You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
191 lines
12 KiB
191 lines
12 KiB
2 years ago
|
---
|
||
|
comments: true
|
||
1 year ago
|
description: Learn how to use instance segmentation models with Ultralytics YOLO. Instructions on training, validation, image prediction, and model export.
|
||
|
keywords: yolov8, instance segmentation, Ultralytics, COCO dataset, image segmentation, object detection, model training, model validation, image prediction, model export
|
||
2 years ago
|
---
|
||
|
|
||
1 year ago
|
# Instance Segmentation
|
||
2 years ago
|
|
||
1 year ago
|
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418644-7df320b8-098d-47f1-85c5-26604d761286.png" alt="Instance segmentation examples">
|
||
2 years ago
|
|
||
1 year ago
|
Instance segmentation goes a step further than object detection and involves identifying individual objects in an image and segmenting them from the rest of the image.
|
||
|
|
||
|
The output of an instance segmentation model is a set of masks or contours that outline each object in the image, along with class labels and confidence scores for each object. Instance segmentation is useful when you need to know not only where objects are in an image, but also what their exact shape is.
|
||
|
|
||
|
<p align="center">
|
||
|
<br>
|
||
1 year ago
|
<iframe width="720" height="405" src="https://www.youtube.com/embed/o4Zd-IeMlSY?si=37nusCzDTd74Obsp"
|
||
|
title="YouTube video player" frameborder="0"
|
||
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||
1 year ago
|
allowfullscreen>
|
||
|
</iframe>
|
||
|
<br>
|
||
|
<strong>Watch:</strong> Run Segmentation with Pre-Trained Ultralytics YOLOv8 Model in Python.
|
||
|
</p>
|
||
2 years ago
|
|
||
|
!!! tip "Tip"
|
||
|
|
||
1 year ago
|
YOLOv8 Segment models use the `-seg` suffix, i.e. `yolov8n-seg.pt` and are pretrained on [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml).
|
||
2 years ago
|
|
||
1 year ago
|
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8)
|
||
2 years ago
|
|
||
1 year ago
|
YOLOv8 pretrained Segment models are shown here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset.
|
||
2 years ago
|
|
||
1 year ago
|
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
|
||
2 years ago
|
|
||
|
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||
|
|----------------------------------------------------------------------------------------------|-----------------------|----------------------|-----------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
|
||
|
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
|
||
|
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
|
||
|
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
|
||
|
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
|
||
|
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
|
||
|
|
||
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
|
||
|
<br>Reproduce by `yolo val segment data=coco.yaml device=0`
|
||
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
|
||
|
instance.
|
||
|
<br>Reproduce by `yolo val segment data=coco128-seg.yaml batch=1 device=0|cpu`
|
||
2 years ago
|
|
||
|
## Train
|
||
|
|
||
1 year ago
|
Train YOLOv8n-seg on the COCO128-seg dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
||
2 years ago
|
|
||
|
!!! example ""
|
||
|
|
||
|
=== "Python"
|
||
1 year ago
|
|
||
2 years ago
|
```python
|
||
|
from ultralytics import YOLO
|
||
1 year ago
|
|
||
2 years ago
|
# Load a model
|
||
2 years ago
|
model = YOLO('yolov8n-seg.yaml') # build a new model from YAML
|
||
2 years ago
|
model = YOLO('yolov8n-seg.pt') # load a pretrained model (recommended for training)
|
||
2 years ago
|
model = YOLO('yolov8n-seg.yaml').load('yolov8n.pt') # build from YAML and transfer weights
|
||
1 year ago
|
|
||
2 years ago
|
# Train the model
|
||
1 year ago
|
results = model.train(data='coco128-seg.yaml', epochs=100, imgsz=640)
|
||
2 years ago
|
```
|
||
|
=== "CLI"
|
||
1 year ago
|
|
||
2 years ago
|
```bash
|
||
2 years ago
|
# Build a new model from YAML and start training from scratch
|
||
|
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.yaml epochs=100 imgsz=640
|
||
|
|
||
|
# Start training from a pretrained *.pt model
|
||
2 years ago
|
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
|
||
2 years ago
|
|
||
|
# Build a new model from YAML, transfer pretrained weights to it and start training
|
||
|
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.yaml pretrained=yolov8n-seg.pt epochs=100 imgsz=640
|
||
2 years ago
|
```
|
||
|
|
||
2 years ago
|
### Dataset format
|
||
2 years ago
|
|
||
1 year ago
|
YOLO segmentation dataset format can be found in detail in the [Dataset Guide](../datasets/segment/index.md). To convert your existing dataset from other formats (like COCO etc.) to YOLO format, please use [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) tool by Ultralytics.
|
||
2 years ago
|
|
||
2 years ago
|
## Val
|
||
|
|
||
|
Validate trained YOLOv8n-seg model accuracy on the COCO128-seg dataset. No argument need to passed as the `model`
|
||
|
retains it's training `data` and arguments as model attributes.
|
||
|
|
||
|
!!! example ""
|
||
|
|
||
|
=== "Python"
|
||
1 year ago
|
|
||
2 years ago
|
```python
|
||
|
from ultralytics import YOLO
|
||
1 year ago
|
|
||
2 years ago
|
# Load a model
|
||
2 years ago
|
model = YOLO('yolov8n-seg.pt') # load an official model
|
||
|
model = YOLO('path/to/best.pt') # load a custom model
|
||
1 year ago
|
|
||
2 years ago
|
# Validate the model
|
||
2 years ago
|
metrics = model.val() # no arguments needed, dataset and settings remembered
|
||
|
metrics.box.map # map50-95(B)
|
||
|
metrics.box.map50 # map50(B)
|
||
|
metrics.box.map75 # map75(B)
|
||
|
metrics.box.maps # a list contains map50-95(B) of each category
|
||
|
metrics.seg.map # map50-95(M)
|
||
|
metrics.seg.map50 # map50(M)
|
||
|
metrics.seg.map75 # map75(M)
|
||
|
metrics.seg.maps # a list contains map50-95(M) of each category
|
||
2 years ago
|
```
|
||
|
=== "CLI"
|
||
1 year ago
|
|
||
2 years ago
|
```bash
|
||
2 years ago
|
yolo segment val model=yolov8n-seg.pt # val official model
|
||
|
yolo segment val model=path/to/best.pt # val custom model
|
||
2 years ago
|
```
|
||
|
|
||
|
## Predict
|
||
|
|
||
|
Use a trained YOLOv8n-seg model to run predictions on images.
|
||
|
|
||
|
!!! example ""
|
||
|
|
||
|
=== "Python"
|
||
1 year ago
|
|
||
2 years ago
|
```python
|
||
|
from ultralytics import YOLO
|
||
1 year ago
|
|
||
2 years ago
|
# Load a model
|
||
2 years ago
|
model = YOLO('yolov8n-seg.pt') # load an official model
|
||
|
model = YOLO('path/to/best.pt') # load a custom model
|
||
1 year ago
|
|
||
2 years ago
|
# Predict with the model
|
||
2 years ago
|
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
|
||
2 years ago
|
```
|
||
|
=== "CLI"
|
||
1 year ago
|
|
||
2 years ago
|
```bash
|
||
2 years ago
|
yolo segment predict model=yolov8n-seg.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||
|
yolo segment predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
|
||
2 years ago
|
```
|
||
2 years ago
|
|
||
2 years ago
|
See full `predict` mode details in the [Predict](https://docs.ultralytics.com/modes/predict/) page.
|
||
2 years ago
|
|
||
|
## Export
|
||
|
|
||
|
Export a YOLOv8n-seg model to a different format like ONNX, CoreML, etc.
|
||
|
|
||
|
!!! example ""
|
||
|
|
||
|
=== "Python"
|
||
1 year ago
|
|
||
2 years ago
|
```python
|
||
|
from ultralytics import YOLO
|
||
1 year ago
|
|
||
2 years ago
|
# Load a model
|
||
2 years ago
|
model = YOLO('yolov8n-seg.pt') # load an official model
|
||
1 year ago
|
model = YOLO('path/to/best.pt') # load a custom trained model
|
||
1 year ago
|
|
||
2 years ago
|
# Export the model
|
||
2 years ago
|
model.export(format='onnx')
|
||
2 years ago
|
```
|
||
|
=== "CLI"
|
||
1 year ago
|
|
||
2 years ago
|
```bash
|
||
2 years ago
|
yolo export model=yolov8n-seg.pt format=onnx # export official model
|
||
|
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||
2 years ago
|
```
|
||
|
|
||
1 year ago
|
Available YOLOv8-seg export formats are in the table below. You can predict or validate directly on exported models, i.e. `yolo predict model=yolov8n-seg.onnx`. Usage examples are shown for your model after export completes.
|
||
2 years ago
|
|
||
2 years ago
|
| Format | `format` Argument | Model | Metadata | Arguments |
|
||
|
|--------------------------------------------------------------------|-------------------|-------------------------------|----------|-----------------------------------------------------|
|
||
|
| [PyTorch](https://pytorch.org/) | - | `yolov8n-seg.pt` | ✅ | - |
|
||
|
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-seg.torchscript` | ✅ | `imgsz`, `optimize` |
|
||
|
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-seg.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` |
|
||
2 years ago
|
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-seg_openvino_model/` | ✅ | `imgsz`, `half` |
|
||
2 years ago
|
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-seg.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` |
|
||
1 year ago
|
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-seg.mlpackage` | ✅ | `imgsz`, `half`, `int8`, `nms` |
|
||
2 years ago
|
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-seg_saved_model/` | ✅ | `imgsz`, `keras` |
|
||
|
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-seg.pb` | ❌ | `imgsz` |
|
||
|
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-seg.tflite` | ✅ | `imgsz`, `half`, `int8` |
|
||
|
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-seg_edgetpu.tflite` | ✅ | `imgsz` |
|
||
|
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-seg_web_model/` | ✅ | `imgsz` |
|
||
|
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-seg_paddle_model/` | ✅ | `imgsz` |
|
||
1 year ago
|
| [ncnn](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n-seg_ncnn_model/` | ✅ | `imgsz`, `half` |
|
||
2 years ago
|
|
||
1 year ago
|
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.
|