You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

446 lines
12 KiB

---
comments: true
description: Learn how to run inference using the Ultralytics HUB Inference API. Includes examples in Python and cURL for quick integration.
keywords: Ultralytics, HUB, Inference API, Python, cURL, REST API, YOLO, image processing, machine learning, AI integration
---
# Ultralytics HUB Inference API
The [Ultralytics HUB](https://ultralytics.com/hub) Inference API allows you to run inference through our REST API without the need to install and set up the Ultralytics YOLO environment locally.
![Ultralytics HUB screenshot of the Deploy tab inside the Model page with an arrow pointing to the Ultralytics Inference API card](https://raw.githubusercontent.com/ultralytics/assets/main/docs/hub/inference-api/hub_inference_api_1.jpg)
<p align="center">
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/OpWpBI35A5Y"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Ultralytics HUB Inference API Walkthrough
</p>
## Python
To access the [Ultralytics HUB](https://ultralytics.com/hub) Inference API using Python, use the following code:
```python
import requests
# API URL, use actual MODEL_ID
url = "https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"image": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
!!! note "Note"
Replace `MODEL_ID` with the desired model ID, `API_KEY` with your actual API key, and `path/to/image.jpg` with the path to the image you want to run inference on.
## cURL
To access the [Ultralytics HUB](https://ultralytics.com/hub) Inference API using cURL, use the following code:
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "image=@/path/to/image.jpg" \
-F "size=640" \
-F "confidence=0.25" \
-F "iou=0.45"
```
!!! note "Note"
Replace `MODEL_ID` with the desired model ID, `API_KEY` with your actual API key, and `path/to/image.jpg` with the path to the image you want to run inference on.
## Arguments
See the table below for a full list of available inference arguments.
| Argument | Default | Type | Description |
| ------------ | ------- | ------- | -------------------------------------------------------------------- |
| `image` | | `image` | Image file to be used for inference. |
| `url` | | `str` | URL of the image if not passing a file. |
| `size` | `640` | `int` | Size of the input image, valid range is `32` - `1280` pixels. |
| `confidence` | `0.25` | `float` | Confidence threshold for predictions, valid range `0.01` - `1.0`. |
| `iou` | `0.45` | `float` | Intersection over Union (IoU) threshold, valid range `0.0` - `0.95`. |
## Response
The [Ultralytics HUB](https://ultralytics.com/hub) Inference API returns a JSON response.
### Classification
!!! Example "Classification Model"
=== "`ultralytics`"
```python
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n-cls.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].tojson())
```
=== "cURL"
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "image=@/path/to/image.jpg" \
-F "size=640" \
-F "confidence=0.25" \
-F "iou=0.45"
```
=== "Python"
```python
import requests
# API URL, use actual MODEL_ID
url = "https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"image": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
=== "Response"
```json
{
success: true,
message: "Inference complete.",
data: [
{
class: 0,
name: "person",
confidence: 0.92
}
]
}
```
### Detection
!!! Example "Detection Model"
=== "`ultralytics`"
```python
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].tojson())
```
=== "cURL"
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "image=@/path/to/image.jpg" \
-F "size=640" \
-F "confidence=0.25" \
-F "iou=0.45"
```
=== "Python"
```python
import requests
# API URL, use actual MODEL_ID
url = "https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"image": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
=== "Response"
```json
{
success: true,
message: "Inference complete.",
data: [
{
class: 0,
name: "person",
confidence: 0.92,
width: 0.4893378019332886,
height: 0.7437513470649719,
xcenter: 0.4434437155723572,
ycenter: 0.5198975801467896
}
]
}
```
### OBB
!!! Example "OBB Model"
=== "`ultralytics`"
```python
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n-obb.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].tojson())
```
=== "cURL"
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "image=@/path/to/image.jpg" \
-F "size=640" \
-F "confidence=0.25" \
-F "iou=0.45"
```
=== "Python"
```python
import requests
# API URL, use actual MODEL_ID
url = "https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"image": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
=== "Response"
```json
{
success: true,
message: "Inference complete.",
data: [
{
class: 0,
name: "person",
confidence: 0.92,
obb: [
0.669310450553894,
0.6247171759605408,
0.9847468137741089,
...
]
}
]
}
```
### Segmentation
!!! Example "Segmentation Model"
=== "`ultralytics`"
```python
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n-seg.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].tojson())
```
=== "cURL"
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "image=@/path/to/image.jpg" \
-F "size=640" \
-F "confidence=0.25" \
-F "iou=0.45"
```
=== "Python"
```python
import requests
# API URL, use actual MODEL_ID
url = "https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"image": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
=== "Response"
```json
{
success: true,
message: "Inference complete.",
data: [
{
class: 0,
name: "person",
confidence: 0.92,
segment: [0.44140625, 0.15625, 0.439453125, ...]
}
]
}
```
### Pose
!!! Example "Pose Model"
=== "`ultralytics`"
```python
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n-pose.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].tojson())
```
=== "cURL"
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "image=@/path/to/image.jpg" \
-F "size=640" \
-F "confidence=0.25" \
-F "iou=0.45"
```
=== "Python"
```python
import requests
# API URL, use actual MODEL_ID
url = "https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"image": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
=== "Response"
```json
{
success: true,
message: "Inference complete.",
data: [
{
class: 0,
name: "person",
confidence: 0.92,
keypoints: [
0.5290805697441101,
0.20698919892311096,
1.0,
0.5263055562973022,
0.19584226608276367,
1.0,
0.5094948410987854,
0.19120082259178162,
1.0,
...
]
}
]
}
```