You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

98 lines
3.1 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
import subprocess
from pathlib import Path
from ultralytics.yolo.utils import LINUX, ONLINE, ROOT, SETTINGS
MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n'
CFG = 'yolov8n'
def run(cmd):
# Run a subprocess command with check=True
subprocess.run(cmd.split(), check=True)
def test_special_modes():
run('yolo checks')
run('yolo settings')
run('yolo help')
# Train checks ---------------------------------------------------------------------------------------------------------
def test_train_det():
run(f'yolo train detect model={CFG}.yaml data=coco8.yaml imgsz=32 epochs=1 v5loader')
def test_train_seg():
run(f'yolo train segment model={CFG}-seg.yaml data=coco8-seg.yaml imgsz=32 epochs=1')
def test_train_cls():
run(f'yolo train classify model={CFG}-cls.yaml data=imagenet10 imgsz=32 epochs=1')
def test_train_pose():
run(f'yolo train pose model={CFG}-pose.yaml data=coco8-pose.yaml imgsz=32 epochs=1')
# Val checks -----------------------------------------------------------------------------------------------------------
def test_val_detect():
run(f'yolo val detect model={MODEL}.pt data=coco8.yaml imgsz=32')
def test_val_segment():
run(f'yolo val segment model={MODEL}-seg.pt data=coco8-seg.yaml imgsz=32')
def test_val_classify():
run(f'yolo val classify model={MODEL}-cls.pt data=imagenet10 imgsz=32')
def test_val_pose():
run(f'yolo val pose model={MODEL}-pose.pt data=coco8-pose.yaml imgsz=32')
# Predict checks -------------------------------------------------------------------------------------------------------
def test_predict_detect():
run(f"yolo predict model={MODEL}.pt source={ROOT / 'assets'} imgsz=32 save save_crop save_txt")
if ONLINE:
run(f'yolo predict model={MODEL}.pt source=https://ultralytics.com/images/bus.jpg imgsz=32')
run(f'yolo predict model={MODEL}.pt source=https://ultralytics.com/assets/decelera_landscape_min.mov imgsz=32')
run(f'yolo predict model={MODEL}.pt source=https://ultralytics.com/assets/decelera_portrait_min.mov imgsz=32')
def test_predict_segment():
run(f"yolo predict model={MODEL}-seg.pt source={ROOT / 'assets'} imgsz=32 save save_txt")
def test_predict_classify():
run(f"yolo predict model={MODEL}-cls.pt source={ROOT / 'assets'} imgsz=32 save save_txt")
def test_predict_pose():
run(f"yolo predict model={MODEL}-pose.pt source={ROOT / 'assets'} imgsz=32 save save_txt")
# Export checks --------------------------------------------------------------------------------------------------------
def test_export_detect_torchscript():
run(f'yolo export model={MODEL}.pt format=torchscript')
def test_export_segment_torchscript():
run(f'yolo export model={MODEL}-seg.pt format=torchscript')
def test_export_classify_torchscript():
run(f'yolo export model={MODEL}-cls.pt format=torchscript')
def test_export_classify_pose():
run(f'yolo export model={MODEL}-pose.pt format=torchscript')
def test_export_detect_edgetpu(enabled=False):
if enabled and LINUX:
run(f'yolo export model={MODEL}.pt format=edgetpu')