description: Explore the comprehensive Open Images V7 dataset by Google. Learn about its annotations, applications, and use YOLO11 pretrained models for computer vision tasks.
keywords: Open Images V7, Google dataset, computer vision, YOLO11 models, object detection, image segmentation, visual relationships, AI research, Ultralytics
[Open Images V7](https://storage.googleapis.com/openimages/web/index.html) is a versatile and expansive dataset championed by Google. Aimed at propelling research in the realm of [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv), it boasts a vast collection of images annotated with a plethora of data, including image-level labels, object bounding boxes, object segmentation masks, visual relationships, and localized narratives.
- Houses a staggering 16M bounding boxes across 600 object classes in 1.9M images. These boxes are primarily hand-drawn by experts ensuring high [precision](https://www.ultralytics.com/glossary/precision).
Open Images V7 is a cornerstone for training and evaluating state-of-the-art models in various computer vision tasks. The dataset's broad scope and high-quality annotations make it indispensable for researchers and developers specializing in computer vision.
## Dataset YAML
Typically, datasets come with a YAML (Yet Another Markup Language) file that delineates the dataset's configuration. For the case of Open Images V7, a hypothetical `OpenImagesV7.yaml` might exist. For accurate paths and configurations, one should refer to the dataset's official repository or documentation.
To train a YOLO11n model on the Open Images V7 dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
The complete Open Images V7 dataset comprises 1,743,042 training images and 41,620 validation images, requiring approximately **561 GB of storage space** upon download.
Executing the commands provided below will trigger an automatic download of the full dataset if it's not already present locally. Before running the below example it's crucial to:
- **Open Images V7**: This image exemplifies the depth and detail of annotations available, including bounding boxes, relationships, and segmentation masks.
Researchers can gain invaluable insights into the array of computer vision challenges that the dataset addresses, from basic object detection to intricate relationship identification.
## Citations and Acknowledgments
For those employing Open Images V7 in their work, it's prudent to cite the relevant papers and acknowledge the creators:
author = {Alina Kuznetsova and Hassan Rom and Neil Alldrin and Jasper Uijlings and Ivan Krasin and Jordi Pont-Tuset and Shahab Kamali and Stefan Popov and Matteo Malloci and Alexander Kolesnikov and Tom Duerig and Vittorio Ferrari},
title = {The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale},
A heartfelt acknowledgment goes out to the Google AI team for creating and maintaining the Open Images V7 dataset. For a deep dive into the dataset and its offerings, navigate to the [official Open Images V7 website](https://storage.googleapis.com/openimages/web/index.html).
Open Images V7 is an extensive and versatile dataset created by Google, designed to advance research in computer vision. It includes image-level labels, object bounding boxes, object segmentation masks, visual relationships, and localized narratives, making it ideal for various computer vision tasks such as object detection, segmentation, and relationship detection.
To train a YOLO11 model on the Open Images V7 dataset, you can use both Python and CLI commands. Here's an example of training the YOLO11n model for 100 epochs with an image size of 640:
Its comprehensive annotations and broad scope make it suitable for training and evaluating advanced [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) models, as highlighted in practical use cases detailed in our [applications](#applications) section.