|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
# Builds ultralytics/ultralytics:latest-conda image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
|
|
|
|
# Image is optimized for Ultralytics Anaconda (https://anaconda.org/conda-forge/ultralytics) installation and usage
|
|
|
|
|
|
|
|
# Start FROM miniconda3 image https://hub.docker.com/r/continuumio/miniconda3
|
|
|
|
FROM continuumio/miniconda3:latest
|
|
|
|
|
|
|
|
# Downloads to user config dir
|
|
|
|
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
|
|
|
|
|
|
|
|
# Install linux packages
|
|
|
|
RUN apt update \
|
|
|
|
&& apt install --no-install-recommends -y libgl1
|
|
|
|
|
|
|
|
# Copy contents
|
|
|
|
ADD https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt .
|
|
|
|
|
|
|
|
# Install conda packages
|
|
|
|
# mkl required to fix 'OSError: libmkl_intel_lp64.so.2: cannot open shared object file: No such file or directory'
|
|
|
|
RUN conda config --set solver libmamba && \
|
|
|
|
conda install pytorch torchvision pytorch-cuda=11.8 -c pytorch -c nvidia && \
|
|
|
|
conda install -c conda-forge ultralytics mkl
|
|
|
|
# conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision pytorch-cuda=11.8 ultralytics mkl
|
|
|
|
|
|
|
|
|
|
|
|
# Usage Examples -------------------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
# Build and Push
|
|
|
|
# t=ultralytics/ultralytics:latest-conda && sudo docker build -f docker/Dockerfile-cpu -t $t . && sudo docker push $t
|
|
|
|
|
|
|
|
# Run
|
|
|
|
# t=ultralytics/ultralytics:latest-conda && sudo docker run -it --ipc=host $t
|
|
|
|
|
|
|
|
# Pull and Run
|
|
|
|
# t=ultralytics/ultralytics:latest-conda && sudo docker pull $t && sudo docker run -it --ipc=host $t
|
|
|
|
|
|
|
|
# Pull and Run with local volume mounted
|
|
|
|
# t=ultralytics/ultralytics:latest-conda && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t
|