|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
from ultralytics import YOLO, solutions
|
|
|
|
from ultralytics.utils.downloads import safe_download
|
|
|
|
|
|
|
|
MAJOR_SOLUTIONS_DEMO = "https://github.com/ultralytics/assets/releases/download/v0.0.0/solutions_ci_demo.mp4"
|
|
|
|
WORKOUTS_SOLUTION_DEMO = "https://github.com/ultralytics/assets/releases/download/v0.0.0/solution_ci_pose_demo.mp4"
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow
|
|
|
|
def test_major_solutions():
|
|
|
|
"""Test the object counting, heatmap, speed estimation and queue management solution."""
|
|
|
|
safe_download(url=MAJOR_SOLUTIONS_DEMO)
|
|
|
|
cap = cv2.VideoCapture("solutions_ci_demo.mp4")
|
|
|
|
assert cap.isOpened(), "Error reading video file"
|
|
|
|
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
|
|
|
|
counter = solutions.ObjectCounter(region=region_points, model="yolo11n.pt", show=False) # Test object counter
|
|
|
|
heatmap = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA, model="yolo11n.pt", show=False) # Test heatmaps
|
|
|
|
speed = solutions.SpeedEstimator(region=region_points, model="yolo11n.pt", show=False) # Test queue manager
|
|
|
|
queue = solutions.QueueManager(region=region_points, model="yolo11n.pt", show=False) # Test speed estimation
|
|
|
|
line_analytics = solutions.Analytics(analytics_type="line", model="yolo11n.pt", show=False) # line analytics
|
|
|
|
pie_analytics = solutions.Analytics(analytics_type="pie", model="yolo11n.pt", show=False) # line analytics
|
|
|
|
bar_analytics = solutions.Analytics(analytics_type="bar", model="yolo11n.pt", show=False) # line analytics
|
|
|
|
area_analytics = solutions.Analytics(analytics_type="area", model="yolo11n.pt", show=False) # line analytics
|
|
|
|
frame_count = 0 # Required for analytics
|
|
|
|
while cap.isOpened():
|
|
|
|
success, im0 = cap.read()
|
|
|
|
if not success:
|
|
|
|
break
|
|
|
|
original_im0 = im0.copy()
|
|
|
|
_ = counter.count(original_im0.copy())
|
|
|
|
_ = heatmap.generate_heatmap(original_im0.copy())
|
|
|
|
_ = speed.estimate_speed(original_im0.copy())
|
|
|
|
_ = queue.process_queue(original_im0.copy())
|
|
|
|
_ = line_analytics.process_data(original_im0.copy(), frame_count)
|
|
|
|
_ = pie_analytics.process_data(original_im0.copy(), frame_count)
|
|
|
|
_ = bar_analytics.process_data(original_im0.copy(), frame_count)
|
|
|
|
_ = area_analytics.process_data(original_im0.copy(), frame_count)
|
|
|
|
cap.release()
|
|
|
|
|
|
|
|
# Test workouts monitoring
|
|
|
|
safe_download(url=WORKOUTS_SOLUTION_DEMO)
|
|
|
|
cap1 = cv2.VideoCapture("solution_ci_pose_demo.mp4")
|
|
|
|
assert cap1.isOpened(), "Error reading video file"
|
|
|
|
gym = solutions.AIGym(line_width=2, kpts=[5, 11, 13], show=False)
|
|
|
|
while cap1.isOpened():
|
|
|
|
success, im0 = cap1.read()
|
|
|
|
if not success:
|
|
|
|
break
|
|
|
|
_ = gym.monitor(im0)
|
|
|
|
cap1.release()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow
|
|
|
|
def test_instance_segmentation():
|
|
|
|
"""Test the instance segmentation solution."""
|
|
|
|
from ultralytics.utils.plotting import Annotator, colors
|
|
|
|
|
|
|
|
model = YOLO("yolo11n-seg.pt")
|
|
|
|
names = model.names
|
|
|
|
cap = cv2.VideoCapture("solutions_ci_demo.mp4")
|
|
|
|
assert cap.isOpened(), "Error reading video file"
|
|
|
|
while cap.isOpened():
|
|
|
|
success, im0 = cap.read()
|
|
|
|
if not success:
|
|
|
|
break
|
|
|
|
results = model.predict(im0)
|
|
|
|
annotator = Annotator(im0, line_width=2)
|
|
|
|
if results[0].masks is not None:
|
|
|
|
clss = results[0].boxes.cls.cpu().tolist()
|
|
|
|
masks = results[0].masks.xy
|
|
|
|
for mask, cls in zip(masks, clss):
|
|
|
|
color = colors(int(cls), True)
|
|
|
|
annotator.seg_bbox(mask=mask, mask_color=color, label=names[int(cls)])
|
|
|
|
cap.release()
|
|
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow
|
|
|
|
def test_streamlit_predict():
|
|
|
|
"""Test streamlit predict live inference solution."""
|
|
|
|
solutions.inference()
|