description: Aprenda a usar modelos de segmentação de instâncias com o Ultralytics YOLO. Instruções sobre treinamento, validação, previsão de imagem e exportação de modelo.
keywords: yolov8, segmentação de instâncias, Ultralytics, conjunto de dados COCO, segmentação de imagem, detecção de objeto, treinamento de modelo, validação de modelo, previsão de imagem, exportação de modelo
---
# Segmentação de Instâncias
<imgwidth="1024"src="https://user-images.githubusercontent.com/26833433/243418644-7df320b8-098d-47f1-85c5-26604d761286.png"alt="Exemplos de segmentação de instâncias">
A segmentação de instâncias vai além da detecção de objetos e envolve a identificação de objetos individuais em uma imagem e a sua segmentação do resto da imagem.
A saída de um modelo de segmentação de instâncias é um conjunto de máscaras ou contornos que delineiam cada objeto na imagem, juntamente com rótulos de classe e pontuações de confiança para cada objeto. A segmentação de instâncias é útil quando você precisa saber não apenas onde os objetos estão em uma imagem, mas também qual é a forma exata deles.
Modelos YOLOv8 Segment usam o sufixo `-seg`, ou seja, `yolov8n-seg.pt` e são pré-treinados no [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml).
Os modelos Segment pré-treinados do YOLOv8 estão mostrados aqui. Os modelos Detect, Segment e Pose são pré-treinados no conjunto de dados [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml), enquanto os modelos Classify são pré-treinados no conjunto de dados [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml).
[Modelos](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) são baixados automaticamente do último lançamento da Ultralytics [release](https://github.com/ultralytics/assets/releases) na primeira utilização.
Treine o modelo YOLOv8n-seg no conjunto de dados COCO128-seg por 100 épocas com tamanho de imagem 640. Para uma lista completa de argumentos disponíveis, consulte a página [Configuração](/../usage/cfg.md).
O formato do conjunto de dados de segmentação YOLO pode ser encontrado em detalhes no [Guia de Conjuntos de Dados](../../../datasets/segment/index.md). Para converter seu conjunto de dados existente de outros formatos (como COCO etc.) para o formato YOLO, utilize a ferramenta [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) da Ultralytics.
Valide a acurácia do modelo YOLOv8n-seg treinado no conjunto de dados COCO128-seg. Não é necessário passar nenhum argumento, pois o `modelo` retém seus `dados` de treino e argumentos como atributos do modelo.
Os formatos de exportação disponíveis para YOLOv8-seg estão na tabela abaixo. Você pode prever ou validar diretamente em modelos exportados, ou seja, `yolo predict model=yolov8n-seg.onnx`. Exemplos de uso são mostrados para o seu modelo após a conclusão da exportação.