|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
import contextlib
|
|
|
|
import subprocess
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from ultralytics import YOLO, download
|
|
|
|
from ultralytics.utils import ASSETS, SETTINGS
|
|
|
|
|
|
|
|
CUDA_IS_AVAILABLE = torch.cuda.is_available()
|
|
|
|
CUDA_DEVICE_COUNT = torch.cuda.device_count()
|
|
|
|
|
|
|
|
DATASETS_DIR = Path(SETTINGS['datasets_dir'])
|
|
|
|
WEIGHTS_DIR = Path(SETTINGS['weights_dir'])
|
|
|
|
MODEL = WEIGHTS_DIR / 'path with spaces' / 'yolov8n.pt' # test spaces in path
|
|
|
|
DATA = 'coco8.yaml'
|
|
|
|
|
|
|
|
|
|
|
|
def test_checks():
|
|
|
|
from ultralytics.utils.checks import cuda_device_count, cuda_is_available
|
|
|
|
|
|
|
|
assert cuda_device_count() == CUDA_DEVICE_COUNT
|
|
|
|
assert cuda_is_available() == CUDA_IS_AVAILABLE
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
|
|
|
|
def test_train():
|
|
|
|
device = 0 if CUDA_DEVICE_COUNT == 1 else [0, 1]
|
|
|
|
YOLO(MODEL).train(data=DATA, imgsz=64, epochs=1, batch=-1, device=device) # also test AutoBatch, requires imgsz>=64
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
|
|
|
|
def test_utils_benchmarks():
|
|
|
|
from ultralytics.utils.benchmarks import ProfileModels
|
|
|
|
|
|
|
|
# Pre-export a dynamic engine model to use dynamic inference
|
|
|
|
YOLO(MODEL).export(format='engine', imgsz=32, dynamic=True, batch=1)
|
|
|
|
ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
|
|
|
|
def test_predict_sam():
|
|
|
|
from ultralytics import SAM
|
|
|
|
from ultralytics.models.sam import Predictor as SAMPredictor
|
|
|
|
|
|
|
|
# Load a model
|
|
|
|
model = SAM(WEIGHTS_DIR / 'sam_b.pt')
|
|
|
|
|
|
|
|
# Display model information (optional)
|
|
|
|
model.info()
|
|
|
|
|
|
|
|
# Run inference
|
|
|
|
model(ASSETS / 'bus.jpg', device=0)
|
|
|
|
|
|
|
|
# Run inference with bboxes prompt
|
|
|
|
model(ASSETS / 'zidane.jpg', bboxes=[439, 437, 524, 709], device=0)
|
|
|
|
|
|
|
|
# Run inference with points prompt
|
|
|
|
model(ASSETS / 'zidane.jpg', points=[900, 370], labels=[1], device=0)
|
|
|
|
|
|
|
|
# Create SAMPredictor
|
|
|
|
overrides = dict(conf=0.25, task='segment', mode='predict', imgsz=1024, model='mobile_sam.pt')
|
|
|
|
predictor = SAMPredictor(overrides=overrides)
|
|
|
|
|
|
|
|
# Set image
|
|
|
|
predictor.set_image('ultralytics/assets/zidane.jpg') # set with image file
|
|
|
|
# predictor(bboxes=[439, 437, 524, 709])
|
|
|
|
# predictor(points=[900, 370], labels=[1])
|
|
|
|
|
|
|
|
# Reset image
|
|
|
|
predictor.reset_image()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
|
|
|
|
def test_model_tune():
|
|
|
|
subprocess.run('pip install ray[tune]'.split(), check=True)
|
|
|
|
with contextlib.suppress(RuntimeError): # RuntimeError may be caused by out-of-memory
|
|
|
|
YOLO('yolov8n-cls.yaml').tune(data='imagenet10',
|
|
|
|
grace_period=1,
|
|
|
|
max_samples=1,
|
|
|
|
imgsz=32,
|
|
|
|
epochs=1,
|
|
|
|
plots=False,
|
|
|
|
device='cpu')
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
|
|
|
|
def test_pycocotools():
|
|
|
|
from ultralytics.models.yolo.detect import DetectionValidator
|
|
|
|
from ultralytics.models.yolo.pose import PoseValidator
|
|
|
|
from ultralytics.models.yolo.segment import SegmentationValidator
|
|
|
|
|
|
|
|
# Download annotations after each dataset downloads first
|
|
|
|
url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
|
|
|
|
|
|
|
|
validator = DetectionValidator(args={'model': 'yolov8n.pt', 'data': 'coco8.yaml', 'save_json': True, 'imgsz': 64})
|
|
|
|
validator()
|
|
|
|
validator.is_coco = True
|
|
|
|
download(f'{url}instances_val2017.json', dir=DATASETS_DIR / 'coco8/annotations')
|
|
|
|
_ = validator.eval_json(validator.stats)
|
|
|
|
|
|
|
|
validator = SegmentationValidator(args={
|
|
|
|
'model': 'yolov8n-seg.pt',
|
|
|
|
'data': 'coco8-seg.yaml',
|
|
|
|
'save_json': True,
|
|
|
|
'imgsz': 64})
|
|
|
|
validator()
|
|
|
|
validator.is_coco = True
|
|
|
|
download(f'{url}instances_val2017.json', dir=DATASETS_DIR / 'coco8-seg/annotations')
|
|
|
|
_ = validator.eval_json(validator.stats)
|
|
|
|
|
|
|
|
validator = PoseValidator(args={
|
|
|
|
'model': 'yolov8n-pose.pt',
|
|
|
|
'data': 'coco8-pose.yaml',
|
|
|
|
'save_json': True,
|
|
|
|
'imgsz': 64})
|
|
|
|
validator()
|
|
|
|
validator.is_coco = True
|
|
|
|
download(f'{url}person_keypoints_val2017.json', dir=DATASETS_DIR / 'coco8-pose/annotations')
|
|
|
|
_ = validator.eval_json(validator.stats)
|