|
|
|
#include "inference.h"
|
|
|
|
#include <regex>
|
|
|
|
|
|
|
|
#define benchmark
|
|
|
|
|
|
|
|
DCSP_CORE::DCSP_CORE() {
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
DCSP_CORE::~DCSP_CORE() {
|
|
|
|
delete session;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef USE_CUDA
|
|
|
|
namespace Ort
|
|
|
|
{
|
|
|
|
template<>
|
|
|
|
struct TypeToTensorType<half> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; };
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
template<typename T>
|
|
|
|
char *BlobFromImage(cv::Mat &iImg, T &iBlob) {
|
|
|
|
int channels = iImg.channels();
|
|
|
|
int imgHeight = iImg.rows;
|
|
|
|
int imgWidth = iImg.cols;
|
|
|
|
|
|
|
|
for (int c = 0; c < channels; c++) {
|
|
|
|
for (int h = 0; h < imgHeight; h++) {
|
|
|
|
for (int w = 0; w < imgWidth; w++) {
|
|
|
|
iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = typename std::remove_pointer<T>::type(
|
|
|
|
(iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return RET_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
char *PostProcess(cv::Mat &iImg, std::vector<int> iImgSize, cv::Mat &oImg) {
|
|
|
|
cv::Mat img = iImg.clone();
|
|
|
|
cv::resize(iImg, oImg, cv::Size(iImgSize.at(0), iImgSize.at(1)));
|
|
|
|
if (img.channels() == 1) {
|
|
|
|
cv::cvtColor(oImg, oImg, cv::COLOR_GRAY2BGR);
|
|
|
|
}
|
|
|
|
cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB);
|
|
|
|
return RET_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
char *DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams) {
|
|
|
|
char *Ret = RET_OK;
|
|
|
|
std::regex pattern("[\u4e00-\u9fa5]");
|
|
|
|
bool result = std::regex_search(iParams.ModelPath, pattern);
|
|
|
|
if (result) {
|
|
|
|
Ret = "[DCSP_ONNX]:Model path error.Change your model path without chinese characters.";
|
|
|
|
std::cout << Ret << std::endl;
|
|
|
|
return Ret;
|
|
|
|
}
|
|
|
|
try {
|
|
|
|
rectConfidenceThreshold = iParams.RectConfidenceThreshold;
|
|
|
|
iouThreshold = iParams.iouThreshold;
|
|
|
|
imgSize = iParams.imgSize;
|
|
|
|
modelType = iParams.ModelType;
|
|
|
|
env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo");
|
|
|
|
Ort::SessionOptions sessionOption;
|
|
|
|
if (iParams.CudaEnable) {
|
|
|
|
cudaEnable = iParams.CudaEnable;
|
|
|
|
OrtCUDAProviderOptions cudaOption;
|
|
|
|
cudaOption.device_id = 0;
|
|
|
|
sessionOption.AppendExecutionProvider_CUDA(cudaOption);
|
|
|
|
}
|
|
|
|
sessionOption.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
|
|
|
|
sessionOption.SetIntraOpNumThreads(iParams.IntraOpNumThreads);
|
|
|
|
sessionOption.SetLogSeverityLevel(iParams.LogSeverityLevel);
|
|
|
|
|
|
|
|
#ifdef _WIN32
|
|
|
|
int ModelPathSize = MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), nullptr, 0);
|
|
|
|
wchar_t* wide_cstr = new wchar_t[ModelPathSize + 1];
|
|
|
|
MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), wide_cstr, ModelPathSize);
|
|
|
|
wide_cstr[ModelPathSize] = L'\0';
|
|
|
|
const wchar_t* modelPath = wide_cstr;
|
|
|
|
#else
|
|
|
|
const char *modelPath = iParams.ModelPath.c_str();
|
|
|
|
#endif // _WIN32
|
|
|
|
|
|
|
|
session = new Ort::Session(env, modelPath, sessionOption);
|
|
|
|
Ort::AllocatorWithDefaultOptions allocator;
|
|
|
|
size_t inputNodesNum = session->GetInputCount();
|
|
|
|
for (size_t i = 0; i < inputNodesNum; i++) {
|
|
|
|
Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator);
|
|
|
|
char *temp_buf = new char[50];
|
|
|
|
strcpy(temp_buf, input_node_name.get());
|
|
|
|
inputNodeNames.push_back(temp_buf);
|
|
|
|
}
|
|
|
|
size_t OutputNodesNum = session->GetOutputCount();
|
|
|
|
for (size_t i = 0; i < OutputNodesNum; i++) {
|
|
|
|
Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator);
|
|
|
|
char *temp_buf = new char[10];
|
|
|
|
strcpy(temp_buf, output_node_name.get());
|
|
|
|
outputNodeNames.push_back(temp_buf);
|
|
|
|
}
|
|
|
|
options = Ort::RunOptions{nullptr};
|
|
|
|
WarmUpSession();
|
|
|
|
return RET_OK;
|
|
|
|
}
|
|
|
|
catch (const std::exception &e) {
|
|
|
|
const char *str1 = "[DCSP_ONNX]:";
|
|
|
|
const char *str2 = e.what();
|
|
|
|
std::string result = std::string(str1) + std::string(str2);
|
|
|
|
char *merged = new char[result.length() + 1];
|
|
|
|
std::strcpy(merged, result.c_str());
|
|
|
|
std::cout << merged << std::endl;
|
|
|
|
delete[] merged;
|
|
|
|
return "[DCSP_ONNX]:Create session failed.";
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
char *DCSP_CORE::RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT> &oResult) {
|
|
|
|
#ifdef benchmark
|
|
|
|
clock_t starttime_1 = clock();
|
|
|
|
#endif // benchmark
|
|
|
|
|
|
|
|
char *Ret = RET_OK;
|
|
|
|
cv::Mat processedImg;
|
|
|
|
PostProcess(iImg, imgSize, processedImg);
|
|
|
|
if (modelType < 4) {
|
|
|
|
float *blob = new float[processedImg.total() * 3];
|
|
|
|
BlobFromImage(processedImg, blob);
|
|
|
|
std::vector<int64_t> inputNodeDims = {1, 3, imgSize.at(0), imgSize.at(1)};
|
|
|
|
TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
|
|
|
|
} else {
|
|
|
|
#ifdef USE_CUDA
|
|
|
|
half* blob = new half[processedImg.total() * 3];
|
|
|
|
BlobFromImage(processedImg, blob);
|
|
|
|
std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
|
|
|
|
TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
return Ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename N>
|
|
|
|
char *DCSP_CORE::TensorProcess(clock_t &starttime_1, cv::Mat &iImg, N &blob, std::vector<int64_t> &inputNodeDims,
|
|
|
|
std::vector<DCSP_RESULT> &oResult) {
|
|
|
|
Ort::Value inputTensor = Ort::Value::CreateTensor<typename std::remove_pointer<N>::type>(
|
|
|
|
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
|
|
|
|
inputNodeDims.data(), inputNodeDims.size());
|
|
|
|
#ifdef benchmark
|
|
|
|
clock_t starttime_2 = clock();
|
|
|
|
#endif // benchmark
|
|
|
|
auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(),
|
|
|
|
outputNodeNames.size());
|
|
|
|
#ifdef benchmark
|
|
|
|
clock_t starttime_3 = clock();
|
|
|
|
#endif // benchmark
|
|
|
|
|
|
|
|
Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo();
|
|
|
|
auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo();
|
|
|
|
std::vector<int64_t> outputNodeDims = tensor_info.GetShape();
|
|
|
|
auto output = outputTensor.front().GetTensorMutableData<typename std::remove_pointer<N>::type>();
|
|
|
|
delete blob;
|
|
|
|
switch (modelType) {
|
|
|
|
case 1://V8_ORIGIN_FP32
|
|
|
|
case 4://V8_ORIGIN_FP16
|
|
|
|
{
|
|
|
|
int strideNum = outputNodeDims[2];
|
|
|
|
int signalResultNum = outputNodeDims[1];
|
|
|
|
std::vector<int> class_ids;
|
|
|
|
std::vector<float> confidences;
|
|
|
|
std::vector<cv::Rect> boxes;
|
|
|
|
|
|
|
|
cv::Mat rawData;
|
|
|
|
if (modelType == 1) {
|
|
|
|
// FP32
|
|
|
|
rawData = cv::Mat(signalResultNum, strideNum, CV_32F, output);
|
|
|
|
} else {
|
|
|
|
// FP16
|
|
|
|
rawData = cv::Mat(signalResultNum, strideNum, CV_16F, output);
|
|
|
|
rawData.convertTo(rawData, CV_32F);
|
|
|
|
}
|
|
|
|
rawData = rawData.t();
|
|
|
|
float *data = (float *) rawData.data;
|
|
|
|
|
|
|
|
float x_factor = iImg.cols / 640.;
|
|
|
|
float y_factor = iImg.rows / 640.;
|
|
|
|
for (int i = 0; i < strideNum; ++i) {
|
|
|
|
float *classesScores = data + 4;
|
|
|
|
cv::Mat scores(1, this->classes.size(), CV_32FC1, classesScores);
|
|
|
|
cv::Point class_id;
|
|
|
|
double maxClassScore;
|
|
|
|
cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
|
|
|
|
if (maxClassScore > rectConfidenceThreshold) {
|
|
|
|
confidences.push_back(maxClassScore);
|
|
|
|
class_ids.push_back(class_id.x);
|
|
|
|
|
|
|
|
float x = data[0];
|
|
|
|
float y = data[1];
|
|
|
|
float w = data[2];
|
|
|
|
float h = data[3];
|
|
|
|
|
|
|
|
int left = int((x - 0.5 * w) * x_factor);
|
|
|
|
int top = int((y - 0.5 * h) * y_factor);
|
|
|
|
|
|
|
|
int width = int(w * x_factor);
|
|
|
|
int height = int(h * y_factor);
|
|
|
|
|
|
|
|
boxes.emplace_back(left, top, width, height);
|
|
|
|
}
|
|
|
|
data += signalResultNum;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<int> nmsResult;
|
|
|
|
cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult);
|
|
|
|
|
|
|
|
for (int i = 0; i < nmsResult.size(); ++i) {
|
|
|
|
int idx = nmsResult[i];
|
|
|
|
DCSP_RESULT result;
|
|
|
|
result.classId = class_ids[idx];
|
|
|
|
result.confidence = confidences[idx];
|
|
|
|
result.box = boxes[idx];
|
|
|
|
oResult.push_back(result);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef benchmark
|
|
|
|
clock_t starttime_4 = clock();
|
|
|
|
double pre_process_time = (double) (starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000;
|
|
|
|
double process_time = (double) (starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000;
|
|
|
|
double post_process_time = (double) (starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000;
|
|
|
|
if (cudaEnable) {
|
|
|
|
std::cout << "[DCSP_ONNX(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time
|
|
|
|
<< "ms inference, " << post_process_time << "ms post-process." << std::endl;
|
|
|
|
} else {
|
|
|
|
std::cout << "[DCSP_ONNX(CPU)]: " << pre_process_time << "ms pre-process, " << process_time
|
|
|
|
<< "ms inference, " << post_process_time << "ms post-process." << std::endl;
|
|
|
|
}
|
|
|
|
#endif // benchmark
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return RET_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
char *DCSP_CORE::WarmUpSession() {
|
|
|
|
clock_t starttime_1 = clock();
|
|
|
|
cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3);
|
|
|
|
cv::Mat processedImg;
|
|
|
|
PostProcess(iImg, imgSize, processedImg);
|
|
|
|
if (modelType < 4) {
|
|
|
|
float *blob = new float[iImg.total() * 3];
|
|
|
|
BlobFromImage(processedImg, blob);
|
|
|
|
std::vector<int64_t> YOLO_input_node_dims = {1, 3, imgSize.at(0), imgSize.at(1)};
|
|
|
|
Ort::Value input_tensor = Ort::Value::CreateTensor<float>(
|
|
|
|
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
|
|
|
|
YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
|
|
|
|
auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(),
|
|
|
|
outputNodeNames.size());
|
|
|
|
delete[] blob;
|
|
|
|
clock_t starttime_4 = clock();
|
|
|
|
double post_process_time = (double) (starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
|
|
|
|
if (cudaEnable) {
|
|
|
|
std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
#ifdef USE_CUDA
|
|
|
|
half* blob = new half[iImg.total() * 3];
|
|
|
|
BlobFromImage(processedImg, blob);
|
|
|
|
std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) };
|
|
|
|
Ort::Value input_tensor = Ort::Value::CreateTensor<half>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
|
|
|
|
auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size());
|
|
|
|
delete[] blob;
|
|
|
|
clock_t starttime_4 = clock();
|
|
|
|
double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
|
|
|
|
if (cudaEnable)
|
|
|
|
{
|
|
|
|
std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
return RET_OK;
|
|
|
|
}
|