|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
|
|
|
import subprocess
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
from ultralytics.utils import ASSETS, WEIGHTS_DIR
|
|
|
|
from ultralytics.utils.checks import cuda_device_count, cuda_is_available
|
|
|
|
|
|
|
|
CUDA_IS_AVAILABLE = cuda_is_available()
|
|
|
|
CUDA_DEVICE_COUNT = cuda_device_count()
|
|
|
|
TASK_ARGS = [
|
|
|
|
('detect', 'yolov8n', 'coco8.yaml'),
|
|
|
|
('segment', 'yolov8n-seg', 'coco8-seg.yaml'),
|
|
|
|
('classify', 'yolov8n-cls', 'imagenet10'),
|
|
|
|
('pose', 'yolov8n-pose', 'coco8-pose.yaml'), ] # (task, model, data)
|
|
|
|
EXPORT_ARGS = [
|
|
|
|
('yolov8n', 'torchscript'),
|
|
|
|
('yolov8n-seg', 'torchscript'),
|
|
|
|
('yolov8n-cls', 'torchscript'),
|
|
|
|
('yolov8n-pose', 'torchscript'), ] # (model, format)
|
|
|
|
|
|
|
|
|
|
|
|
def run(cmd):
|
|
|
|
"""Execute a shell command using subprocess."""
|
|
|
|
subprocess.run(cmd.split(), check=True)
|
|
|
|
|
|
|
|
|
|
|
|
def test_special_modes():
|
|
|
|
"""Test various special command modes of YOLO."""
|
|
|
|
run('yolo help')
|
|
|
|
run('yolo checks')
|
|
|
|
run('yolo version')
|
|
|
|
run('yolo settings reset')
|
|
|
|
run('yolo cfg')
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
|
|
|
|
def test_train(task, model, data):
|
|
|
|
"""Test YOLO training for a given task, model, and data."""
|
|
|
|
run(f'yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 cache=disk')
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
|
|
|
|
def test_val(task, model, data):
|
|
|
|
"""Test YOLO validation for a given task, model, and data."""
|
|
|
|
run(f'yolo val {task} model={WEIGHTS_DIR / model}.pt data={data} imgsz=32 save_txt save_json')
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
|
|
|
|
def test_predict(task, model, data):
|
|
|
|
"""Test YOLO prediction on sample assets for a given task and model."""
|
|
|
|
run(f'yolo predict model={WEIGHTS_DIR / model}.pt source={ASSETS} imgsz=32 save save_crop save_txt')
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('model,format', EXPORT_ARGS)
|
|
|
|
def test_export(model, format):
|
|
|
|
"""Test exporting a YOLO model to different formats."""
|
|
|
|
run(f'yolo export model={WEIGHTS_DIR / model}.pt format={format} imgsz=32')
|
|
|
|
|
|
|
|
|
|
|
|
def test_rtdetr(task='detect', model='yolov8n-rtdetr.yaml', data='coco8.yaml'):
|
|
|
|
"""Test the RTDETR functionality with the Ultralytics framework."""
|
|
|
|
# Warning: MUST use imgsz=640
|
|
|
|
run(f'yolo train {task} model={model} data={data} --imgsz= 640 epochs =1, cache = disk') # add coma, spaces to args
|
|
|
|
run(f"yolo predict {task} model={model} source={ASSETS / 'bus.jpg'} imgsz=640 save save_crop save_txt")
|
|
|
|
|
|
|
|
|
|
|
|
def test_fastsam(task='segment', model=WEIGHTS_DIR / 'FastSAM-s.pt', data='coco8-seg.yaml'):
|
|
|
|
"""Test FastSAM segmentation functionality within Ultralytics."""
|
|
|
|
source = ASSETS / 'bus.jpg'
|
|
|
|
|
|
|
|
run(f'yolo segment val {task} model={model} data={data} imgsz=32')
|
|
|
|
run(f'yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt')
|
|
|
|
|
|
|
|
from ultralytics import FastSAM
|
|
|
|
from ultralytics.models.fastsam import FastSAMPrompt
|
|
|
|
from ultralytics.models.sam import Predictor
|
|
|
|
|
|
|
|
# Create a FastSAM model
|
|
|
|
sam_model = FastSAM(model) # or FastSAM-x.pt
|
|
|
|
|
|
|
|
# Run inference on an image
|
|
|
|
everything_results = sam_model(source, device='cpu', retina_masks=True, imgsz=1024, conf=0.4, iou=0.9)
|
|
|
|
|
|
|
|
# Remove small regions
|
|
|
|
new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20)
|
|
|
|
|
|
|
|
# Everything prompt
|
|
|
|
prompt_process = FastSAMPrompt(source, everything_results, device='cpu')
|
|
|
|
ann = prompt_process.everything_prompt()
|
|
|
|
|
|
|
|
# Bbox default shape [0,0,0,0] -> [x1,y1,x2,y2]
|
|
|
|
ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300])
|
|
|
|
|
|
|
|
# Text prompt
|
|
|
|
ann = prompt_process.text_prompt(text='a photo of a dog')
|
|
|
|
|
|
|
|
# Point prompt
|
|
|
|
# Points default [[0,0]] [[x1,y1],[x2,y2]]
|
|
|
|
# Point_label default [0] [1,0] 0:background, 1:foreground
|
|
|
|
ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1])
|
|
|
|
prompt_process.plot(annotations=ann, output='./')
|
|
|
|
|
|
|
|
|
|
|
|
def test_mobilesam():
|
|
|
|
"""Test MobileSAM segmentation functionality using Ultralytics."""
|
|
|
|
from ultralytics import SAM
|
|
|
|
|
|
|
|
# Load the model
|
|
|
|
model = SAM(WEIGHTS_DIR / 'mobile_sam.pt')
|
|
|
|
|
|
|
|
# Source
|
|
|
|
source = ASSETS / 'zidane.jpg'
|
|
|
|
|
|
|
|
# Predict a segment based on a point prompt
|
|
|
|
model.predict(source, points=[900, 370], labels=[1])
|
|
|
|
|
|
|
|
# Predict a segment based on a box prompt
|
|
|
|
model.predict(source, bboxes=[439, 437, 524, 709])
|
|
|
|
|
|
|
|
# Predict all
|
|
|
|
# model(source)
|
|
|
|
|
|
|
|
|
|
|
|
# Slow Tests -----------------------------------------------------------------------------------------------------------
|
|
|
|
@pytest.mark.slow
|
|
|
|
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
|
|
|
|
@pytest.mark.skipif(CUDA_DEVICE_COUNT < 2, reason='DDP is not available')
|
|
|
|
def test_train_gpu(task, model, data):
|
|
|
|
"""Test YOLO training on GPU(s) for various tasks and models."""
|
|
|
|
run(f'yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 device=0') # single GPU
|
|
|
|
run(f'yolo train {task} model={model}.pt data={data} imgsz=32 epochs=1 device=0,1') # multi GPU
|