|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
|
|
|
import contextlib
|
|
|
|
import os
|
|
|
|
import subprocess
|
|
|
|
import time
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
from tests import MODEL, SOURCE, TMP
|
|
|
|
from ultralytics import YOLO, download
|
|
|
|
from ultralytics.utils import DATASETS_DIR, SETTINGS
|
|
|
|
from ultralytics.utils.checks import check_requirements
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not check_requirements("ray", install=False), reason="ray[tune] not installed")
|
|
|
|
def test_model_ray_tune():
|
|
|
|
"""Tune YOLO model using Ray for hyperparameter optimization."""
|
|
|
|
YOLO("yolo11n-cls.yaml").tune(
|
|
|
|
use_ray=True, data="imagenet10", grace_period=1, iterations=1, imgsz=32, epochs=1, plots=False, device="cpu"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not check_requirements("mlflow", install=False), reason="mlflow not installed")
|
|
|
|
def test_mlflow():
|
|
|
|
"""Test training with MLflow tracking enabled (see https://mlflow.org/ for details)."""
|
|
|
|
SETTINGS["mlflow"] = True
|
|
|
|
YOLO("yolo11n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=3, plots=False, device="cpu")
|
|
|
|
SETTINGS["mlflow"] = False
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(True, reason="Test failing in scheduled CI https://github.com/ultralytics/ultralytics/pull/8868")
|
|
|
|
@pytest.mark.skipif(not check_requirements("mlflow", install=False), reason="mlflow not installed")
|
|
|
|
def test_mlflow_keep_run_active():
|
|
|
|
"""Ensure MLflow run status matches MLFLOW_KEEP_RUN_ACTIVE environment variable settings."""
|
|
|
|
import mlflow
|
|
|
|
|
|
|
|
SETTINGS["mlflow"] = True
|
|
|
|
run_name = "Test Run"
|
|
|
|
os.environ["MLFLOW_RUN"] = run_name
|
|
|
|
|
|
|
|
# Test with MLFLOW_KEEP_RUN_ACTIVE=True
|
|
|
|
os.environ["MLFLOW_KEEP_RUN_ACTIVE"] = "True"
|
|
|
|
YOLO("yolo11n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu")
|
|
|
|
status = mlflow.active_run().info.status
|
|
|
|
assert status == "RUNNING", "MLflow run should be active when MLFLOW_KEEP_RUN_ACTIVE=True"
|
|
|
|
|
|
|
|
run_id = mlflow.active_run().info.run_id
|
|
|
|
|
|
|
|
# Test with MLFLOW_KEEP_RUN_ACTIVE=False
|
|
|
|
os.environ["MLFLOW_KEEP_RUN_ACTIVE"] = "False"
|
|
|
|
YOLO("yolo11n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu")
|
|
|
|
status = mlflow.get_run(run_id=run_id).info.status
|
|
|
|
assert status == "FINISHED", "MLflow run should be ended when MLFLOW_KEEP_RUN_ACTIVE=False"
|
|
|
|
|
|
|
|
# Test with MLFLOW_KEEP_RUN_ACTIVE not set
|
|
|
|
os.environ.pop("MLFLOW_KEEP_RUN_ACTIVE", None)
|
|
|
|
YOLO("yolo11n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu")
|
|
|
|
status = mlflow.get_run(run_id=run_id).info.status
|
|
|
|
assert status == "FINISHED", "MLflow run should be ended by default when MLFLOW_KEEP_RUN_ACTIVE is not set"
|
|
|
|
SETTINGS["mlflow"] = False
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not check_requirements("tritonclient", install=False), reason="tritonclient[all] not installed")
|
|
|
|
def test_triton():
|
|
|
|
"""
|
|
|
|
Test NVIDIA Triton Server functionalities with YOLO model.
|
|
|
|
|
|
|
|
See https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver.
|
|
|
|
"""
|
|
|
|
check_requirements("tritonclient[all]")
|
|
|
|
from tritonclient.http import InferenceServerClient # noqa
|
|
|
|
|
|
|
|
# Create variables
|
|
|
|
model_name = "yolo"
|
|
|
|
triton_repo = TMP / "triton_repo" # Triton repo path
|
|
|
|
triton_model = triton_repo / model_name # Triton model path
|
|
|
|
|
|
|
|
# Export model to ONNX
|
|
|
|
f = YOLO(MODEL).export(format="onnx", dynamic=True)
|
|
|
|
|
|
|
|
# Prepare Triton repo
|
|
|
|
(triton_model / "1").mkdir(parents=True, exist_ok=True)
|
|
|
|
Path(f).rename(triton_model / "1" / "model.onnx")
|
|
|
|
(triton_model / "config.pbtxt").touch()
|
|
|
|
|
|
|
|
# Define image https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver
|
|
|
|
tag = "nvcr.io/nvidia/tritonserver:23.09-py3" # 6.4 GB
|
|
|
|
|
|
|
|
# Pull the image
|
|
|
|
subprocess.call(f"docker pull {tag}", shell=True)
|
|
|
|
|
|
|
|
# Run the Triton server and capture the container ID
|
|
|
|
container_id = (
|
|
|
|
subprocess.check_output(
|
|
|
|
f"docker run -d --rm -v {triton_repo}:/models -p 8000:8000 {tag} tritonserver --model-repository=/models",
|
|
|
|
shell=True,
|
|
|
|
)
|
|
|
|
.decode("utf-8")
|
|
|
|
.strip()
|
|
|
|
)
|
|
|
|
|
|
|
|
# Wait for the Triton server to start
|
|
|
|
triton_client = InferenceServerClient(url="localhost:8000", verbose=False, ssl=False)
|
|
|
|
|
|
|
|
# Wait until model is ready
|
|
|
|
for _ in range(10):
|
|
|
|
with contextlib.suppress(Exception):
|
|
|
|
assert triton_client.is_model_ready(model_name)
|
|
|
|
break
|
|
|
|
time.sleep(1)
|
|
|
|
|
|
|
|
# Check Triton inference
|
|
|
|
YOLO(f"http://localhost:8000/{model_name}", "detect")(SOURCE) # exported model inference
|
|
|
|
|
|
|
|
# Kill and remove the container at the end of the test
|
|
|
|
subprocess.call(f"docker kill {container_id}", shell=True)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not check_requirements("pycocotools", install=False), reason="pycocotools not installed")
|
|
|
|
def test_pycocotools():
|
|
|
|
"""Validate YOLO model predictions on COCO dataset using pycocotools."""
|
|
|
|
from ultralytics.models.yolo.detect import DetectionValidator
|
|
|
|
from ultralytics.models.yolo.pose import PoseValidator
|
|
|
|
from ultralytics.models.yolo.segment import SegmentationValidator
|
|
|
|
|
|
|
|
# Download annotations after each dataset downloads first
|
|
|
|
url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/"
|
|
|
|
|
|
|
|
args = {"model": "yolo11n.pt", "data": "coco8.yaml", "save_json": True, "imgsz": 64}
|
|
|
|
validator = DetectionValidator(args=args)
|
|
|
|
validator()
|
|
|
|
validator.is_coco = True
|
|
|
|
download(f"{url}instances_val2017.json", dir=DATASETS_DIR / "coco8/annotations")
|
|
|
|
_ = validator.eval_json(validator.stats)
|
|
|
|
|
|
|
|
args = {"model": "yolo11n-seg.pt", "data": "coco8-seg.yaml", "save_json": True, "imgsz": 64}
|
|
|
|
validator = SegmentationValidator(args=args)
|
|
|
|
validator()
|
|
|
|
validator.is_coco = True
|
|
|
|
download(f"{url}instances_val2017.json", dir=DATASETS_DIR / "coco8-seg/annotations")
|
|
|
|
_ = validator.eval_json(validator.stats)
|
|
|
|
|
|
|
|
args = {"model": "yolo11n-pose.pt", "data": "coco8-pose.yaml", "save_json": True, "imgsz": 64}
|
|
|
|
validator = PoseValidator(args=args)
|
|
|
|
validator()
|
|
|
|
validator.is_coco = True
|
|
|
|
download(f"{url}person_keypoints_val2017.json", dir=DATASETS_DIR / "coco8-pose/annotations")
|
|
|
|
_ = validator.eval_json(validator.stats)
|