< div align = "center" >
< p >
< a href = "https://www.ultralytics.com/events/yolovision" target = "_blank" >
< img width = "100%" src = "https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt = "YOLO Vision banner" > < / a >
< / p >
[中文 ](https://docs.ultralytics.com/zh ) | [한국어 ](https://docs.ultralytics.com/ko ) | [日本語 ](https://docs.ultralytics.com/ja ) | [Русский ](https://docs.ultralytics.com/ru ) | [Deutsch ](https://docs.ultralytics.com/de ) | [Français ](https://docs.ultralytics.com/fr ) | [Español ](https://docs.ultralytics.com/es ) | [Português ](https://docs.ultralytics.com/pt ) | [Türkçe ](https://docs.ultralytics.com/tr ) | [Tiếng Việt ](https://docs.ultralytics.com/vi ) | [العربية ](https://docs.ultralytics.com/ar ) < br >
< div >
< a href = "https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml" > < img src = "https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt = "Ultralytics CI" > < / a >
< a href = "https://zenodo.org/badge/latestdoi/264818686" > < img src = "https://zenodo.org/badge/264818686.svg" alt = "Ultralytics YOLO Citation" > < / a >
< a href = "https://hub.docker.com/r/ultralytics/ultralytics" > < img src = "https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt = "Ultralytics Docker Pulls" > < / a >
< a href = "https://discord.com/invite/ultralytics" > < img alt = "Ultralytics Discord" src = "https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue" > < / a >
< a href = "https://community.ultralytics.com/" > < img alt = "Ultralytics Forums" src = "https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue" > < / a >
< a href = "https://reddit.com/r/ultralytics" > < img alt = "Ultralytics Reddit" src = "https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue" > < / a >
< br >
< a href = "https://console.paperspace.com/github/ultralytics/ultralytics" > < img src = "https://assets.paperspace.io/img/gradient-badge.svg" alt = "Run Ultralytics on Gradient" > < / a >
< a href = "https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb" > < img src = "https://colab.research.google.com/assets/colab-badge.svg" alt = "Open Ultralytics In Colab" > < / a >
< a href = "https://www.kaggle.com/models/ultralytics/yolo11" > < img src = "https://kaggle.com/static/images/open-in-kaggle.svg" alt = "Open Ultralytics In Kaggle" > < / a >
< a href = "https://mybinder.org/v2/gh/ultralytics/ultralytics/HEAD?labpath=examples%2Ftutorial.ipynb" > < img src = "https://mybinder.org/badge_logo.svg" alt = "Open Ultralytics In Binder" > < / a >
< / div >
< br >
[Ultralytics ](https://www.ultralytics.com/ ) [YOLO11 ](https://github.com/ultralytics/ultralytics ) 是一个尖端的、最先进(SOTA)的模型,基于之前 YOLO 版本的成功,并引入了新功能和改进以进一步提升性能和灵活性。YOLO11 被设计得快速、准确且易于使用,是进行广泛对象检测和跟踪、实例分割、图像分类和姿态估计任务的理想选择。
我们希望这里的资源能帮助你充分利用 YOLO。请浏览 Ultralytics < a href = "https://docs.ultralytics.com/" > 文档< / a > 以获取详细信息,在 < a href = "https://github.com/ultralytics/ultralytics/issues/new/choose" > GitHub< / a > 上提出问题或讨论,成为 Ultralytics < a href = "https://discord.com/invite/ultralytics" > Discord< / a > 、< a href = "https://reddit.com/r/ultralytics" > Reddit< / a > 和 < a href = "https://community.ultralytics.com/" > 论坛< / a > 的成员!
想申请企业许可证,请完成 [Ultralytics Licensing ](https://www.ultralytics.com/license ) 上的表单。
< img width = "100%" src = "https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt = "YOLO11 performance plots" > < / a >
< div align = "center" >
< a href = "https://github.com/ultralytics" > < img src = "https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width = "2%" alt = "Ultralytics GitHub" > < / a >
< img src = "https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width = "2%" alt = "space" >
< a href = "https://www.linkedin.com/company/ultralytics/" > < img src = "https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width = "2%" alt = "Ultralytics LinkedIn" > < / a >
< img src = "https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width = "2%" alt = "space" >
< a href = "https://twitter.com/ultralytics" > < img src = "https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width = "2%" alt = "Ultralytics Twitter" > < / a >
< img src = "https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width = "2%" alt = "space" >
< a href = "https://youtube.com/ultralytics?sub_confirmation=1" > < img src = "https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width = "2%" alt = "Ultralytics YouTube" > < / a >
< img src = "https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width = "2%" alt = "space" >
< a href = "https://www.tiktok.com/@ultralytics" > < img src = "https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width = "2%" alt = "Ultralytics TikTok" > < / a >
< img src = "https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width = "2%" alt = "space" >
< a href = "https://ultralytics.com/bilibili" > < img src = "https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width = "2%" alt = "Ultralytics BiliBili" > < / a >
< img src = "https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width = "2%" alt = "space" >
< a href = "https://discord.com/invite/ultralytics" > < img src = "https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width = "2%" alt = "Ultralytics Discord" > < / a >
< / div >
< / div >
## <div align="center">文档</div>
请参阅下方的快速开始安装和使用示例,并查看我们的 [文档 ](https://docs.ultralytics.com/ ) 以获取有关训练、验证、预测和部署的完整文档。
< details open >
< summary > 安装< / summary >
在 [**Python>=3.8** ](https://www.python.org/ ) 环境中使用 [**PyTorch>=1.8** ](https://pytorch.org/get-started/locally/ ) 通过 pip 安装包含所有[依赖项](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) 的 ultralytics 包。
[![PyPI - Version ](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white )](https://pypi.org/project/ultralytics/) [![Downloads ](https://static.pepy.tech/badge/ultralytics )](https://pepy.tech/project/ultralytics) [![PyPI - Python Version ](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold )](https://pypi.org/project/ultralytics/)
```bash
pip install ultralytics
```
有关其他安装方法,包括 [Conda ](https://anaconda.org/conda-forge/ultralytics )、[Docker](https://hub.docker.com/r/ultralytics/ultralytics) 和 Git,请参阅 [快速开始指南 ](https://docs.ultralytics.com/quickstart/ )。
[![Conda Version ](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge )](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version ](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker )](https://hub.docker.com/r/ultralytics/ultralytics)
< / details >
< details open >
< summary > 使用< / summary >
### CLI
YOLO 可以直接在命令行接口(CLI)中使用 `yolo` 命令:
```bash
yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
```
`yolo` 可以用于各种任务和模式,并接受额外参数,例如 `imgsz=640` 。请参阅 YOLO [CLI 文档 ](https://docs.ultralytics.com/usage/cli/ ) 以获取示例。
### Python
YOLO 也可以直接在 Python 环境中使用,并接受与上述 CLI 示例中相同的[参数](https://docs.ultralytics.com/usage/cfg/):
```python
from ultralytics import YOLO
# 加载模型
model = YOLO("yolo11n.pt")
# 训练模型
train_results = model.train(
data="coco8.yaml", # 数据集 YAML 路径
epochs=100, # 训练轮次
imgsz=640, # 训练图像尺寸
device="cpu", # 运行设备,例如 device=0 或 device=0,1,2,3 或 device=cpu
)
# 评估模型在验证集上的性能
metrics = model.val()
# 在图像上执行对象检测
results = model("path/to/image.jpg")
results[0].show()
# 将模型导出为 ONNX 格式
path = model.export(format="onnx") # 返回导出模型的路径
```
请参阅 YOLO [Python 文档 ](https://docs.ultralytics.com/usage/python/ ) 以获取更多示例。
< / details >
## <div align="center">模型</div>
YOLO11 [检测 ](https://docs.ultralytics.com/tasks/detect/ )、[分割](https://docs.ultralytics.com/tasks/segment/) 和 [姿态 ](https://docs.ultralytics.com/tasks/pose/ ) 模型在 [COCO ](https://docs.ultralytics.com/datasets/detect/coco/ ) 数据集上进行预训练,这些模型可在此处获得,此外还有在 [ImageNet ](https://docs.ultralytics.com/datasets/classify/imagenet/ ) 数据集上预训练的 YOLO11 [分类 ](https://docs.ultralytics.com/tasks/classify/ ) 模型。所有检测、分割和姿态模型均支持 [跟踪 ](https://docs.ultralytics.com/modes/track/ ) 模式。
< img width = "100%" src = "https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt = "Ultralytics YOLO supported tasks" >
所有[模型](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models)在首次使用时自动从最新的 Ultralytics [发布 ](https://github.com/ultralytics/assets/releases )下载。
< details open > < summary > 检测 (COCO)< / summary >
请参阅 [检测文档 ](https://docs.ultralytics.com/tasks/detect/ ) 以获取使用这些在 [COCO ](https://docs.ultralytics.com/datasets/detect/coco/ ) 数据集上训练的模型的示例,其中包含 80 个预训练类别。
| 模型 | 尺寸< br > < sup > (像素) | mAP< sup > val< br > 50-95 | 速度< br > < sup > CPU ONNX< br > (ms) | 速度< br > < sup > T4 TensorRT10< br > (ms) | 参数< br > < sup > (M) | FLOPs< br > < sup > (B) |
| ------------------------------------------------------------------------------------ | ------------------- | -------------------- | ----------------------------- | ---------------------------------- | ---------------- | ----------------- |
| [YOLO11n ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt ) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
| [YOLO11s ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt ) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
| [YOLO11m ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt ) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
| [YOLO11l ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt ) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
| [YOLO11x ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt ) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
- **mAP< sup > val</ sup > ** 值针对单模型单尺度在 [COCO val2017 ](https://cocodataset.org/ ) 数据集上进行。 < br > 复制命令 `yolo val detect data=coco.yaml device=0`
- **速度**在使用 [Amazon EC2 P4d ](https://aws.amazon.com/ec2/instance-types/p4/ ) 实例的 COCO 验证图像上平均。 < br > 复制命令 `yolo val detect data=coco.yaml batch=1 device=0|cpu`
< / details >
< details > < summary > 分割 (COCO)< / summary >
请参阅 [分割文档 ](https://docs.ultralytics.com/tasks/segment/ ) 以获取使用这些在 [COCO-Seg ](https://docs.ultralytics.com/datasets/segment/coco/ ) 数据集上训练的模型的示例,其中包含 80 个预训练类别。
| 模型 | 尺寸< br > < sup > (像素) | mAP< sup > box< br > 50-95 | mAP< sup > mask< br > 50-95 | 速度< br > < sup > CPU ONNX< br > (ms) | 速度< br > < sup > T4 TensorRT10< br > (ms) | 参数< br > < sup > (M) | FLOPs< br > < sup > (B) |
| -------------------------------------------------------------------------------------------- | ------------------- | -------------------- | --------------------- | ----------------------------- | ---------------------------------- | ---------------- | ----------------- |
| [YOLO11n-seg ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt ) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 10.4 |
| [YOLO11s-seg ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt ) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 35.5 |
| [YOLO11m-seg ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt ) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 123.3 |
| [YOLO11l-seg ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt ) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 |
| [YOLO11x-seg ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt ) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 |
- **mAP< sup > val</ sup > ** 值针对单模型单尺度在 [COCO val2017 ](https://cocodataset.org/ ) 数据集上进行。 < br > 复制命令 `yolo val segment data=coco-seg.yaml device=0`
- **速度**在使用 [Amazon EC2 P4d ](https://aws.amazon.com/ec2/instance-types/p4/ ) 实例的 COCO 验证图像上平均。 < br > 复制命令 `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
< / details >
< details > < summary > 分类 (ImageNet)< / summary >
请参阅 [分类文档 ](https://docs.ultralytics.com/tasks/classify/ ) 以获取使用这些在 [ImageNet ](https://docs.ultralytics.com/datasets/classify/imagenet/ ) 数据集上训练的模型的示例,其中包含 1000 个预训练类别。
| 模型 | 尺寸< br > < sup > (像素) | acc< br > < sup > top1 | acc< br > < sup > top5 | 速度< br > < sup > CPU ONNX< br > (ms) | 速度< br > < sup > T4 TensorRT10< br > (ms) | 参数< br > < sup > (M) | FLOPs< br > < sup > (B) at 640 |
| -------------------------------------------------------------------------------------------- | ------------------- | ---------------- | ---------------- | ----------------------------- | ---------------------------------- | ---------------- | ------------------------ |
| [YOLO11n-cls ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt ) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 1.6 | 3.3 |
| [YOLO11s-cls ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt ) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 5.5 | 12.1 |
| [YOLO11m-cls ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt ) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 10.4 | 39.3 |
| [YOLO11l-cls ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt ) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 12.9 | 49.4 |
| [YOLO11x-cls ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt ) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 28.4 | 110.4 |
- **acc** 值为在 [ImageNet ](https://www.image-net.org/ ) 数据集验证集上的模型准确率。 < br > 复制命令 `yolo val classify data=path/to/ImageNet device=0`
- **速度**在使用 [Amazon EC2 P4d ](https://aws.amazon.com/ec2/instance-types/p4/ ) 实例的 ImageNet 验证图像上平均。 < br > 复制命令 `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
< / details >
< details > < summary > 姿态 (COCO)< / summary >
请参阅 [姿态文档 ](https://docs.ultralytics.com/tasks/pose/ ) 以获取使用这些在 [COCO-Pose ](https://docs.ultralytics.com/datasets/pose/coco/ ) 数据集上训练的模型的示例,其中包含 1 个预训练类别(人)。
| 模型 | 尺寸< br > < sup > (像素) | mAP< sup > pose< br > 50-95 | mAP< sup > pose< br > 50 | 速度< br > < sup > CPU ONNX< br > (ms) | 速度< br > < sup > T4 TensorRT10< br > (ms) | 参数< br > < sup > (M) | FLOPs< br > < sup > (B) |
| -------------------------------------------------------------------------------------------- | ------------------- | --------------------- | ------------------ | ----------------------------- | ---------------------------------- | ---------------- | ----------------- |
| [YOLO11n-obb ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt ) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 17.2 |
| [YOLO11s-obb ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt ) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.5 |
| [YOLO11m-obb ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt ) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 183.5 |
| [YOLO11l-obb ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt ) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.2 | 232.0 |
| [YOLO11x-obb ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt ) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 520.2 |
- **mAP< sup > val</ sup > ** 值针对单模型单尺度在 [COCO Keypoints val2017 ](https://cocodataset.org/ ) 数据集上进行。 < br > 复制命令 `yolo val pose data=coco-pose.yaml device=0`
- **速度**在使用 [Amazon EC2 P4d ](https://aws.amazon.com/ec2/instance-types/p4/ ) 实例的 COCO 验证图像上平均。 < br > 复制命令 `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
< / details >
< details > < summary > OBB (DOTAv1)< / summary >
请参阅 [OBB 文档 ](https://docs.ultralytics.com/tasks/obb/ ) 以获取使用这些在 [DOTAv1 ](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/ ) 数据集上训练的模型的示例,其中包含 15 个预训练类别。
| 模型 | 尺寸< br > < sup > (像素) | mAP< sup > test< br > 50 | 速度< br > < sup > CPU ONNX< br > (ms) | 速度< br > < sup > T4 TensorRT10< br > (ms) | 参数< br > < sup > (M) | FLOPs< br > < sup > (B) |
| -------------------------------------------------------------------------------------------- | ------------------- | ------------------ | ----------------------------- | ---------------------------------- | ---------------- | ----------------- |
| [YOLO11n-obb ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt ) | 1024 | 78.4 | 117.56 ± 0.80 | 4.43 ± 0.01 | 2.7 | 17.2 |
| [YOLO11s-obb ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt ) | 1024 | 79.5 | 219.41 ± 4.00 | 5.13 ± 0.02 | 9.7 | 57.5 |
| [YOLO11m-obb ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt ) | 1024 | 80.9 | 562.81 ± 2.87 | 10.07 ± 0.38 | 20.9 | 183.5 |
| [YOLO11l-obb ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt ) | 1024 | 81.0 | 712.49 ± 4.98 | 13.46 ± 0.55 | 26.2 | 232.0 |
| [YOLO11x-obb ](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt ) | 1024 | 81.3 | 1408.63 ± 7.67 | 28.59 ± 0.96 | 58.8 | 520.2 |
- **mAP< sup > test</ sup > ** 值针对单模型多尺度在 [DOTAv1 ](https://captain-whu.github.io/DOTA/index.html ) 数据集上进行。 < br > 复制命令 `yolo val obb data=DOTAv1.yaml device=0 split=test` 并提交合并结果到 [DOTA 评估 ](https://captain-whu.github.io/DOTA/evaluation.html )。
- **速度**在使用 [Amazon EC2 P4d ](https://aws.amazon.com/ec2/instance-types/p4/ ) 实例的 DOTAv1 验证图像上平均。 < br > 复制命令 `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
< / details >
## <div align="center">集成</div>
我们与领先的 AI 平台的关键集成扩展了 Ultralytics 产品的功能,提升了数据集标注、训练、可视化和模型管理等任务。探索 Ultralytics 如何通过与 [W&B ](https://docs.wandb.ai/guides/integrations/ultralytics/ )、[Comet](https://bit.ly/yolov8-readme-comet)、[Roboflow](https://roboflow.com/?ref=ultralytics) 和 [OpenVINO ](https://docs.ultralytics.com/integrations/openvino/ ) 的合作,优化您的 AI 工作流程。
< br >
< a href = "https://www.ultralytics.com/hub" target = "_blank" >
< img width = "100%" src = "https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt = "Ultralytics active learning integrations" > < / a >
< br >
< br >
< div align = "center" >
< a href = "https://www.ultralytics.com/hub" >
< img src = "https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width = "10%" alt = "Ultralytics HUB logo" > < / a >
< img src = "https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width = "15%" height = "0" alt = "space" >
< a href = "https://docs.wandb.ai/guides/integrations/ultralytics/" >
< img src = "https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width = "10%" alt = "W&B logo" > < / a >
< img src = "https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width = "15%" height = "0" alt = "space" >
< a href = "https://bit.ly/yolov8-readme-comet" >
< img src = "https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width = "10%" alt = "Comet ML logo" > < / a >
< img src = "https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width = "15%" height = "0" alt = "space" >
< a href = "https://bit.ly/yolov5-neuralmagic" >
< img src = "https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width = "10%" alt = "NeuralMagic logo" > < / a >
< / div >
| Ultralytics HUB 🚀 | W& B | Comet ⭐ 全新 | Neural Magic |
| :----------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------: |
| 简化 YOLO 工作流程:通过 [Ultralytics HUB ](https://www.ultralytics.com/hub ) 轻松标注、训练和部署。立即试用! | 使用 [Weights & Biases ](https://docs.wandb.ai/guides/integrations/ultralytics/ ) 跟踪实验、超参数和结果 | 永久免费,[Comet](https://bit.ly/yolov5-readme-comet) 允许您保存 YOLO11 模型、恢复训练,并交互式地可视化和调试预测结果 | 使用 [Neural Magic DeepSparse ](https://bit.ly/yolov5-neuralmagic ) 运行 YOLO11 推理,速度提升至 6 倍 |
## <div align="center">Ultralytics HUB</div>
体验无缝 AI 使用 [Ultralytics HUB ](https://www.ultralytics.com/hub ) ⭐,一个集数据可视化、YOLO11 🚀 模型训练和部署于一体的解决方案,无需编写代码。利用我们最先进的平台和用户友好的 [Ultralytics 应用 ](https://www.ultralytics.com/app-install ),将图像转换为可操作见解,并轻松实现您的 AI 愿景。免费开始您的旅程!
< a href = "https://www.ultralytics.com/hub" target = "_blank" >
< img width = "100%" src = "https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt = "Ultralytics HUB preview image" > < / a >
## <div align="center">贡献</div>
我们欢迎您的意见!没有社区的帮助,Ultralytics YOLO 就不可能实现。请参阅我们的 [贡献指南 ](https://docs.ultralytics.com/help/contributing/ ) 开始,并填写我们的 [调查问卷 ](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey ) 向我们提供您体验的反馈。感谢所有贡献者 🙏!
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
< a href = "https://github.com/ultralytics/ultralytics/graphs/contributors" >
< img width = "100%" src = "https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" alt = "Ultralytics open-source contributors" > < / a >
## <div align="center">许可</div>
Ultralytics 提供两种许可选项以适应各种用例:
- **AGPL-3.0 许可**:这是一个 [OSI 批准 ](https://opensource.org/license ) 的开源许可,适合学生和爱好者,促进开放协作和知识共享。有关详细信息,请参阅 [LICENSE ](https://github.com/ultralytics/ultralytics/blob/main/LICENSE ) 文件。
- **企业许可**:专为商业使用设计,此许可允许将 Ultralytics 软件和 AI 模型无缝集成到商业产品和服务中,无需满足 AGPL-3.0 的开源要求。如果您的场景涉及将我们的解决方案嵌入到商业产品,请通过 [Ultralytics Licensing ](https://www.ultralytics.com/license ) 联系我们。
## <div align="center">联系</div>
如需 Ultralytics 的错误报告和功能请求,请访问 [GitHub Issues ](https://github.com/ultralytics/ultralytics/issues )。成为 Ultralytics [Discord ](https://discord.com/invite/ultralytics )、[Reddit](https://www.reddit.com/r/ultralytics/) 或 [论坛 ](https://community.ultralytics.com/ ) 的成员,提出问题、分享项目、探讨学习讨论,或寻求所有 Ultralytics 相关的帮助!
< br >
< div align = "center" >
< a href = "https://github.com/ultralytics" > < img src = "https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width = "3%" alt = "Ultralytics GitHub" > < / a >
< img src = "https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width = "3%" alt = "space" >
< a href = "https://www.linkedin.com/company/ultralytics/" > < img src = "https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width = "3%" alt = "Ultralytics LinkedIn" > < / a >
< img src = "https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width = "3%" alt = "space" >
< a href = "https://twitter.com/ultralytics" > < img src = "https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width = "3%" alt = "Ultralytics Twitter" > < / a >
< img src = "https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width = "3%" alt = "space" >
< a href = "https://youtube.com/ultralytics?sub_confirmation=1" > < img src = "https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width = "3%" alt = "Ultralytics YouTube" > < / a >
< img src = "https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width = "3%" alt = "space" >
< a href = "https://www.tiktok.com/@ultralytics" > < img src = "https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width = "3%" alt = "Ultralytics TikTok" > < / a >
< img src = "https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width = "3%" alt = "space" >
< a href = "https://ultralytics.com/bilibili" > < img src = "https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width = "3%" alt = "Ultralytics BiliBili" > < / a >
< img src = "https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width = "3%" alt = "space" >
< a href = "https://discord.com/invite/ultralytics" > < img src = "https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width = "3%" alt = "Ultralytics Discord" > < / a >
< / div >