You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

187 lines
6.7 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
import shutil
import uuid
from itertools import product
from pathlib import Path
import pytest
from tests import MODEL, SOURCE
from ultralytics import YOLO
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
from ultralytics.utils import (
IS_RASPBERRYPI,
LINUX,
MACOS,
WINDOWS,
Retry,
checks,
)
from ultralytics.utils.torch_utils import TORCH_1_9, TORCH_1_13
def test_export_torchscript():
"""Test YOLO exports to TorchScript format."""
file = YOLO(MODEL).export(format="torchscript", optimize=False, imgsz=32)
YOLO(file)(SOURCE, imgsz=32) # exported model inference
def test_export_onnx():
"""Test YOLO exports to ONNX format."""
file = YOLO(MODEL).export(format="onnx", dynamic=True, imgsz=32)
YOLO(file)(SOURCE, imgsz=32) # exported model inference
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="OpenVINO not supported in Python 3.12")
@pytest.mark.skipif(not TORCH_1_13, reason="OpenVINO requires torch>=1.13")
def test_export_openvino():
"""Test YOLO exports to OpenVINO format."""
file = YOLO(MODEL).export(format="openvino", imgsz=32)
YOLO(file)(SOURCE, imgsz=32) # exported model inference
@pytest.mark.slow
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="OpenVINO not supported in Python 3.12")
@pytest.mark.skipif(not TORCH_1_13, reason="OpenVINO requires torch>=1.13")
@pytest.mark.parametrize(
"task, dynamic, int8, half, batch",
[ # generate all combinations but exclude those where both int8 and half are True
(task, dynamic, int8, half, batch)
for task, dynamic, int8, half, batch in product(TASKS, [True, False], [True, False], [True, False], [1, 2])
if not (int8 and half) # exclude cases where both int8 and half are True
],
)
def test_export_openvino_matrix(task, dynamic, int8, half, batch):
"""Test YOLO exports to OpenVINO format."""
file = YOLO(TASK2MODEL[task]).export(
format="openvino",
imgsz=32,
dynamic=dynamic,
int8=int8,
half=half,
batch=batch,
data=TASK2DATA[task],
)
if WINDOWS:
# Use unique filenames due to Windows file permissions bug possibly due to latent threaded use
# See https://github.com/ultralytics/ultralytics/actions/runs/8957949304/job/24601616830?pr=10423
file = Path(file)
file = file.rename(file.with_stem(f"{file.stem}-{uuid.uuid4()}"))
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
with Retry(times=3, delay=1): # retry in case of potential lingering multi-threaded file usage errors
shutil.rmtree(file)
@pytest.mark.slow
@pytest.mark.parametrize("task, dynamic, int8, half, batch", product(TASKS, [True, False], [False], [False], [1, 2]))
def test_export_onnx_matrix(task, dynamic, int8, half, batch):
"""Test YOLO exports to ONNX format."""
file = YOLO(TASK2MODEL[task]).export(
format="onnx",
imgsz=32,
dynamic=dynamic,
int8=int8,
half=half,
batch=batch,
)
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
Path(file).unlink() # cleanup
@pytest.mark.slow
@pytest.mark.parametrize("task, dynamic, int8, half, batch", product(TASKS, [False], [False], [False], [1, 2]))
def test_export_torchscript_matrix(task, dynamic, int8, half, batch):
"""Test YOLO exports to TorchScript format."""
file = YOLO(TASK2MODEL[task]).export(
format="torchscript",
imgsz=32,
dynamic=dynamic,
int8=int8,
half=half,
batch=batch,
)
YOLO(file)([SOURCE] * 3, imgsz=64 if dynamic else 32) # exported model inference at batch=3
Path(file).unlink() # cleanup
@pytest.mark.slow
@pytest.mark.skipif(not MACOS, reason="CoreML inference only supported on macOS")
@pytest.mark.skipif(not TORCH_1_9, reason="CoreML>=7.2 not supported with PyTorch<=1.8")
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="CoreML not supported in Python 3.12")
@pytest.mark.parametrize(
"task, dynamic, int8, half, batch",
[ # generate all combinations but exclude those where both int8 and half are True
(task, dynamic, int8, half, batch)
for task, dynamic, int8, half, batch in product(TASKS, [False], [True, False], [True, False], [1])
if not (int8 and half) # exclude cases where both int8 and half are True
],
)
def test_export_coreml_matrix(task, dynamic, int8, half, batch):
"""Test YOLO exports to CoreML format."""
file = YOLO(TASK2MODEL[task]).export(
format="coreml",
imgsz=32,
dynamic=dynamic,
int8=int8,
half=half,
batch=batch,
)
YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference at batch=3
shutil.rmtree(file) # cleanup
@pytest.mark.skipif(not TORCH_1_9, reason="CoreML>=7.2 not supported with PyTorch<=1.8")
@pytest.mark.skipif(WINDOWS, reason="CoreML not supported on Windows") # RuntimeError: BlobWriter not loaded
@pytest.mark.skipif(IS_RASPBERRYPI, reason="CoreML not supported on Raspberry Pi")
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="CoreML not supported in Python 3.12")
def test_export_coreml():
"""Test YOLO exports to CoreML format."""
if MACOS:
file = YOLO(MODEL).export(format="coreml", imgsz=32)
YOLO(file)(SOURCE, imgsz=32) # model prediction only supported on macOS for nms=False models
else:
YOLO(MODEL).export(format="coreml", nms=True, imgsz=32)
@pytest.mark.skipif(not LINUX, reason="Test disabled as TF suffers from install conflicts on Windows and macOS")
def test_export_tflite():
"""
Test YOLO exports to TFLite format.
Note TF suffers from install conflicts on Windows and macOS.
"""
model = YOLO(MODEL)
file = model.export(format="tflite", imgsz=32)
YOLO(file)(SOURCE, imgsz=32)
@pytest.mark.skipif(True, reason="Test disabled")
@pytest.mark.skipif(not LINUX, reason="TF suffers from install conflicts on Windows and macOS")
def test_export_pb():
"""
Test YOLO exports to *.pb format.
Note TF suffers from install conflicts on Windows and macOS.
"""
model = YOLO(MODEL)
file = model.export(format="pb", imgsz=32)
YOLO(file)(SOURCE, imgsz=32)
@pytest.mark.skipif(True, reason="Test disabled as Paddle protobuf and ONNX protobuf requirementsk conflict.")
def test_export_paddle():
"""
Test YOLO exports to Paddle format.
Note Paddle protobuf requirements conflicting with onnx protobuf requirements.
"""
YOLO(MODEL).export(format="paddle", imgsz=32)
@pytest.mark.slow
def test_export_ncnn():
"""Test YOLO exports to NCNN format."""
file = YOLO(MODEL).export(format="ncnn", imgsz=32)
YOLO(file)(SOURCE, imgsz=32) # exported model inference