description: Guide for Validating YOLOv8 Models. Learn how to evaluate the performance of your YOLO models using validation settings and metrics with Python and CLI examples.
Validation is a critical step in the machine learning pipeline, allowing you to assess the quality of your trained models. Val mode in Ultralytics YOLOv8 provides a robust suite of tools and metrics for evaluating the performance of your object detection models. This guide serves as a complete resource for understanding how to effectively use the Val mode to ensure that your models are both accurate and reliable.
* YOLOv8 models automatically remember their training settings, so you can validate a model at the same image size and on the original dataset easily with just `yolo val model=yolov8n.pt` or `model('yolov8n.pt').val()`
Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's training `data` and arguments as model attributes. See Arguments section below for a full list of export arguments.
When validating YOLO models, several arguments can be fine-tuned to optimize the evaluation process. These arguments control aspects such as input image size, batch processing, and performance thresholds. Below is a detailed breakdown of each argument to help you customize your validation settings effectively.
| `data` | `None` | The path to the dataset configuration file (e.g., `coco128.yaml`). This file specifies the dataset's structure, including the classes, train, and validation set paths. |
| `imgsz` | `640` | The input image size as an integer. This size is used to resize images during validation, impacting detection accuracy and inference speed. |
| `batch` | `16` | The number of images processed in each batch. A larger batch size can speed up validation but requires more memory. Use `-1` for AutoBatch to automatically adjust based on available memory. |
| `save_json` | `False` | If set to `True`, validation results are saved in a JSON format, useful for further analysis or submission to evaluation servers. |
| `save_hybrid` | `False` | When `True`, saves a hybrid version of labels combining ground truth with model predictions. This can be useful for visualizing model performance or training enhancements. |
| `conf` | `0.001` | The minimum confidence threshold for considering detections. Increasing this value may reduce false positives but could also miss less confident detections. |
| `iou` | `0.6` | The Intersection Over Union (IoU) threshold for Non-Maximum Suppression (NMS). Higher values result in fewer detections by eliminating more overlapping boxes. |
| `max_det` | `300` | The maximum number of detections allowed per image. Useful for limiting outputs in images with many objects. |
| `half` | `True` | Enables half precision (FP16) to speed up validation on compatible hardware without significantly affecting accuracy. |
| `device` | `None` | Specifies the computation device, such as a specific GPU (`cuda:0`) or CPU (`cpu`). This setting allows for model validation on different hardware configurations. |
| `dnn` | `False` | If `True`, uses OpenCV's DNN module for ONNX model inference. This option can be beneficial for environments where CUDA is unavailable. |
| `plots` | `False` | Enables the generation of plots and saved images during validation, providing visual insights into model performance. |
| `rect` | `False` | Applies rectangular inference, minimizing padding by processing images in their original aspect ratio. This can improve accuracy and speed but may require more memory. |
| `split` | `val` | Defines the dataset split to use for validation (e.g., 'val', 'test', 'train'). This allows for flexible validation across different parts of the dataset. |
Each of these settings plays a vital role in the validation process, allowing for a customizable and efficient evaluation of YOLO models. Adjusting these parameters according to your specific needs and resources can help achieve the best balance between accuracy and performance.
### Example Validation with Arguments
The below examples showcase YOLO model validation with custom arguments in Python and CLI.
!!! Example
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt')
# Customize validation settings
validation_results = model.val(data='coco8.yaml',
imgsz=640,
batch=16,
conf=0.25,
iou=0.6,
device='0')
```
=== "CLI"
```bash
yolo val model=yolov8n.pt data=coco8.yaml imgsz=640 batch=16 conf=0.25 iou=0.6 device=0