[Speed estimation](https://www.ultralytics.com/blog/ultralytics-yolov8-for-speed-estimation-in-computer-vision-projects) is the process of calculating the rate of movement of an object within a given context, often employed in [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) applications. Using [Ultralytics YOLO11](https://github.com/ultralytics/ultralytics/) you can now calculate the speed of object using [object tracking](../modes/track.md) alongside distance and time data, crucial for tasks like traffic and surveillance. The accuracy of speed estimation directly influences the efficiency and reliability of various applications, making it a key component in the advancement of intelligent systems and real-time decision-making processes.
For deeper insights into speed estimation, check out our blog post: [Ultralytics YOLO11 for Speed Estimation in Computer Vision Projects](https://www.ultralytics.com/blog/ultralytics-yolov8-for-speed-estimation-in-computer-vision-projects)
- **Efficient Traffic Control:** Accurate speed estimation aids in managing traffic flow, enhancing safety, and reducing congestion on roadways.
- **Precise Autonomous Navigation:** In autonomous systems like self-driving cars, reliable speed estimation ensures safe and accurate vehicle navigation.
- **Enhanced Surveillance Security:** Speed estimation in surveillance analytics helps identify unusual behaviors or potential threats, improving the effectiveness of security measures.
| ![Speed Estimation on Road using Ultralytics YOLO11](https://github.com/ultralytics/docs/releases/download/0/speed-estimation-on-road-using-ultralytics-yolov8.avif) | ![Speed Estimation on Bridge using Ultralytics YOLO11](https://github.com/ultralytics/docs/releases/download/0/speed-estimation-on-bridge-using-ultralytics-yolov8.avif) |
| Speed Estimation on Road using Ultralytics YOLO11 | Speed Estimation on Bridge using Ultralytics YOLO11 |
Estimating object speed with Ultralytics YOLO11 involves combining [object detection](https://www.ultralytics.com/glossary/object-detection) and tracking techniques. First, you need to detect objects in each frame using the YOLO11 model. Then, track these objects across frames to calculate their movement over time. Finally, use the distance traveled by the object between frames and the frame rate to estimate its speed.
For more details, refer to our [official blog post](https://www.ultralytics.com/blog/ultralytics-yolov8-for-speed-estimation-in-computer-vision-projects).
- **Scalability**: Deploy the model on various hardware setups, from edge devices to servers, ensuring flexible and scalable solutions for large-scale implementations.
For more applications, see [advantages of speed estimation](#advantages-of-speed-estimation).
### Can YOLO11 be integrated with other AI frameworks like [TensorFlow](https://www.ultralytics.com/glossary/tensorflow) or [PyTorch](https://www.ultralytics.com/glossary/pytorch)?
Yes, YOLO11 can be integrated with other AI frameworks like TensorFlow and PyTorch. Ultralytics provides support for exporting YOLO11 models to various formats like ONNX, TensorRT, and CoreML, ensuring smooth interoperability with other ML frameworks.
The [accuracy](https://www.ultralytics.com/glossary/accuracy) of speed estimation using Ultralytics YOLO11 depends on several factors, including the quality of the object tracking, the resolution and frame rate of the video, and environmental variables. While the speed estimator provides reliable estimates, it may not be 100% accurate due to variances in frame processing speed and object occlusion.