description: Learn how to deploy Ultralytics YOLO11 on NVIDIA Jetson devices using TensorRT and DeepStream SDK. Explore performance benchmarks and maximize AI capabilities.
keywords: Ultralytics, YOLO11, NVIDIA Jetson, JetPack, AI deployment, embedded systems, deep learning, TensorRT, DeepStream SDK, computer vision
This comprehensive guide provides a detailed walkthrough for deploying Ultralytics YOLO11 on [NVIDIA Jetson](https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/) devices using DeepStream SDK and TensorRT. Here we use TensorRT to maximize the inference performance on the Jetson platform.
This guide has been tested with both [Seeed Studio reComputer J4012](https://www.seeedstudio.com/reComputer-J4012-p-5586.html) which is based on NVIDIA Jetson Orin NX 16GB running JetPack release of [JP5.1.3](https://developer.nvidia.com/embedded/jetpack-sdk-513) and [Seeed Studio reComputer J1020 v2](https://www.seeedstudio.com/reComputer-J1020-v2-p-5498.html) which is based on NVIDIA Jetson Nano 4GB running JetPack release of [JP4.6.4](https://developer.nvidia.com/jetpack-sdk-464). It is expected to work across all the NVIDIA Jetson hardware lineup including latest and legacy.
[NVIDIA's DeepStream SDK](https://developer.nvidia.com/deepstream-sdk) is a complete streaming analytics toolkit based on GStreamer for AI-based multi-sensor processing, video, audio, and image understanding. It's ideal for vision AI developers, software partners, startups, and OEMs building IVA (Intelligent Video Analytics) apps and services. You can now create stream-processing pipelines that incorporate [neural networks](https://www.ultralytics.com/glossary/neural-network-nn) and other complex processing tasks like tracking, video encoding/decoding, and video rendering. These pipelines enable real-time analytics on video, image, and sensor data. DeepStream's multi-platform support gives you a faster, easier way to develop vision AI applications and services on-premise, at the edge, and in the cloud.
- Visit our documentation, [Quick Start Guide: NVIDIA Jetson with Ultralytics YOLO11](nvidia-jetson.md) to set up your NVIDIA Jetson device with Ultralytics YOLO11
In this guide we have used the Debian package method of installing DeepStream SDK to the Jetson device. You can also visit the [DeepStream SDK on Jetson (Archived)](https://developer.nvidia.com/embedded/deepstream-on-jetson-downloads-archived) to access legacy versions of DeepStream.
Here we are using [marcoslucianops/DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo) GitHub repository which includes NVIDIA DeepStream SDK support for YOLO models. We appreciate the efforts of marcoslucianops for his contributions!
3. Download Ultralytics YOLO11 detection model (.pt) of your choice from [YOLO11 releases](https://github.com/ultralytics/assets/releases). Here we use [yolov8s.pt](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt).
<divalign=center><imgwidth=1000src="https://github.com/ultralytics/docs/releases/download/0/yolov8-with-deepstream.avif"alt="YOLO11 with deepstream"></div>
If you want to convert the model to FP16 [precision](https://www.ultralytics.com/glossary/precision), simply set `model-engine-file=model_b1_gpu0_fp16.engine` and `network-mode=2` inside `config_infer_primary_yoloV8.txt`
NVIDIA recommends at least 500 images to get a good [accuracy](https://www.ultralytics.com/glossary/accuracy). On this example, 1000 images are chosen to get better accuracy (more images = more accuracy). You can set it from **head -1000**. For example, for 2000 images, **head -2000**. This process can take a long time.
Higher INT8_CALIB_BATCH_SIZE values will result in more accuracy and faster calibration speed. Set it according to you GPU memory.
8. Update the `config_infer_primary_yoloV8.txt` file
From
```bash
...
model-engine-file=model_b1_gpu0_fp32.engine
#int8-calib-file=calib.table
...
network-mode=0
...
```
To
```bash
...
model-engine-file=model_b1_gpu0_int8.engine
int8-calib-file=calib.table
...
network-mode=1
...
```
### Run Inference
```bash
deepstream-app -c deepstream_app_config.txt
```
## MultiStream Setup
To set up multiple streams under a single deepstream application, you can do the following changes to the `deepstream_app_config.txt` file
1. Change the rows and columns to build a grid display according to the number of streams you want to have. For example, for 4 streams, we can add 2 rows and 2 columns.
```bash
[tiled-display]
rows=2
columns=2
```
2. Set `num-sources=4` and add `uri` of all the 4 streams
The following table summarizes how YOLOv8s models perform at different TensorRT precision levels with an input size of 640x640 on NVIDIA Jetson Orin NX 16GB.
| Model Name | Precision | Inference Time (ms/im) | FPS |
To set up Ultralytics YOLO11 on an [NVIDIA Jetson](https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/) device, you first need to install the [DeepStream SDK](https://developer.nvidia.com/deepstream-getting-started) compatible with your JetPack version. Follow the step-by-step guide in our [Quick Start Guide](nvidia-jetson.md) to configure your NVIDIA Jetson for YOLO11 deployment.
Using TensorRT with YOLO11 optimizes the model for inference, significantly reducing latency and improving throughput on NVIDIA Jetson devices. TensorRT provides high-performance, low-latency [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) inference through layer fusion, precision calibration, and kernel auto-tuning. This leads to faster and more efficient execution, particularly useful for real-time applications like video analytics and autonomous machines.
Yes, the guide for deploying Ultralytics YOLO11 with the DeepStream SDK and TensorRT is compatible across the entire NVIDIA Jetson lineup. This includes devices like the Jetson Orin NX 16GB with [JetPack 5.1.3](https://developer.nvidia.com/embedded/jetpack-sdk-513) and the Jetson Nano 4GB with [JetPack 4.6.4](https://developer.nvidia.com/jetpack-sdk-464). Refer to the section [DeepStream Configuration for YOLO11](#deepstream-configuration-for-yolo11) for detailed steps.
To convert a YOLO11 model to ONNX format for deployment with DeepStream, use the `utils/export_yoloV8.py` script from the [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo) repository.
These benchmarks underscore the efficiency and capability of using TensorRT-optimized YOLO11 models on NVIDIA Jetson hardware. For further details, see our [Benchmark Results](#benchmark-results) section.