|
|
|
import argparse
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import onnxruntime as ort
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from ultralytics.utils import ASSETS, yaml_load
|
|
|
|
from ultralytics.utils.checks import check_requirements, check_yaml
|
|
|
|
|
|
|
|
|
|
|
|
class YOLOv8:
|
|
|
|
"""YOLOv8 object detection model class for handling inference and visualization."""
|
|
|
|
|
|
|
|
def __init__(self, onnx_model, input_image, confidence_thres, iou_thres):
|
|
|
|
"""
|
|
|
|
Initializes an instance of the YOLOv8 class.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
onnx_model: Path to the ONNX model.
|
|
|
|
input_image: Path to the input image.
|
|
|
|
confidence_thres: Confidence threshold for filtering detections.
|
|
|
|
iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression.
|
|
|
|
"""
|
|
|
|
self.onnx_model = onnx_model
|
|
|
|
self.input_image = input_image
|
|
|
|
self.confidence_thres = confidence_thres
|
|
|
|
self.iou_thres = iou_thres
|
|
|
|
|
|
|
|
# Load the class names from the COCO dataset
|
|
|
|
self.classes = yaml_load(check_yaml('coco128.yaml'))['names']
|
|
|
|
|
|
|
|
# Generate a color palette for the classes
|
|
|
|
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
|
|
|
|
|
|
|
|
def draw_detections(self, img, box, score, class_id):
|
|
|
|
"""
|
|
|
|
Draws bounding boxes and labels on the input image based on the detected objects.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
img: The input image to draw detections on.
|
|
|
|
box: Detected bounding box.
|
|
|
|
score: Corresponding detection score.
|
|
|
|
class_id: Class ID for the detected object.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
None
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Extract the coordinates of the bounding box
|
|
|
|
x1, y1, w, h = box
|
|
|
|
|
|
|
|
# Retrieve the color for the class ID
|
|
|
|
color = self.color_palette[class_id]
|
|
|
|
|
|
|
|
# Draw the bounding box on the image
|
|
|
|
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
|
|
|
|
|
|
|
|
# Create the label text with class name and score
|
|
|
|
label = f'{self.classes[class_id]}: {score:.2f}'
|
|
|
|
|
|
|
|
# Calculate the dimensions of the label text
|
|
|
|
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
|
|
|
|
|
|
|
# Calculate the position of the label text
|
|
|
|
label_x = x1
|
|
|
|
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
|
|
|
|
|
|
|
|
# Draw a filled rectangle as the background for the label text
|
|
|
|
cv2.rectangle(img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color,
|
|
|
|
cv2.FILLED)
|
|
|
|
|
|
|
|
# Draw the label text on the image
|
|
|
|
cv2.putText(img, label, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
|
|
|
|
|
|
|
|
def preprocess(self):
|
|
|
|
"""
|
|
|
|
Preprocesses the input image before performing inference.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
image_data: Preprocessed image data ready for inference.
|
|
|
|
"""
|
|
|
|
# Read the input image using OpenCV
|
|
|
|
self.img = cv2.imread(self.input_image)
|
|
|
|
|
|
|
|
# Get the height and width of the input image
|
|
|
|
self.img_height, self.img_width = self.img.shape[:2]
|
|
|
|
|
|
|
|
# Convert the image color space from BGR to RGB
|
|
|
|
img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
# Resize the image to match the input shape
|
|
|
|
img = cv2.resize(img, (self.input_width, self.input_height))
|
|
|
|
|
|
|
|
# Normalize the image data by dividing it by 255.0
|
|
|
|
image_data = np.array(img) / 255.0
|
|
|
|
|
|
|
|
# Transpose the image to have the channel dimension as the first dimension
|
|
|
|
image_data = np.transpose(image_data, (2, 0, 1)) # Channel first
|
|
|
|
|
|
|
|
# Expand the dimensions of the image data to match the expected input shape
|
|
|
|
image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
|
|
|
|
|
|
|
|
# Return the preprocessed image data
|
|
|
|
return image_data
|
|
|
|
|
|
|
|
def postprocess(self, input_image, output):
|
|
|
|
"""
|
|
|
|
Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
input_image (numpy.ndarray): The input image.
|
|
|
|
output (numpy.ndarray): The output of the model.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
numpy.ndarray: The input image with detections drawn on it.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Transpose and squeeze the output to match the expected shape
|
|
|
|
outputs = np.transpose(np.squeeze(output[0]))
|
|
|
|
|
|
|
|
# Get the number of rows in the outputs array
|
|
|
|
rows = outputs.shape[0]
|
|
|
|
|
|
|
|
# Lists to store the bounding boxes, scores, and class IDs of the detections
|
|
|
|
boxes = []
|
|
|
|
scores = []
|
|
|
|
class_ids = []
|
|
|
|
|
|
|
|
# Calculate the scaling factors for the bounding box coordinates
|
|
|
|
x_factor = self.img_width / self.input_width
|
|
|
|
y_factor = self.img_height / self.input_height
|
|
|
|
|
|
|
|
# Iterate over each row in the outputs array
|
|
|
|
for i in range(rows):
|
|
|
|
# Extract the class scores from the current row
|
|
|
|
classes_scores = outputs[i][4:]
|
|
|
|
|
|
|
|
# Find the maximum score among the class scores
|
|
|
|
max_score = np.amax(classes_scores)
|
|
|
|
|
|
|
|
# If the maximum score is above the confidence threshold
|
|
|
|
if max_score >= self.confidence_thres:
|
|
|
|
# Get the class ID with the highest score
|
|
|
|
class_id = np.argmax(classes_scores)
|
|
|
|
|
|
|
|
# Extract the bounding box coordinates from the current row
|
|
|
|
x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]
|
|
|
|
|
|
|
|
# Calculate the scaled coordinates of the bounding box
|
|
|
|
left = int((x - w / 2) * x_factor)
|
|
|
|
top = int((y - h / 2) * y_factor)
|
|
|
|
width = int(w * x_factor)
|
|
|
|
height = int(h * y_factor)
|
|
|
|
|
|
|
|
# Add the class ID, score, and box coordinates to the respective lists
|
|
|
|
class_ids.append(class_id)
|
|
|
|
scores.append(max_score)
|
|
|
|
boxes.append([left, top, width, height])
|
|
|
|
|
|
|
|
# Apply non-maximum suppression to filter out overlapping bounding boxes
|
|
|
|
indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres)
|
|
|
|
|
|
|
|
# Iterate over the selected indices after non-maximum suppression
|
|
|
|
for i in indices:
|
|
|
|
# Get the box, score, and class ID corresponding to the index
|
|
|
|
box = boxes[i]
|
|
|
|
score = scores[i]
|
|
|
|
class_id = class_ids[i]
|
|
|
|
|
|
|
|
# Draw the detection on the input image
|
|
|
|
self.draw_detections(input_image, box, score, class_id)
|
|
|
|
|
|
|
|
# Return the modified input image
|
|
|
|
return input_image
|
|
|
|
|
|
|
|
def main(self):
|
|
|
|
"""
|
|
|
|
Performs inference using an ONNX model and returns the output image with drawn detections.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
output_img: The output image with drawn detections.
|
|
|
|
"""
|
|
|
|
# Create an inference session using the ONNX model and specify execution providers
|
|
|
|
session = ort.InferenceSession(self.onnx_model, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
|
|
|
|
|
|
|
# Get the model inputs
|
|
|
|
model_inputs = session.get_inputs()
|
|
|
|
|
|
|
|
# Store the shape of the input for later use
|
|
|
|
input_shape = model_inputs[0].shape
|
|
|
|
self.input_width = input_shape[2]
|
|
|
|
self.input_height = input_shape[3]
|
|
|
|
|
|
|
|
# Preprocess the image data
|
|
|
|
img_data = self.preprocess()
|
|
|
|
|
|
|
|
# Run inference using the preprocessed image data
|
|
|
|
outputs = session.run(None, {model_inputs[0].name: img_data})
|
|
|
|
|
|
|
|
# Perform post-processing on the outputs to obtain output image.
|
|
|
|
return self.postprocess(self.img, outputs) # output image
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
# Create an argument parser to handle command-line arguments
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('--model', type=str, default='yolov8n.onnx', help='Input your ONNX model.')
|
|
|
|
parser.add_argument('--img', type=str, default=str(ASSETS / 'bus.jpg'), help='Path to input image.')
|
|
|
|
parser.add_argument('--conf-thres', type=float, default=0.5, help='Confidence threshold')
|
|
|
|
parser.add_argument('--iou-thres', type=float, default=0.5, help='NMS IoU threshold')
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
# Check the requirements and select the appropriate backend (CPU or GPU)
|
|
|
|
check_requirements('onnxruntime-gpu' if torch.cuda.is_available() else 'onnxruntime')
|
|
|
|
|
|
|
|
# Create an instance of the YOLOv8 class with the specified arguments
|
|
|
|
detection = YOLOv8(args.model, args.img, args.conf_thres, args.iou_thres)
|
|
|
|
|
|
|
|
# Perform object detection and obtain the output image
|
|
|
|
output_image = detection.main()
|
|
|
|
|
|
|
|
# Display the output image in a window
|
|
|
|
cv2.namedWindow('Output', cv2.WINDOW_NORMAL)
|
|
|
|
cv2.imshow('Output', output_image)
|
|
|
|
|
|
|
|
# Wait for a key press to exit
|
|
|
|
cv2.waitKey(0)
|