|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
# Builds ultralytics/ultralytics:latest image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
|
|
|
|
# Image is CUDA-optimized for YOLOv8 single/multi-GPU training and inference
|
|
|
|
|
|
|
|
# Start FROM PyTorch image https://hub.docker.com/r/pytorch/pytorch or nvcr.io/nvidia/pytorch:23.03-py3
|
|
|
|
FROM pytorch/pytorch:2.0.0-cuda11.7-cudnn8-runtime
|
|
|
|
|
|
|
|
# Downloads to user config dir
|
|
|
|
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
|
|
|
|
|
|
|
|
# Install linux packages
|
|
|
|
# g++ required to build 'tflite_support' package
|
|
|
|
RUN apt update
|
|
|
|
&& apt install --no-install-recommends -y gcc git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3-dev gnupg g++
|
|
|
|
# RUN alias python=python3
|
|
|
|
|
|
|
|
# Security updates
|
|
|
|
# https://security.snyk.io/vuln/SNYK-UBUNTU1804-OPENSSL-3314796
|
|
|
|
RUN apt upgrade --no-install-recommends -y openssl tar
|
|
|
|
|
|
|
|
# Create working directory
|
|
|
|
RUN mkdir -p /usr/src/ultralytics
|
|
|
|
WORKDIR /usr/src/ultralytics
|
|
|
|
|
|
|
|
# Copy contents
|
|
|
|
# COPY . /usr/src/app (issues as not a .git directory)
|
|
|
|
RUN git clone https://github.com/ultralytics/ultralytics /usr/src/ultralytics
|
|
|
|
ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /usr/src/ultralytics/
|
|
|
|
|
|
|
|
# Install pip packages
|
|
|
|
RUN python3 -m pip install --upgrade pip wheel
|
|
|
|
RUN pip install --no-cache . albumentations comet gsutil notebook tensorboard
|
|
|
|
|
|
|
|
# Set environment variables
|
|
|
|
ENV OMP_NUM_THREADS=1
|
|
|
|
|
|
|
|
|
|
|
|
# Usage Examples -------------------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
# Build and Push
|
|
|
|
# t=ultralytics/ultralytics:latest && sudo docker build -f docker/Dockerfile -t $t . && sudo docker push $t
|
|
|
|
|
|
|
|
# Pull and Run
|
|
|
|
# t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host $t
|
|
|
|
|
|
|
|
# Pull and Run with local directory access
|
|
|
|
# t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
|
|
|
|
|
|
|
|
# Kill all
|
|
|
|
# sudo docker kill $(sudo docker ps -q)
|
|
|
|
|
|
|
|
# Kill all image-based
|
|
|
|
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/ultralytics:latest)
|
|
|
|
|
|
|
|
# DockerHub tag update
|
|
|
|
# t=ultralytics/ultralytics:latest tnew=ultralytics/ultralytics:v6.2 && sudo docker pull $t && sudo docker tag $t $tnew && sudo docker push $tnew
|
|
|
|
|
|
|
|
# Clean up
|
|
|
|
# sudo docker system prune -a --volumes
|
|
|
|
|
|
|
|
# Update Ubuntu drivers
|
|
|
|
# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
|
|
|
|
|
|
|
|
# DDP test
|
|
|
|
# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
|
|
|
|
|
|
|
|
# GCP VM from Image
|
|
|
|
# docker.io/ultralytics/ultralytics:latest
|