---
comments: true
description: Learn to blur objects using Ultralytics YOLOv8 for privacy in images and videos.
keywords: Ultralytics, YOLOv8, Object Detection, Object Blurring, Privacy Protection, Image Processing, Video Analysis, AI, Machine Learning
---
# Object Blurring using Ultralytics YOLOv8 🚀
## What is Object Blurring?
Object blurring with [Ultralytics YOLOv8 ](https://github.com/ultralytics/ultralytics/ ) involves applying a blurring effect to specific detected objects in an image or video. This can be achieved using the YOLOv8 model capabilities to identify and manipulate objects within a given scene.
## Advantages of Object Blurring?
- **Privacy Protection**: Object blurring is an effective tool for safeguarding privacy by concealing sensitive or personally identifiable information in images or videos.
- **Selective Focus**: YOLOv8 allows for selective blurring, enabling users to target specific objects, ensuring a balance between privacy and retaining relevant visual information.
- **Real-time Processing**: YOLOv8's efficiency enables object blurring in real-time, making it suitable for applications requiring on-the-fly privacy enhancements in dynamic environments.
!!! Example "Object Blurring using YOLOv8 Example"
=== "Object Blurring"
```python
from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors
import cv2
model = YOLO("yolov8n.pt")
names = model.names
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Blur ratio
blur_ratio = 50
# Video writer
video_writer = cv2.VideoWriter("object_blurring_output.avi",
cv2.VideoWriter_fourcc(*'mp4v'),
fps, (w, h))
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
results = model.predict(im0, show=False)
boxes = results[0].boxes.xyxy.cpu().tolist()
clss = results[0].boxes.cls.cpu().tolist()
annotator = Annotator(im0, line_width=2, example=names)
if boxes is not None:
for box, cls in zip(boxes, clss):
annotator.box_label(box, color=colors(int(cls), True), label=names[int(cls)])
obj = im0[int(box[1]):int(box[3]), int(box[0]):int(box[2])]
blur_obj = cv2.blur(obj, (blur_ratio, blur_ratio))
im0[int(box[1]):int(box[3]), int(box[0]):int(box[2])] = blur_obj
cv2.imshow("ultralytics", im0)
video_writer.write(im0)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
video_writer.release()
cv2.destroyAllWindows()
```
### Arguments `model.predict`
| Name | Type | Default | Description |
|-----------------|----------------|------------------------|----------------------------------------------------------------------------|
| `source` | `str` | `'ultralytics/assets'` | source directory for images or videos |
| `conf` | `float` | `0.25` | object confidence threshold for detection |
| `iou` | `float` | `0.7` | intersection over union (IoU) threshold for NMS |
| `imgsz` | `int or tuple` | `640` | image size as scalar or (h, w) list, i.e. (640, 480) |
| `half` | `bool` | `False` | use half precision (FP16) |
| `device` | `None or str` | `None` | device to run on, i.e. cuda device=0/1/2/3 or device=cpu |
| `max_det` | `int` | `300` | maximum number of detections per image |
| `vid_stride` | `bool` | `False` | video frame-rate stride |
| `stream_buffer` | `bool` | `False` | buffer all streaming frames (True) or return the most recent frame (False) |
| `visualize` | `bool` | `False` | visualize model features |
| `augment` | `bool` | `False` | apply image augmentation to prediction sources |
| `agnostic_nms` | `bool` | `False` | class-agnostic NMS |
| `classes` | `list[int]` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] |
| `retina_masks` | `bool` | `False` | use high-resolution segmentation masks |
| `embed` | `list[int]` | `None` | return feature vectors/embeddings from given layers |