description: Explore a ampla gama de modelos da família YOLO, SAM, MobileSAM, FastSAM, YOLO-NAS e RT-DETR suportados pela Ultralytics. Comece com exemplos para uso tanto em CLI quanto em Python.
Bem-vindo à documentação de modelos da Ultralytics! Oferecemos suporte para uma ampla variedade de modelos, cada um adaptado para tarefas específicas como [detecção de objetos](../tasks/detect.md), [segmentação de instâncias](../tasks/segment.md), [classificação de imagens](../tasks/classify.md), [estimativa de pose](../tasks/pose.md), e [rastreamento de múltiplos objetos](../modes/track.md). Se você tem interesse em contribuir com sua arquitetura de modelo para a Ultralytics, confira nosso [Guia de Contribuição](../../help/contributing.md).
1.**[YOLOv3](yolov3.md)**: A terceira iteração da família de modelos YOLO, originalmente por Joseph Redmon, conhecida por suas capacidades eficientes de detecção de objetos em tempo real.
2.**[YOLOv4](yolov4.md)**: Uma atualização nativa para o darknet do YOLOv3, lançada por Alexey Bochkovskiy em 2020.
3.**[YOLOv5](yolov5.md)**: Uma versão aprimorada da arquitetura YOLO pela Ultralytics, oferecendo melhor desempenho e compensações de velocidade em comparação com as versões anteriores.
4.**[YOLOv6](yolov6.md)**: Lançado pela [Meituan](https://about.meituan.com/) em 2022, e em uso em muitos dos robôs autônomos de entregas da empresa.
5.**[YOLOv7](yolov7.md)**: Modelos YOLO atualizados lançados em 2022 pelos autores do YOLOv4.
6.**[YOLOv8](yolov8.md) NOVO 🚀**: A versão mais recente da família YOLO, apresentando capacidades aprimoradas, como segmentação de instâncias, estimativa de pose/pontos-chave e classificação.
7.**[Segment Anything Model (SAM)](sam.md)**: Modelo Segment Anything (SAM) da Meta.
8.**[Mobile Segment Anything Model (MobileSAM)](mobile-sam.md)**: MobileSAM para aplicações móveis, pela Universidade Kyung Hee.
9.**[Fast Segment Anything Model (FastSAM)](fast-sam.md)**: FastSAM pelo Grupo de Análise de Imagem e Vídeo, Instituto de Automação, Academia Chinesa de Ciências.
10.**[YOLO-NAS](yolo-nas.md)**: Modelos de Pesquisa de Arquitetura Neural YOLO (NAS).
11.**[Realtime Detection Transformers (RT-DETR)](rtdetr.md)**: Modelos de Transformador de Detecção em Tempo Real (RT-DETR) do PaddlePaddle da Baidu.
Este exemplo oferece exemplos simples de treinamento e inferência com YOLO. Para uma documentação completa sobre estes e outros [modos](../modes/index.md), veja as páginas de documentação de [Previsão](../modes/predict.md), [Treinamento](../modes/train.md), [Validação](../modes/val.md) e [Exportação](../modes/export.md).
Note que o exemplo abaixo é para modelos YOLOv8 [Detect](../tasks/detect.md) para detecção de objetos. Para tarefas suportadas adicionais, veja as documentações de [Segmentação](../tasks/segment.md), [Classificação](../tasks/classify.md) e [Pose](../tasks/pose.md).
Modelos `*.pt` pré-treinados em PyTorch, bem como arquivos de configuração `*.yaml`, podem ser passados para as classes `YOLO()`, `SAM()`, `NAS()` e `RTDETR()` para criar uma instância de modelo em Python:
3.**Implemente Seu Modelo**: Adicione seu modelo seguindo as normas e diretrizes de codificação fornecidas no nosso [Guia de Contribuição](../../help/contributing.md).