You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

149 lines
5.9 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import os
import subprocess
import time
from pathlib import Path
import pytest
from tests import MODEL, SOURCE, TMP
from ultralytics import YOLO, download
from ultralytics.utils import DATASETS_DIR, SETTINGS
from ultralytics.utils.checks import check_requirements
@pytest.mark.skipif(not check_requirements("ray", install=False), reason="ray[tune] not installed")
def test_model_ray_tune():
"""Tune YOLO model using Ray for hyperparameter optimization."""
YOLO("yolov8n-cls.yaml").tune(
use_ray=True, data="imagenet10", grace_period=1, iterations=1, imgsz=32, epochs=1, plots=False, device="cpu"
)
@pytest.mark.skipif(not check_requirements("mlflow", install=False), reason="mlflow not installed")
def test_mlflow():
"""Test training with MLflow tracking enabled (see https://mlflow.org/ for details)."""
SETTINGS["mlflow"] = True
YOLO("yolov8n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=3, plots=False, device="cpu")
@pytest.mark.skipif(True, reason="Test failing in scheduled CI https://github.com/ultralytics/ultralytics/pull/8868")
@pytest.mark.skipif(not check_requirements("mlflow", install=False), reason="mlflow not installed")
def test_mlflow_keep_run_active():
"""Ensure MLflow run status matches MLFLOW_KEEP_RUN_ACTIVE environment variable settings."""
import mlflow
SETTINGS["mlflow"] = True
run_name = "Test Run"
os.environ["MLFLOW_RUN"] = run_name
# Test with MLFLOW_KEEP_RUN_ACTIVE=True
os.environ["MLFLOW_KEEP_RUN_ACTIVE"] = "True"
YOLO("yolov8n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu")
status = mlflow.active_run().info.status
assert status == "RUNNING", "MLflow run should be active when MLFLOW_KEEP_RUN_ACTIVE=True"
run_id = mlflow.active_run().info.run_id
# Test with MLFLOW_KEEP_RUN_ACTIVE=False
os.environ["MLFLOW_KEEP_RUN_ACTIVE"] = "False"
YOLO("yolov8n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu")
status = mlflow.get_run(run_id=run_id).info.status
assert status == "FINISHED", "MLflow run should be ended when MLFLOW_KEEP_RUN_ACTIVE=False"
# Test with MLFLOW_KEEP_RUN_ACTIVE not set
os.environ.pop("MLFLOW_KEEP_RUN_ACTIVE", None)
YOLO("yolov8n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu")
status = mlflow.get_run(run_id=run_id).info.status
assert status == "FINISHED", "MLflow run should be ended by default when MLFLOW_KEEP_RUN_ACTIVE is not set"
@pytest.mark.skipif(not check_requirements("tritonclient", install=False), reason="tritonclient[all] not installed")
def test_triton():
"""
Test NVIDIA Triton Server functionalities with YOLO model.
See https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver.
"""
check_requirements("tritonclient[all]")
from tritonclient.http import InferenceServerClient # noqa
# Create variables
model_name = "yolo"
triton_repo = TMP / "triton_repo" # Triton repo path
triton_model = triton_repo / model_name # Triton model path
# Export model to ONNX
f = YOLO(MODEL).export(format="onnx", dynamic=True)
# Prepare Triton repo
(triton_model / "1").mkdir(parents=True, exist_ok=True)
Path(f).rename(triton_model / "1" / "model.onnx")
(triton_model / "config.pbtxt").touch()
# Define image https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver
tag = "nvcr.io/nvidia/tritonserver:23.09-py3" # 6.4 GB
# Pull the image
subprocess.call(f"docker pull {tag}", shell=True)
# Run the Triton server and capture the container ID
container_id = (
subprocess.check_output(
f"docker run -d --rm -v {triton_repo}:/models -p 8000:8000 {tag} tritonserver --model-repository=/models",
shell=True,
)
.decode("utf-8")
.strip()
)
# Wait for the Triton server to start
triton_client = InferenceServerClient(url="localhost:8000", verbose=False, ssl=False)
# Wait until model is ready
for _ in range(10):
with contextlib.suppress(Exception):
assert triton_client.is_model_ready(model_name)
break
time.sleep(1)
# Check Triton inference
YOLO(f"http://localhost:8000/{model_name}", "detect")(SOURCE) # exported model inference
# Kill and remove the container at the end of the test
subprocess.call(f"docker kill {container_id}", shell=True)
@pytest.mark.skipif(not check_requirements("pycocotools", install=False), reason="pycocotools not installed")
def test_pycocotools():
"""Validate YOLO model predictions on COCO dataset using pycocotools."""
from ultralytics.models.yolo.detect import DetectionValidator
from ultralytics.models.yolo.pose import PoseValidator
from ultralytics.models.yolo.segment import SegmentationValidator
# Download annotations after each dataset downloads first
url = "https://github.com/ultralytics/assets/releases/download/v8.2.0/"
args = {"model": "yolov8n.pt", "data": "coco8.yaml", "save_json": True, "imgsz": 64}
validator = DetectionValidator(args=args)
validator()
validator.is_coco = True
download(f"{url}instances_val2017.json", dir=DATASETS_DIR / "coco8/annotations")
_ = validator.eval_json(validator.stats)
args = {"model": "yolov8n-seg.pt", "data": "coco8-seg.yaml", "save_json": True, "imgsz": 64}
validator = SegmentationValidator(args=args)
validator()
validator.is_coco = True
download(f"{url}instances_val2017.json", dir=DATASETS_DIR / "coco8-seg/annotations")
_ = validator.eval_json(validator.stats)
args = {"model": "yolov8n-pose.pt", "data": "coco8-pose.yaml", "save_json": True, "imgsz": 64}
validator = PoseValidator(args=args)
validator()
validator.is_coco = True
download(f"{url}person_keypoints_val2017.json", dir=DATASETS_DIR / "coco8-pose/annotations")
_ = validator.eval_json(validator.stats)