|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
|
|
|
import shutil
|
|
|
|
import uuid
|
|
|
|
from itertools import product
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
from tests import MODEL, SOURCE
|
|
|
|
from ultralytics import YOLO
|
|
|
|
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
|
|
|
|
from ultralytics.utils import (
|
|
|
|
IS_RASPBERRYPI,
|
|
|
|
LINUX,
|
|
|
|
MACOS,
|
|
|
|
WINDOWS,
|
|
|
|
checks,
|
|
|
|
)
|
|
|
|
from ultralytics.utils.torch_utils import TORCH_1_9, TORCH_1_13
|
|
|
|
|
|
|
|
|
|
|
|
def test_export_torchscript():
|
|
|
|
"""Test YOLO model exporting to TorchScript format for compatibility and correctness."""
|
|
|
|
file = YOLO(MODEL).export(format="torchscript", optimize=False, imgsz=32)
|
|
|
|
YOLO(file)(SOURCE, imgsz=32) # exported model inference
|
|
|
|
|
|
|
|
|
|
|
|
def test_export_onnx():
|
|
|
|
"""Test YOLO model export to ONNX format with dynamic axes."""
|
|
|
|
file = YOLO(MODEL).export(format="onnx", dynamic=True, imgsz=32)
|
|
|
|
YOLO(file)(SOURCE, imgsz=32) # exported model inference
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not TORCH_1_13, reason="OpenVINO requires torch>=1.13")
|
|
|
|
def test_export_openvino():
|
|
|
|
"""Test YOLO exports to OpenVINO format for model inference compatibility."""
|
|
|
|
file = YOLO(MODEL).export(format="openvino", imgsz=32)
|
|
|
|
YOLO(file)(SOURCE, imgsz=32) # exported model inference
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow
|
|
|
|
@pytest.mark.skipif(not TORCH_1_13, reason="OpenVINO requires torch>=1.13")
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"task, dynamic, int8, half, batch",
|
|
|
|
[ # generate all combinations but exclude those where both int8 and half are True
|
|
|
|
(task, dynamic, int8, half, batch)
|
|
|
|
for task, dynamic, int8, half, batch in product(TASKS, [True, False], [True, False], [True, False], [1, 2])
|
|
|
|
if not (int8 and half) # exclude cases where both int8 and half are True
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_export_openvino_matrix(task, dynamic, int8, half, batch):
|
|
|
|
"""Test YOLO model exports to OpenVINO under various configuration matrix conditions."""
|
|
|
|
file = YOLO(TASK2MODEL[task]).export(
|
|
|
|
format="openvino",
|
|
|
|
imgsz=32,
|
|
|
|
dynamic=dynamic,
|
|
|
|
int8=int8,
|
|
|
|
half=half,
|
|
|
|
batch=batch,
|
|
|
|
data=TASK2DATA[task],
|
|
|
|
)
|
|
|
|
if WINDOWS:
|
|
|
|
# Use unique filenames due to Windows file permissions bug possibly due to latent threaded use
|
|
|
|
# See https://github.com/ultralytics/ultralytics/actions/runs/8957949304/job/24601616830?pr=10423
|
|
|
|
file = Path(file)
|
|
|
|
file = file.rename(file.with_stem(f"{file.stem}-{uuid.uuid4()}"))
|
|
|
|
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
|
|
|
|
shutil.rmtree(file, ignore_errors=True) # retry in case of potential lingering multi-threaded file usage errors
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"task, dynamic, int8, half, batch, simplify", product(TASKS, [True, False], [False], [False], [1, 2], [True, False])
|
|
|
|
)
|
|
|
|
def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify):
|
|
|
|
"""Test YOLO exports to ONNX format with various configurations and parameters."""
|
|
|
|
file = YOLO(TASK2MODEL[task]).export(
|
|
|
|
format="onnx",
|
|
|
|
imgsz=32,
|
|
|
|
dynamic=dynamic,
|
|
|
|
int8=int8,
|
|
|
|
half=half,
|
|
|
|
batch=batch,
|
|
|
|
simplify=simplify,
|
|
|
|
)
|
|
|
|
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
|
|
|
|
Path(file).unlink() # cleanup
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow
|
|
|
|
@pytest.mark.parametrize("task, dynamic, int8, half, batch", product(TASKS, [False], [False], [False], [1, 2]))
|
|
|
|
def test_export_torchscript_matrix(task, dynamic, int8, half, batch):
|
|
|
|
"""Tests YOLO model exports to TorchScript format under varied configurations."""
|
|
|
|
file = YOLO(TASK2MODEL[task]).export(
|
|
|
|
format="torchscript",
|
|
|
|
imgsz=32,
|
|
|
|
dynamic=dynamic,
|
|
|
|
int8=int8,
|
|
|
|
half=half,
|
|
|
|
batch=batch,
|
|
|
|
)
|
|
|
|
YOLO(file)([SOURCE] * 3, imgsz=64 if dynamic else 32) # exported model inference at batch=3
|
|
|
|
Path(file).unlink() # cleanup
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow
|
|
|
|
@pytest.mark.skipif(not MACOS, reason="CoreML inference only supported on macOS")
|
|
|
|
@pytest.mark.skipif(not TORCH_1_9, reason="CoreML>=7.2 not supported with PyTorch<=1.8")
|
|
|
|
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="CoreML not supported in Python 3.12")
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"task, dynamic, int8, half, batch",
|
|
|
|
[ # generate all combinations but exclude those where both int8 and half are True
|
|
|
|
(task, dynamic, int8, half, batch)
|
|
|
|
for task, dynamic, int8, half, batch in product(TASKS, [False], [True, False], [True, False], [1])
|
|
|
|
if not (int8 and half) # exclude cases where both int8 and half are True
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_export_coreml_matrix(task, dynamic, int8, half, batch):
|
|
|
|
"""Test YOLO exports to CoreML format with various parameter configurations."""
|
|
|
|
file = YOLO(TASK2MODEL[task]).export(
|
|
|
|
format="coreml",
|
|
|
|
imgsz=32,
|
|
|
|
dynamic=dynamic,
|
|
|
|
int8=int8,
|
|
|
|
half=half,
|
|
|
|
batch=batch,
|
|
|
|
)
|
|
|
|
YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference at batch=3
|
|
|
|
shutil.rmtree(file) # cleanup
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow
|
|
|
|
@pytest.mark.skipif(not checks.IS_PYTHON_MINIMUM_3_10, reason="TFLite export requires Python>=3.10")
|
|
|
|
@pytest.mark.skipif(not LINUX, reason="Test disabled as TF suffers from install conflicts on Windows and macOS")
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"task, dynamic, int8, half, batch",
|
|
|
|
[ # generate all combinations but exclude those where both int8 and half are True
|
|
|
|
(task, dynamic, int8, half, batch)
|
|
|
|
for task, dynamic, int8, half, batch in product(TASKS, [False], [True, False], [True, False], [1])
|
|
|
|
if not (int8 and half) # exclude cases where both int8 and half are True
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_export_tflite_matrix(task, dynamic, int8, half, batch):
|
|
|
|
"""Test YOLO exports to TFLite format considering various export configurations."""
|
|
|
|
file = YOLO(TASK2MODEL[task]).export(
|
|
|
|
format="tflite",
|
|
|
|
imgsz=32,
|
|
|
|
dynamic=dynamic,
|
|
|
|
int8=int8,
|
|
|
|
half=half,
|
|
|
|
batch=batch,
|
|
|
|
)
|
|
|
|
YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference at batch=3
|
|
|
|
Path(file).unlink() # cleanup
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not TORCH_1_9, reason="CoreML>=7.2 not supported with PyTorch<=1.8")
|
|
|
|
@pytest.mark.skipif(WINDOWS, reason="CoreML not supported on Windows") # RuntimeError: BlobWriter not loaded
|
|
|
|
@pytest.mark.skipif(IS_RASPBERRYPI, reason="CoreML not supported on Raspberry Pi")
|
|
|
|
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="CoreML not supported in Python 3.12")
|
|
|
|
def test_export_coreml():
|
|
|
|
"""Test YOLO exports to CoreML format, optimized for macOS only."""
|
|
|
|
if MACOS:
|
|
|
|
file = YOLO(MODEL).export(format="coreml", imgsz=32)
|
|
|
|
YOLO(file)(SOURCE, imgsz=32) # model prediction only supported on macOS for nms=False models
|
|
|
|
else:
|
|
|
|
YOLO(MODEL).export(format="coreml", nms=True, imgsz=32)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not checks.IS_PYTHON_MINIMUM_3_10, reason="TFLite export requires Python>=3.10")
|
|
|
|
@pytest.mark.skipif(not LINUX, reason="Test disabled as TF suffers from install conflicts on Windows and macOS")
|
|
|
|
def test_export_tflite():
|
|
|
|
"""Test YOLO exports to TFLite format under specific OS and Python version conditions."""
|
|
|
|
model = YOLO(MODEL)
|
|
|
|
file = model.export(format="tflite", imgsz=32)
|
|
|
|
YOLO(file)(SOURCE, imgsz=32)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(True, reason="Test disabled")
|
|
|
|
@pytest.mark.skipif(not LINUX, reason="TF suffers from install conflicts on Windows and macOS")
|
|
|
|
def test_export_pb():
|
|
|
|
"""Test YOLO exports to TensorFlow's Protobuf (*.pb) format."""
|
|
|
|
model = YOLO(MODEL)
|
|
|
|
file = model.export(format="pb", imgsz=32)
|
|
|
|
YOLO(file)(SOURCE, imgsz=32)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(True, reason="Test disabled as Paddle protobuf and ONNX protobuf requirements conflict.")
|
|
|
|
def test_export_paddle():
|
|
|
|
"""Test YOLO exports to Paddle format, noting protobuf conflicts with ONNX."""
|
|
|
|
YOLO(MODEL).export(format="paddle", imgsz=32)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow
|
|
|
|
@pytest.mark.skipif(IS_RASPBERRYPI, reason="MNN not supported on Raspberry Pi")
|
|
|
|
def test_export_mnn():
|
|
|
|
"""Test YOLO exports to MNN format (WARNING: MNN test must precede NCNN test or CI error on Windows)."""
|
|
|
|
file = YOLO(MODEL).export(format="mnn", imgsz=32)
|
|
|
|
YOLO(file)(SOURCE, imgsz=32) # exported model inference
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow
|
|
|
|
def test_export_ncnn():
|
|
|
|
"""Test YOLO exports to NCNN format."""
|
|
|
|
file = YOLO(MODEL).export(format="ncnn", imgsz=32)
|
|
|
|
YOLO(file)(SOURCE, imgsz=32) # exported model inference
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(True, reason="Test disabled")
|
|
|
|
def test_export_imx500():
|
|
|
|
"""Test YOLOv8n exports to MCT format."""
|
|
|
|
model = YOLO("yolov8n.pt")
|
|
|
|
file = model.export(format="imx500", imgsz=32)
|
|
|
|
YOLO(file)(SOURCE, imgsz=32)
|