You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
121 lines
4.1 KiB
121 lines
4.1 KiB
2 years ago
|
---
|
||
|
comments: true
|
||
1 year ago
|
description: Explore image classification datasets supported by Ultralytics, learn the standard dataset format, and set up your own dataset for training models.
|
||
|
keywords: Ultralytics, image classification, dataset, machine learning, CIFAR-10, ImageNet, MNIST, torchvision
|
||
2 years ago
|
---
|
||
|
|
||
|
# Image Classification Datasets Overview
|
||
|
|
||
|
## Dataset format
|
||
|
|
||
|
The folder structure for classification datasets in torchvision typically follows a standard format:
|
||
|
|
||
|
```
|
||
|
root/
|
||
|
|-- class1/
|
||
|
| |-- img1.jpg
|
||
|
| |-- img2.jpg
|
||
|
| |-- ...
|
||
|
|
|
||
|
|-- class2/
|
||
|
| |-- img1.jpg
|
||
|
| |-- img2.jpg
|
||
|
| |-- ...
|
||
|
|
|
||
|
|-- class3/
|
||
|
| |-- img1.jpg
|
||
|
| |-- img2.jpg
|
||
|
| |-- ...
|
||
|
|
|
||
|
|-- ...
|
||
|
```
|
||
|
|
||
|
In this folder structure, the `root` directory contains one subdirectory for each class in the dataset. Each subdirectory is named after the corresponding class and contains all the images for that class. Each image file is named uniquely and is typically in a common image file format such as JPEG or PNG.
|
||
|
|
||
|
** Example **
|
||
|
|
||
|
For example, in the CIFAR10 dataset, the folder structure would look like this:
|
||
|
|
||
|
```
|
||
|
cifar-10-/
|
||
|
|
|
||
|
|-- train/
|
||
|
| |-- airplane/
|
||
|
| | |-- 10008_airplane.png
|
||
|
| | |-- 10009_airplane.png
|
||
|
| | |-- ...
|
||
|
| |
|
||
|
| |-- automobile/
|
||
|
| | |-- 1000_automobile.png
|
||
|
| | |-- 1001_automobile.png
|
||
|
| | |-- ...
|
||
|
| |
|
||
|
| |-- bird/
|
||
|
| | |-- 10014_bird.png
|
||
|
| | |-- 10015_bird.png
|
||
|
| | |-- ...
|
||
|
| |
|
||
|
| |-- ...
|
||
|
|
|
||
|
|-- test/
|
||
|
| |-- airplane/
|
||
|
| | |-- 10_airplane.png
|
||
|
| | |-- 11_airplane.png
|
||
|
| | |-- ...
|
||
|
| |
|
||
|
| |-- automobile/
|
||
|
| | |-- 100_automobile.png
|
||
|
| | |-- 101_automobile.png
|
||
|
| | |-- ...
|
||
|
| |
|
||
|
| |-- bird/
|
||
|
| | |-- 1000_bird.png
|
||
|
| | |-- 1001_bird.png
|
||
|
| | |-- ...
|
||
|
| |
|
||
|
| |-- ...
|
||
|
```
|
||
|
|
||
|
In this example, the `train` directory contains subdirectories for each class in the dataset, and each class subdirectory contains all the images for that class. The `test` directory has a similar structure. The `root` directory also contains other files that are part of the CIFAR10 dataset.
|
||
|
|
||
|
## Usage
|
||
2 years ago
|
|
||
2 years ago
|
!!! example ""
|
||
|
|
||
|
=== "Python"
|
||
1 year ago
|
|
||
2 years ago
|
```python
|
||
|
from ultralytics import YOLO
|
||
1 year ago
|
|
||
2 years ago
|
# Load a model
|
||
|
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||
|
|
||
|
# Train the model
|
||
1 year ago
|
results = model.train(data='path/to/dataset', epochs=100, imgsz=640)
|
||
2 years ago
|
```
|
||
|
=== "CLI"
|
||
1 year ago
|
|
||
2 years ago
|
```bash
|
||
|
# Start training from a pretrained *.pt model
|
||
2 years ago
|
yolo detect train data=path/to/data model=yolov8n-cls.pt epochs=100 imgsz=640
|
||
2 years ago
|
```
|
||
|
|
||
|
## Supported Datasets
|
||
2 years ago
|
|
||
1 year ago
|
Ultralytics supports the following datasets with automatic download:
|
||
|
|
||
|
* [Caltech 101](caltech101.md): A dataset containing images of 101 object categories for image classification tasks.
|
||
|
* [Caltech 256](caltech256.md): An extended version of Caltech 101 with 256 object categories and more challenging images.
|
||
|
* [CIFAR-10](cifar10.md): A dataset of 60K 32x32 color images in 10 classes, with 6K images per class.
|
||
|
* [CIFAR-100](cifar100.md): An extended version of CIFAR-10 with 100 object categories and 600 images per class.
|
||
|
* [Fashion-MNIST](fashion-mnist.md): A dataset consisting of 70,000 grayscale images of 10 fashion categories for image classification tasks.
|
||
|
* [ImageNet](imagenet.md): A large-scale dataset for object detection and image classification with over 14 million images and 20,000 categories.
|
||
|
* [ImageNet-10](imagenet10.md): A smaller subset of ImageNet with 10 categories for faster experimentation and testing.
|
||
|
* [Imagenette](imagenette.md): A smaller subset of ImageNet that contains 10 easily distinguishable classes for quicker training and testing.
|
||
|
* [Imagewoof](imagewoof.md): A more challenging subset of ImageNet containing 10 dog breed categories for image classification tasks.
|
||
|
* [MNIST](mnist.md): A dataset of 70,000 grayscale images of handwritten digits for image classification tasks.
|
||
|
|
||
|
### Adding your own dataset
|
||
|
|
||
1 year ago
|
If you have your own dataset and would like to use it for training classification models with Ultralytics, ensure that it follows the format specified above under "Dataset format" and then point your `data` argument to the dataset directory.
|