwise Object Counting using Ultralytics YOLOv8
< / td >
< / tr >
< / table >
## Advantages of Object Counting?
- **Resource Optimization:** Object counting facilitates efficient resource management by providing accurate counts, and optimizing resource allocation in applications like inventory management.
- **Enhanced Security:** Object counting enhances security and surveillance by accurately tracking and counting entities, aiding in proactive threat detection.
- **Informed Decision-Making:** Object counting offers valuable insights for decision-making, optimizing processes in retail, traffic management, and various other domains.
## Real World Applications
| Logistics | Aquaculture |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:|
| ![Conveyor Belt Packets Counting Using Ultralytics YOLOv8 ](https://github.com/RizwanMunawar/ultralytics/assets/62513924/70e2d106-510c-4c6c-a57a-d34a765aa757 ) | ![Fish Counting in Sea using Ultralytics YOLOv8 ](https://github.com/RizwanMunawar/ultralytics/assets/62513924/c60d047b-3837-435f-8d29-bb9fc95d2191 ) |
| Conveyor Belt Packets Counting Using Ultralytics YOLOv8 | Fish Counting in Sea using Ultralytics YOLOv8 |
!!! Example "Object Counting using YOLOv8 Example"
=== "Count in Region"
```python
import cv2
from ultralytics import YOLO, solutions
model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Define region points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Init Object Counter
counter = solutions.ObjectCounter(
view_img=True,
reg_pts=region_points,
classes_names=model.names,
draw_tracks=True,
line_thickness=2,
)
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
tracks = model.track(im0, persist=True, show=False)
im0 = counter.start_counting(im0, tracks)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
```
=== "Count in Polygon"
```python
import cv2
from ultralytics import YOLO, solutions
model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Define region points as a polygon with 5 points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)]
# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Init Object Counter
counter = solutions.ObjectCounter(
view_img=True,
reg_pts=region_points,
classes_names=model.names,
draw_tracks=True,
line_thickness=2,
)
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
tracks = model.track(im0, persist=True, show=False)
im0 = counter.start_counting(im0, tracks)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
```
=== "Count in Line"
```python
import cv2
from ultralytics import YOLO, solutions
model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Define line points
line_points = [(20, 400), (1080, 400)]
# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Init Object Counter
counter = solutions.ObjectCounter(
view_img=True,
reg_pts=line_points,
classes_names=model.names,
draw_tracks=True,
line_thickness=2,
)
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
tracks = model.track(im0, persist=True, show=False)
im0 = counter.start_counting(im0, tracks)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
```
=== "Specific Classes"
```python
import cv2
from ultralytics import YOLO, solutions
model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
line_points = [(20, 400), (1080, 400)] # line or region points
classes_to_count = [0, 2] # person and car classes for count
# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Init Object Counter
counter = solutions.ObjectCounter(
view_img=True,
reg_pts=line_points,
classes_names=model.names,
draw_tracks=True,
line_thickness=2,
)
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
tracks = model.track(im0, persist=True, show=False, classes=classes_to_count)
im0 = counter.start_counting(im0, tracks)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
```
???+ tip "Region is Movable"
You can move the region anywhere in the frame by clicking on its edges
### Argument `ObjectCounter`
Here's a table with the `ObjectCounter` arguments:
| Name | Type | Default | Description |
|----------------------|---------|----------------------------|------------------------------------------------------------------------|
| `classes_names` | `dict` | `None` | Dictionary of class names. |
| `reg_pts` | `list` | `[(20, 400), (1260, 400)]` | List of points defining the counting region. |
| `count_reg_color` | `tuple` | `(255, 0, 255)` | RGB color of the counting region. |
| `count_txt_color` | `tuple` | `(0, 0, 0)` | RGB color of the count text. |
| `count_bg_color` | `tuple` | `(255, 255, 255)` | RGB color of the count text background. |
| `line_thickness` | `int` | `2` | Line thickness for bounding boxes. |
| `track_thickness` | `int` | `2` | Thickness of the track lines. |
| `view_img` | `bool` | `False` | Flag to control whether to display the video stream. |
| `view_in_counts` | `bool` | `True` | Flag to control whether to display the in counts on the video stream. |
| `view_out_counts` | `bool` | `True` | Flag to control whether to display the out counts on the video stream. |
| `draw_tracks` | `bool` | `False` | Flag to control whether to draw the object tracks. |
| `track_color` | `tuple` | `None` | RGB color of the tracks. |
| `region_thickness` | `int` | `5` | Thickness of the object counting region. |
| `line_dist_thresh` | `int` | `15` | Euclidean distance threshold for line counter. |
| `cls_txtdisplay_gap` | `int` | `50` | Display gap between each class count. |
### Arguments `model.track`
| Name | Type | Default | Description |
|-----------|---------|----------------|-------------------------------------------------------------|
| `source` | `im0` | `None` | source directory for images or videos |
| `persist` | `bool` | `False` | persisting tracks between frames |
| `tracker` | `str` | `botsort.yaml` | Tracking method 'bytetrack' or 'botsort' |
| `conf` | `float` | `0.3` | Confidence Threshold |
| `iou` | `float` | `0.5` | IOU Threshold |
| `classes` | `list` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] |
| `verbose` | `bool` | `True` | Display the object tracking results |