Instance segmentation goes a step further than object detection and involves identifying individual objects in an image and segmenting them from the rest of the image.
The output of an instance segmentation model is a set of masks or contours that outline each object in the image, along with class labels and confidence scores for each object. Instance segmentation is useful when you need to know not only where objects are in an image, but also what their exact shape is.
YOLOv8 Segment models use the `-seg` suffix, i.e. `yolov8n-seg.pt` and are pretrained on [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml).
YOLOv8 pretrained Segment models are shown here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset.
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val segment data=coco.yaml device=0`
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco8-seg.yaml batch=1 device=0|cpu`
Train YOLOv8n-seg on the COCO128-seg dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
YOLO segmentation dataset format can be found in detail in the [Dataset Guide](../datasets/segment/index.md). To convert your existing dataset from other formats (like COCO etc.) to YOLO format, please use [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) tool by Ultralytics.
Available YOLOv8-seg export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. You can predict or validate directly on exported models, i.e. `yolo predict model=yolov8n-seg.onnx`. Usage examples are shown for your model after export completes.
### How do I train a YOLOv8 segmentation model on a custom dataset?
To train a YOLOv8 segmentation model on a custom dataset, you first need to prepare your dataset in the YOLO segmentation format. You can use tools like [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) to convert datasets from other formats. Once your dataset is ready, you can train the model using Python or CLI commands:
Check the [Configuration](../usage/cfg.md) page for more available arguments.
### What is the difference between object detection and instance segmentation in YOLOv8?
Object detection identifies and localizes objects within an image by drawing bounding boxes around them, whereas instance segmentation not only identifies the bounding boxes but also delineates the exact shape of each object. YOLOv8 instance segmentation models provide masks or contours that outline each detected object, which is particularly useful for tasks where knowing the precise shape of objects is important, such as medical imaging or autonomous driving.
### Why use YOLOv8 for instance segmentation?
Ultralytics YOLOv8 is a state-of-the-art model recognized for its high accuracy and real-time performance, making it ideal for instance segmentation tasks. YOLOv8 Segment models come pretrained on the [COCO dataset](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml), ensuring robust performance across a variety of objects. Additionally, YOLOv8 supports training, validation, prediction, and export functionalities with seamless integration, making it highly versatile for both research and industry applications.
### How do I load and validate a pretrained YOLOv8 segmentation model?
Loading and validating a pretrained YOLOv8 segmentation model is straightforward. Here's how you can do it using both Python and CLI: