|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
|
|
|
from itertools import product
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from tests import CUDA_DEVICE_COUNT, CUDA_IS_AVAILABLE, MODEL, SOURCE
|
|
|
|
from ultralytics import YOLO
|
|
|
|
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
|
|
|
|
from ultralytics.utils import ASSETS, WEIGHTS_DIR
|
|
|
|
from ultralytics.utils.checks import check_amp
|
|
|
|
|
|
|
|
|
|
|
|
def test_checks():
|
|
|
|
"""Validate CUDA settings against torch CUDA functions."""
|
|
|
|
assert torch.cuda.is_available() == CUDA_IS_AVAILABLE
|
|
|
|
assert torch.cuda.device_count() == CUDA_DEVICE_COUNT
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
|
|
|
def test_amp():
|
|
|
|
"""Test AMP training checks."""
|
|
|
|
model = YOLO("yolo11n.pt").model.cuda()
|
|
|
|
assert check_amp(model)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow
|
|
|
|
@pytest.mark.skipif(True, reason="CUDA export tests disabled pending additional Ultralytics GPU server availability")
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"task, dynamic, int8, half, batch",
|
|
|
|
[ # generate all combinations but exclude those where both int8 and half are True
|
|
|
|
(task, dynamic, int8, half, batch)
|
|
|
|
# Note: tests reduced below pending compute availability expansion as GPU CI runner utilization is high
|
|
|
|
# for task, dynamic, int8, half, batch in product(TASKS, [True, False], [True, False], [True, False], [1, 2])
|
|
|
|
for task, dynamic, int8, half, batch in product(TASKS, [True], [True], [False], [2])
|
|
|
|
if not (int8 and half) # exclude cases where both int8 and half are True
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_export_engine_matrix(task, dynamic, int8, half, batch):
|
|
|
|
"""Test YOLO model export to TensorRT format for various configurations and run inference."""
|
|
|
|
file = YOLO(TASK2MODEL[task]).export(
|
|
|
|
format="engine",
|
|
|
|
imgsz=32,
|
|
|
|
dynamic=dynamic,
|
|
|
|
int8=int8,
|
|
|
|
half=half,
|
|
|
|
batch=batch,
|
|
|
|
data=TASK2DATA[task],
|
|
|
|
workspace=1, # reduce workspace GB for less resource utilization during testing
|
|
|
|
simplify=True, # use 'onnxslim'
|
|
|
|
)
|
|
|
|
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
|
|
|
|
Path(file).unlink() # cleanup
|
|
|
|
Path(file).with_suffix(".cache").unlink() if int8 else None # cleanup INT8 cache
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
|
|
|
def test_train():
|
|
|
|
"""Test model training on a minimal dataset using available CUDA devices."""
|
|
|
|
device = 0 if CUDA_DEVICE_COUNT == 1 else [0, 1]
|
|
|
|
YOLO(MODEL).train(data="coco8.yaml", imgsz=64, epochs=1, device=device) # requires imgsz>=64
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
|
|
|
def test_predict_multiple_devices():
|
|
|
|
"""Validate model prediction consistency across CPU and CUDA devices."""
|
|
|
|
model = YOLO("yolo11n.pt")
|
|
|
|
model = model.cpu()
|
|
|
|
assert str(model.device) == "cpu"
|
|
|
|
_ = model(SOURCE) # CPU inference
|
|
|
|
assert str(model.device) == "cpu"
|
|
|
|
|
|
|
|
model = model.to("cuda:0")
|
|
|
|
assert str(model.device) == "cuda:0"
|
|
|
|
_ = model(SOURCE) # CUDA inference
|
|
|
|
assert str(model.device) == "cuda:0"
|
|
|
|
|
|
|
|
model = model.cpu()
|
|
|
|
assert str(model.device) == "cpu"
|
|
|
|
_ = model(SOURCE) # CPU inference
|
|
|
|
assert str(model.device) == "cpu"
|
|
|
|
|
|
|
|
model = model.cuda()
|
|
|
|
assert str(model.device) == "cuda:0"
|
|
|
|
_ = model(SOURCE) # CUDA inference
|
|
|
|
assert str(model.device) == "cuda:0"
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
|
|
|
def test_autobatch():
|
|
|
|
"""Check optimal batch size for YOLO model training using autobatch utility."""
|
|
|
|
from ultralytics.utils.autobatch import check_train_batch_size
|
|
|
|
|
|
|
|
check_train_batch_size(YOLO(MODEL).model.cuda(), imgsz=128, amp=True)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
|
|
|
def test_utils_benchmarks():
|
|
|
|
"""Profile YOLO models for performance benchmarks."""
|
|
|
|
from ultralytics.utils.benchmarks import ProfileModels
|
|
|
|
|
|
|
|
# Pre-export a dynamic engine model to use dynamic inference
|
|
|
|
YOLO(MODEL).export(format="engine", imgsz=32, dynamic=True, batch=1)
|
|
|
|
ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
|
|
|
def test_predict_sam():
|
|
|
|
"""Test SAM model predictions using different prompts, including bounding boxes and point annotations."""
|
|
|
|
from ultralytics import SAM
|
|
|
|
from ultralytics.models.sam import Predictor as SAMPredictor
|
|
|
|
|
|
|
|
# Load a model
|
|
|
|
model = SAM(WEIGHTS_DIR / "sam2.1_b.pt")
|
|
|
|
|
|
|
|
# Display model information (optional)
|
|
|
|
model.info()
|
|
|
|
|
|
|
|
# Run inference
|
|
|
|
model(SOURCE, device=0)
|
|
|
|
|
|
|
|
# Run inference with bboxes prompt
|
|
|
|
model(SOURCE, bboxes=[439, 437, 524, 709], device=0)
|
|
|
|
|
|
|
|
# Run inference with no labels
|
|
|
|
model(ASSETS / "zidane.jpg", points=[900, 370], device=0)
|
|
|
|
|
|
|
|
# Run inference with 1D points and 1D labels
|
|
|
|
model(ASSETS / "zidane.jpg", points=[900, 370], labels=[1], device=0)
|
|
|
|
|
|
|
|
# Run inference with 2D points and 1D labels
|
|
|
|
model(ASSETS / "zidane.jpg", points=[[900, 370]], labels=[1], device=0)
|
|
|
|
|
|
|
|
# Run inference with multiple 2D points and 1D labels
|
|
|
|
model(ASSETS / "zidane.jpg", points=[[400, 370], [900, 370]], labels=[1, 1], device=0)
|
|
|
|
|
|
|
|
# Run inference with 3D points and 2D labels (multiple points per object)
|
|
|
|
model(ASSETS / "zidane.jpg", points=[[[900, 370], [1000, 100]]], labels=[[1, 1]], device=0)
|
|
|
|
|
|
|
|
# Create SAMPredictor
|
|
|
|
overrides = dict(conf=0.25, task="segment", mode="predict", imgsz=1024, model=WEIGHTS_DIR / "mobile_sam.pt")
|
|
|
|
predictor = SAMPredictor(overrides=overrides)
|
|
|
|
|
|
|
|
# Set image
|
|
|
|
predictor.set_image(ASSETS / "zidane.jpg") # set with image file
|
|
|
|
# predictor(bboxes=[439, 437, 524, 709])
|
|
|
|
# predictor(points=[900, 370], labels=[1])
|
|
|
|
|
|
|
|
# Reset image
|
|
|
|
predictor.reset_image()
|