description: Learn how to set up a real-time object detection application using Streamlit and Ultralytics YOLO11. Follow this step-by-step guide to implement webcam-based object detection.
Streamlit makes it simple to build and deploy interactive web applications. Combining this with Ultralytics YOLO11 allows for real-time [object detection](https://www.ultralytics.com/glossary/object-detection) and analysis directly in your browser. YOLO11 high accuracy and speed ensure seamless performance for live video streams, making it ideal for applications in security, retail, and beyond.
<strong>Watch:</strong> How to Use Streamlit with Ultralytics for Real-Time <ahref="https://www.ultralytics.com/glossary/computer-vision-cv">Computer Vision</a> in Your Browser
- **Seamless Real-Time Object Detection**: Streamlit combined with YOLO11 enables real-time object detection directly from your webcam feed. This allows for immediate analysis and insights, making it ideal for applications requiring instant feedback.
- **User-Friendly Deployment**: Streamlit's interactive interface makes it easy to deploy and use the application without extensive technical knowledge. Users can start live inference with a simple click, enhancing accessibility and usability.
- **Efficient Resource Utilization**: YOLO11 optimized algorithm ensure high-speed processing with minimal computational resources. This efficiency allows for smooth and reliable webcam inference even on standard hardware, making advanced computer vision accessible to a wider audience.
Before you start building the application, ensure you have the Ultralytics Python Package installed. You can install it using the command **pip install ultralytics**
This will launch the Streamlit application in your default web browser. You will see the main title, subtitle, and the sidebar with configuration options. Select your desired YOLO11 model, set the confidence and NMS thresholds, and click the "Start" button to begin the real-time object detection.
By following this guide, you have successfully created a real-time object detection application using Streamlit and Ultralytics YOLO11. This application allows you to experience the power of YOLO11 in detecting objects through your webcam, with a user-friendly interface and the ability to stop the video stream at any time.
For further enhancements, you can explore adding more features such as recording the video stream, saving the annotated frames, or integrating with other computer vision libraries.
## Share Your Thoughts with the Community
Engage with the community to learn more, troubleshoot issues, and share your projects:
### Where to Find Help and Support
- **GitHub Issues:** Visit the [Ultralytics GitHub repository](https://github.com/ultralytics/ultralytics/issues) to raise questions, report bugs, and suggest features.
- **Ultralytics Discord Server:** Join the [Ultralytics Discord server](https://discord.com/invite/ultralytics) to connect with other users and developers, get support, share knowledge, and brainstorm ideas.
- **Ultralytics YOLO11 Documentation:** Refer to the [official YOLO11 documentation](https://docs.ultralytics.com/) for comprehensive guides and insights on various computer vision tasks and projects.
Setting up a real-time object detection application with Streamlit and Ultralytics YOLO11 is straightforward. First, ensure you have the Ultralytics Python package installed using:
This command will launch the application in your default web browser, enabling you to select YOLO11 models, set confidence, and NMS thresholds, and start real-time object detection with a simple click. For a detailed guide, refer to the [Streamlit Application Code](#streamlit-application-code) section.
For a comprehensive comparison, check [Ultralytics YOLO11 Documentation](https://docs.ultralytics.com/models/yolov8/) and related blog posts discussing model performance.