Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1198 lines
41 KiB
1198 lines
41 KiB
// Protocol Buffers - Google's data interchange format |
|
// Copyright 2014 Google Inc. All rights reserved. |
|
// https://developers.google.com/protocol-buffers/ |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
#include "protobuf.h" |
|
|
|
#include <math.h> |
|
|
|
#include <ruby/encoding.h> |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Ruby <-> native slot management. |
|
// ----------------------------------------------------------------------------- |
|
|
|
#define CHARPTR_AT(msg, ofs) ((char*)msg + ofs) |
|
#define DEREF_OFFSET(msg, ofs, type) *(type*)CHARPTR_AT(msg, ofs) |
|
#define DEREF(memory, type) *(type*)(memory) |
|
|
|
size_t native_slot_size(upb_fieldtype_t type) { |
|
switch (type) { |
|
case UPB_TYPE_FLOAT: return 4; |
|
case UPB_TYPE_DOUBLE: return 8; |
|
case UPB_TYPE_BOOL: return 1; |
|
case UPB_TYPE_STRING: return sizeof(VALUE); |
|
case UPB_TYPE_BYTES: return sizeof(VALUE); |
|
case UPB_TYPE_MESSAGE: return sizeof(VALUE); |
|
case UPB_TYPE_ENUM: return 4; |
|
case UPB_TYPE_INT32: return 4; |
|
case UPB_TYPE_INT64: return 8; |
|
case UPB_TYPE_UINT32: return 4; |
|
case UPB_TYPE_UINT64: return 8; |
|
default: return 0; |
|
} |
|
} |
|
|
|
static bool is_ruby_num(VALUE value) { |
|
return (TYPE(value) == T_FLOAT || |
|
TYPE(value) == T_FIXNUM || |
|
TYPE(value) == T_BIGNUM); |
|
} |
|
|
|
void native_slot_check_int_range_precision(const char* name, upb_fieldtype_t type, VALUE val) { |
|
if (!is_ruby_num(val)) { |
|
rb_raise(cTypeError, "Expected number type for integral field '%s' (given %s).", |
|
name, rb_class2name(CLASS_OF(val))); |
|
} |
|
|
|
// NUM2{INT,UINT,LL,ULL} macros do the appropriate range checks on upper |
|
// bound; we just need to do precision checks (i.e., disallow rounding) and |
|
// check for < 0 on unsigned types. |
|
if (TYPE(val) == T_FLOAT) { |
|
double dbl_val = NUM2DBL(val); |
|
if (floor(dbl_val) != dbl_val) { |
|
rb_raise(rb_eRangeError, |
|
"Non-integral floating point value assigned to integer field '%s' (given %s).", |
|
name, rb_class2name(CLASS_OF(val))); |
|
} |
|
} |
|
if (type == UPB_TYPE_UINT32 || type == UPB_TYPE_UINT64) { |
|
if (NUM2DBL(val) < 0) { |
|
rb_raise(rb_eRangeError, |
|
"Assigning negative value to unsigned integer field '%s' (given %s).", |
|
name, rb_class2name(CLASS_OF(val))); |
|
} |
|
} |
|
} |
|
|
|
VALUE native_slot_encode_and_freeze_string(upb_fieldtype_t type, VALUE value) { |
|
rb_encoding* desired_encoding = (type == UPB_TYPE_STRING) ? |
|
kRubyStringUtf8Encoding : kRubyString8bitEncoding; |
|
VALUE desired_encoding_value = rb_enc_from_encoding(desired_encoding); |
|
|
|
if (rb_obj_encoding(value) != desired_encoding_value || !OBJ_FROZEN(value)) { |
|
// Note: this will not duplicate underlying string data unless necessary. |
|
value = rb_str_encode(value, desired_encoding_value, 0, Qnil); |
|
|
|
if (type == UPB_TYPE_STRING && |
|
rb_enc_str_coderange(value) == ENC_CODERANGE_BROKEN) { |
|
rb_raise(rb_eEncodingError, "String is invalid UTF-8"); |
|
} |
|
|
|
// Ensure the data remains valid. Since we called #encode a moment ago, |
|
// this does not freeze the string the user assigned. |
|
rb_obj_freeze(value); |
|
} |
|
|
|
return value; |
|
} |
|
|
|
void native_slot_set(const char* name, |
|
upb_fieldtype_t type, VALUE type_class, |
|
void* memory, VALUE value) { |
|
native_slot_set_value_and_case(name, type, type_class, memory, value, NULL, 0); |
|
} |
|
|
|
void native_slot_set_value_and_case(const char* name, |
|
upb_fieldtype_t type, VALUE type_class, |
|
void* memory, VALUE value, |
|
uint32_t* case_memory, |
|
uint32_t case_number) { |
|
// Note that in order to atomically change the value in memory and the case |
|
// value (w.r.t. Ruby VM calls), we must set the value at |memory| only after |
|
// all Ruby VM calls are complete. The case is then set at the bottom of this |
|
// function. |
|
switch (type) { |
|
case UPB_TYPE_FLOAT: |
|
if (!is_ruby_num(value)) { |
|
rb_raise(cTypeError, "Expected number type for float field '%s' (given %s).", |
|
name, rb_class2name(CLASS_OF(value))); |
|
} |
|
DEREF(memory, float) = NUM2DBL(value); |
|
break; |
|
case UPB_TYPE_DOUBLE: |
|
if (!is_ruby_num(value)) { |
|
rb_raise(cTypeError, "Expected number type for double field '%s' (given %s).", |
|
name, rb_class2name(CLASS_OF(value))); |
|
} |
|
DEREF(memory, double) = NUM2DBL(value); |
|
break; |
|
case UPB_TYPE_BOOL: { |
|
int8_t val = -1; |
|
if (value == Qtrue) { |
|
val = 1; |
|
} else if (value == Qfalse) { |
|
val = 0; |
|
} else { |
|
rb_raise(cTypeError, "Invalid argument for boolean field '%s' (given %s).", |
|
name, rb_class2name(CLASS_OF(value))); |
|
} |
|
DEREF(memory, int8_t) = val; |
|
break; |
|
} |
|
case UPB_TYPE_STRING: |
|
if (CLASS_OF(value) == rb_cSymbol) { |
|
value = rb_funcall(value, rb_intern("to_s"), 0); |
|
} else if (CLASS_OF(value) != rb_cString) { |
|
rb_raise(cTypeError, "Invalid argument for string field '%s' (given %s).", |
|
name, rb_class2name(CLASS_OF(value))); |
|
} |
|
|
|
DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value); |
|
break; |
|
|
|
case UPB_TYPE_BYTES: { |
|
if (CLASS_OF(value) != rb_cString) { |
|
rb_raise(cTypeError, "Invalid argument for bytes field '%s' (given %s).", |
|
name, rb_class2name(CLASS_OF(value))); |
|
} |
|
|
|
DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value); |
|
break; |
|
} |
|
case UPB_TYPE_MESSAGE: { |
|
if (CLASS_OF(value) == CLASS_OF(Qnil)) { |
|
value = Qnil; |
|
} else if (CLASS_OF(value) != type_class) { |
|
// check for possible implicit conversions |
|
VALUE converted_value = Qnil; |
|
const char* field_type_name = rb_class2name(type_class); |
|
|
|
if (strcmp(field_type_name, "Google::Protobuf::Timestamp") == 0 && |
|
rb_obj_is_kind_of(value, rb_cTime)) { |
|
// Time -> Google::Protobuf::Timestamp |
|
VALUE hash = rb_hash_new(); |
|
rb_hash_aset(hash, rb_str_new2("seconds"), |
|
rb_funcall(value, rb_intern("to_i"), 0)); |
|
rb_hash_aset(hash, rb_str_new2("nanos"), |
|
rb_funcall(value, rb_intern("nsec"), 0)); |
|
{ |
|
VALUE args[1] = {hash}; |
|
converted_value = rb_class_new_instance(1, args, type_class); |
|
} |
|
} else if (strcmp(field_type_name, "Google::Protobuf::Duration") == 0 && |
|
rb_obj_is_kind_of(value, rb_cNumeric)) { |
|
// Numeric -> Google::Protobuf::Duration |
|
VALUE hash = rb_hash_new(); |
|
rb_hash_aset(hash, rb_str_new2("seconds"), |
|
rb_funcall(value, rb_intern("to_i"), 0)); |
|
{ |
|
VALUE n_value = |
|
rb_funcall(value, rb_intern("remainder"), 1, INT2NUM(1)); |
|
n_value = |
|
rb_funcall(n_value, rb_intern("*"), 1, INT2NUM(1000000000)); |
|
n_value = rb_funcall(n_value, rb_intern("round"), 0); |
|
rb_hash_aset(hash, rb_str_new2("nanos"), n_value); |
|
} |
|
{ |
|
VALUE args[1] = { hash }; |
|
converted_value = rb_class_new_instance(1, args, type_class); |
|
} |
|
} |
|
|
|
// raise if no suitable conversaion could be found |
|
if (converted_value == Qnil) { |
|
rb_raise(cTypeError, |
|
"Invalid type %s to assign to submessage field '%s'.", |
|
rb_class2name(CLASS_OF(value)), name); |
|
} else { |
|
value = converted_value; |
|
} |
|
} |
|
DEREF(memory, VALUE) = value; |
|
break; |
|
} |
|
case UPB_TYPE_ENUM: { |
|
int32_t int_val = 0; |
|
if (TYPE(value) == T_STRING) { |
|
value = rb_funcall(value, rb_intern("to_sym"), 0); |
|
} else if (!is_ruby_num(value) && TYPE(value) != T_SYMBOL) { |
|
rb_raise(cTypeError, |
|
"Expected number or symbol type for enum field '%s'.", name); |
|
} |
|
if (TYPE(value) == T_SYMBOL) { |
|
// Ensure that the given symbol exists in the enum module. |
|
VALUE lookup = rb_funcall(type_class, rb_intern("resolve"), 1, value); |
|
if (lookup == Qnil) { |
|
rb_raise(rb_eRangeError, "Unknown symbol value for enum field '%s'.", name); |
|
} else { |
|
int_val = NUM2INT(lookup); |
|
} |
|
} else { |
|
native_slot_check_int_range_precision(name, UPB_TYPE_INT32, value); |
|
int_val = NUM2INT(value); |
|
} |
|
DEREF(memory, int32_t) = int_val; |
|
break; |
|
} |
|
case UPB_TYPE_INT32: |
|
case UPB_TYPE_INT64: |
|
case UPB_TYPE_UINT32: |
|
case UPB_TYPE_UINT64: |
|
native_slot_check_int_range_precision(name, type, value); |
|
switch (type) { |
|
case UPB_TYPE_INT32: |
|
DEREF(memory, int32_t) = NUM2INT(value); |
|
break; |
|
case UPB_TYPE_INT64: |
|
DEREF(memory, int64_t) = NUM2LL(value); |
|
break; |
|
case UPB_TYPE_UINT32: |
|
DEREF(memory, uint32_t) = NUM2UINT(value); |
|
break; |
|
case UPB_TYPE_UINT64: |
|
DEREF(memory, uint64_t) = NUM2ULL(value); |
|
break; |
|
default: |
|
break; |
|
} |
|
break; |
|
default: |
|
break; |
|
} |
|
|
|
if (case_memory != NULL) { |
|
*case_memory = case_number; |
|
} |
|
} |
|
|
|
VALUE native_slot_get(upb_fieldtype_t type, |
|
VALUE type_class, |
|
const void* memory) { |
|
switch (type) { |
|
case UPB_TYPE_FLOAT: |
|
return DBL2NUM(DEREF(memory, float)); |
|
case UPB_TYPE_DOUBLE: |
|
return DBL2NUM(DEREF(memory, double)); |
|
case UPB_TYPE_BOOL: |
|
return DEREF(memory, int8_t) ? Qtrue : Qfalse; |
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: |
|
return DEREF(memory, VALUE); |
|
case UPB_TYPE_MESSAGE: { |
|
VALUE val = DEREF(memory, VALUE); |
|
|
|
// Lazily expand wrapper type if necessary. |
|
int type = TYPE(val); |
|
if (type != T_DATA && type != T_NIL) { |
|
// This must be a wrapper type. |
|
val = ruby_wrapper_type(type_class, val); |
|
DEREF(memory, VALUE) = val; |
|
} |
|
|
|
return val; |
|
} |
|
case UPB_TYPE_ENUM: { |
|
int32_t val = DEREF(memory, int32_t); |
|
VALUE symbol = enum_lookup(type_class, INT2NUM(val)); |
|
if (symbol == Qnil) { |
|
return INT2NUM(val); |
|
} else { |
|
return symbol; |
|
} |
|
} |
|
case UPB_TYPE_INT32: |
|
return INT2NUM(DEREF(memory, int32_t)); |
|
case UPB_TYPE_INT64: |
|
return LL2NUM(DEREF(memory, int64_t)); |
|
case UPB_TYPE_UINT32: |
|
return UINT2NUM(DEREF(memory, uint32_t)); |
|
case UPB_TYPE_UINT64: |
|
return ULL2NUM(DEREF(memory, uint64_t)); |
|
default: |
|
return Qnil; |
|
} |
|
} |
|
|
|
void native_slot_init(upb_fieldtype_t type, void* memory) { |
|
switch (type) { |
|
case UPB_TYPE_FLOAT: |
|
DEREF(memory, float) = 0.0; |
|
break; |
|
case UPB_TYPE_DOUBLE: |
|
DEREF(memory, double) = 0.0; |
|
break; |
|
case UPB_TYPE_BOOL: |
|
DEREF(memory, int8_t) = 0; |
|
break; |
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: |
|
DEREF(memory, VALUE) = rb_str_new2(""); |
|
rb_enc_associate(DEREF(memory, VALUE), (type == UPB_TYPE_BYTES) ? |
|
kRubyString8bitEncoding : kRubyStringUtf8Encoding); |
|
break; |
|
case UPB_TYPE_MESSAGE: |
|
DEREF(memory, VALUE) = Qnil; |
|
break; |
|
case UPB_TYPE_ENUM: |
|
case UPB_TYPE_INT32: |
|
DEREF(memory, int32_t) = 0; |
|
break; |
|
case UPB_TYPE_INT64: |
|
DEREF(memory, int64_t) = 0; |
|
break; |
|
case UPB_TYPE_UINT32: |
|
DEREF(memory, uint32_t) = 0; |
|
break; |
|
case UPB_TYPE_UINT64: |
|
DEREF(memory, uint64_t) = 0; |
|
break; |
|
default: |
|
break; |
|
} |
|
} |
|
|
|
void native_slot_mark(upb_fieldtype_t type, void* memory) { |
|
switch (type) { |
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: |
|
case UPB_TYPE_MESSAGE: |
|
rb_gc_mark(DEREF(memory, VALUE)); |
|
break; |
|
default: |
|
break; |
|
} |
|
} |
|
|
|
void native_slot_dup(upb_fieldtype_t type, void* to, void* from) { |
|
memcpy(to, from, native_slot_size(type)); |
|
} |
|
|
|
void native_slot_deep_copy(upb_fieldtype_t type, VALUE type_class, void* to, |
|
void* from) { |
|
switch (type) { |
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: { |
|
VALUE from_val = DEREF(from, VALUE); |
|
DEREF(to, VALUE) = (from_val != Qnil) ? |
|
rb_funcall(from_val, rb_intern("dup"), 0) : Qnil; |
|
break; |
|
} |
|
case UPB_TYPE_MESSAGE: { |
|
VALUE from_val = native_slot_get(type, type_class, from); |
|
DEREF(to, VALUE) = (from_val != Qnil) ? |
|
Message_deep_copy(from_val) : Qnil; |
|
break; |
|
} |
|
default: |
|
memcpy(to, from, native_slot_size(type)); |
|
} |
|
} |
|
|
|
bool native_slot_eq(upb_fieldtype_t type, VALUE type_class, void* mem1, |
|
void* mem2) { |
|
switch (type) { |
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: |
|
case UPB_TYPE_MESSAGE: { |
|
VALUE val1 = native_slot_get(type, type_class, mem1); |
|
VALUE val2 = native_slot_get(type, type_class, mem2); |
|
VALUE ret = rb_funcall(val1, rb_intern("=="), 1, val2); |
|
return ret == Qtrue; |
|
} |
|
default: |
|
return !memcmp(mem1, mem2, native_slot_size(type)); |
|
} |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Map field utilities. |
|
// ----------------------------------------------------------------------------- |
|
|
|
const upb_msgdef* tryget_map_entry_msgdef(const upb_fielddef* field) { |
|
const upb_msgdef* subdef; |
|
if (upb_fielddef_label(field) != UPB_LABEL_REPEATED || |
|
upb_fielddef_type(field) != UPB_TYPE_MESSAGE) { |
|
return NULL; |
|
} |
|
subdef = upb_fielddef_msgsubdef(field); |
|
return upb_msgdef_mapentry(subdef) ? subdef : NULL; |
|
} |
|
|
|
const upb_msgdef *map_entry_msgdef(const upb_fielddef* field) { |
|
const upb_msgdef* subdef = tryget_map_entry_msgdef(field); |
|
assert(subdef); |
|
return subdef; |
|
} |
|
|
|
bool is_map_field(const upb_fielddef *field) { |
|
const upb_msgdef* subdef = tryget_map_entry_msgdef(field); |
|
if (subdef == NULL) return false; |
|
|
|
// Map fields are a proto3 feature. |
|
// If we're using proto2 syntax we need to fallback to the repeated field. |
|
return upb_msgdef_syntax(subdef) == UPB_SYNTAX_PROTO3; |
|
} |
|
|
|
const upb_fielddef* map_field_key(const upb_fielddef* field) { |
|
const upb_msgdef* subdef = map_entry_msgdef(field); |
|
return map_entry_key(subdef); |
|
} |
|
|
|
const upb_fielddef* map_field_value(const upb_fielddef* field) { |
|
const upb_msgdef* subdef = map_entry_msgdef(field); |
|
return map_entry_value(subdef); |
|
} |
|
|
|
const upb_fielddef* map_entry_key(const upb_msgdef* msgdef) { |
|
const upb_fielddef* key_field = upb_msgdef_itof(msgdef, MAP_KEY_FIELD); |
|
assert(key_field != NULL); |
|
return key_field; |
|
} |
|
|
|
const upb_fielddef* map_entry_value(const upb_msgdef* msgdef) { |
|
const upb_fielddef* value_field = upb_msgdef_itof(msgdef, MAP_VALUE_FIELD); |
|
assert(value_field != NULL); |
|
return value_field; |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Memory layout management. |
|
// ----------------------------------------------------------------------------- |
|
|
|
bool field_contains_hasbit(MessageLayout* layout, |
|
const upb_fielddef* field) { |
|
return layout->fields[upb_fielddef_index(field)].hasbit != |
|
MESSAGE_FIELD_NO_HASBIT; |
|
} |
|
|
|
static size_t align_up_to(size_t offset, size_t granularity) { |
|
// Granularity must be a power of two. |
|
return (offset + granularity - 1) & ~(granularity - 1); |
|
} |
|
|
|
bool is_value_field(const upb_fielddef* f) { |
|
return upb_fielddef_isseq(f) || upb_fielddef_issubmsg(f) || |
|
upb_fielddef_isstring(f); |
|
} |
|
|
|
void create_layout(Descriptor* desc) { |
|
const upb_msgdef *msgdef = desc->msgdef; |
|
MessageLayout* layout = ALLOC(MessageLayout); |
|
int nfields = upb_msgdef_numfields(msgdef); |
|
int noneofs = upb_msgdef_numrealoneofs(msgdef); |
|
upb_msg_field_iter it; |
|
upb_msg_oneof_iter oit; |
|
size_t off = 0; |
|
size_t hasbit = 0; |
|
int i; |
|
|
|
(void)i; |
|
|
|
layout->empty_template = NULL; |
|
layout->desc = desc; |
|
desc->layout = layout; |
|
|
|
layout->fields = ALLOC_N(MessageField, nfields); |
|
layout->oneofs = NULL; |
|
|
|
if (noneofs > 0) { |
|
layout->oneofs = ALLOC_N(MessageOneof, noneofs); |
|
} |
|
|
|
#ifndef NDEBUG |
|
for (i = 0; i < nfields; i++) { |
|
layout->fields[i].offset = -1; |
|
} |
|
|
|
for (i = 0; i < noneofs; i++) { |
|
layout->oneofs[i].offset = -1; |
|
} |
|
#endif |
|
|
|
for (upb_msg_field_begin(&it, msgdef); |
|
!upb_msg_field_done(&it); |
|
upb_msg_field_next(&it)) { |
|
const upb_fielddef* field = upb_msg_iter_field(&it); |
|
if (upb_fielddef_haspresence(field) && |
|
!upb_fielddef_realcontainingoneof(field)) { |
|
layout->fields[upb_fielddef_index(field)].hasbit = hasbit++; |
|
} else { |
|
layout->fields[upb_fielddef_index(field)].hasbit = |
|
MESSAGE_FIELD_NO_HASBIT; |
|
} |
|
} |
|
|
|
if (hasbit != 0) { |
|
off += (hasbit + 8 - 1) / 8; |
|
} |
|
|
|
off = align_up_to(off, sizeof(VALUE)); |
|
layout->value_offset = off; |
|
layout->repeated_count = 0; |
|
layout->map_count = 0; |
|
layout->value_count = 0; |
|
|
|
// Place all VALUE fields for repeated fields. |
|
for (upb_msg_field_begin(&it, msgdef); |
|
!upb_msg_field_done(&it); |
|
upb_msg_field_next(&it)) { |
|
const upb_fielddef* field = upb_msg_iter_field(&it); |
|
if (upb_fielddef_realcontainingoneof(field) || !upb_fielddef_isseq(field) || |
|
upb_fielddef_ismap(field)) { |
|
continue; |
|
} |
|
|
|
layout->fields[upb_fielddef_index(field)].offset = off; |
|
off += sizeof(VALUE); |
|
layout->repeated_count++; |
|
} |
|
|
|
// Place all VALUE fields for map fields. |
|
for (upb_msg_field_begin(&it, msgdef); |
|
!upb_msg_field_done(&it); |
|
upb_msg_field_next(&it)) { |
|
const upb_fielddef* field = upb_msg_iter_field(&it); |
|
if (upb_fielddef_realcontainingoneof(field) || !upb_fielddef_isseq(field) || |
|
!upb_fielddef_ismap(field)) { |
|
continue; |
|
} |
|
|
|
layout->fields[upb_fielddef_index(field)].offset = off; |
|
off += sizeof(VALUE); |
|
layout->map_count++; |
|
} |
|
|
|
layout->value_count = layout->repeated_count + layout->map_count; |
|
|
|
// Next place all other (non-oneof) VALUE fields. |
|
for (upb_msg_field_begin(&it, msgdef); |
|
!upb_msg_field_done(&it); |
|
upb_msg_field_next(&it)) { |
|
const upb_fielddef* field = upb_msg_iter_field(&it); |
|
if (upb_fielddef_realcontainingoneof(field) || !is_value_field(field) || |
|
upb_fielddef_isseq(field)) { |
|
continue; |
|
} |
|
|
|
layout->fields[upb_fielddef_index(field)].offset = off; |
|
off += sizeof(VALUE); |
|
layout->value_count++; |
|
} |
|
|
|
// Now place all other (non-oneof) fields. |
|
for (upb_msg_field_begin(&it, msgdef); |
|
!upb_msg_field_done(&it); |
|
upb_msg_field_next(&it)) { |
|
const upb_fielddef* field = upb_msg_iter_field(&it); |
|
size_t field_size; |
|
|
|
if (upb_fielddef_realcontainingoneof(field) || is_value_field(field)) { |
|
continue; |
|
} |
|
|
|
// Allocate |field_size| bytes for this field in the layout. |
|
field_size = native_slot_size(upb_fielddef_type(field)); |
|
|
|
// Align current offset up to |size| granularity. |
|
off = align_up_to(off, field_size); |
|
layout->fields[upb_fielddef_index(field)].offset = off; |
|
off += field_size; |
|
} |
|
|
|
// Handle oneofs now -- we iterate over oneofs specifically and allocate only |
|
// one slot per oneof. |
|
// |
|
// We assign all value slots first, then pack the 'case' fields at the end, |
|
// since in the common case (modern 64-bit platform) these are 8 bytes and 4 |
|
// bytes respectively and we want to avoid alignment overhead. |
|
// |
|
// Note that we reserve 4 bytes (a uint32) per 'case' slot because the value |
|
// space for oneof cases is conceptually as wide as field tag numbers. In |
|
// practice, it's unlikely that a oneof would have more than e.g. 256 or 64K |
|
// members (8 or 16 bits respectively), so conceivably we could assign |
|
// consecutive case numbers and then pick a smaller oneof case slot size, but |
|
// the complexity to implement this indirection is probably not worthwhile. |
|
for (upb_msg_oneof_begin(&oit, msgdef); |
|
!upb_msg_oneof_done(&oit); |
|
upb_msg_oneof_next(&oit)) { |
|
const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit); |
|
upb_oneof_iter fit; |
|
|
|
// Always allocate NATIVE_SLOT_MAX_SIZE bytes, but share the slot between |
|
// all fields. |
|
size_t field_size = NATIVE_SLOT_MAX_SIZE; |
|
|
|
if (upb_oneofdef_issynthetic(oneof)) continue; |
|
assert(upb_oneofdef_index(oneof) < noneofs); |
|
|
|
// Align the offset. |
|
off = align_up_to(off, field_size); |
|
// Assign all fields in the oneof this same offset. |
|
for (upb_oneof_begin(&fit, oneof); |
|
!upb_oneof_done(&fit); |
|
upb_oneof_next(&fit)) { |
|
const upb_fielddef* field = upb_oneof_iter_field(&fit); |
|
layout->fields[upb_fielddef_index(field)].offset = off; |
|
layout->oneofs[upb_oneofdef_index(oneof)].offset = off; |
|
} |
|
off += field_size; |
|
} |
|
|
|
// Now the case fields. |
|
for (upb_msg_oneof_begin(&oit, msgdef); |
|
!upb_msg_oneof_done(&oit); |
|
upb_msg_oneof_next(&oit)) { |
|
const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit); |
|
size_t field_size = sizeof(uint32_t); |
|
if (upb_oneofdef_issynthetic(oneof)) continue; |
|
assert(upb_oneofdef_index(oneof) < noneofs); |
|
// Align the offset. |
|
off = (off + field_size - 1) & ~(field_size - 1); |
|
layout->oneofs[upb_oneofdef_index(oneof)].case_offset = off; |
|
off += field_size; |
|
} |
|
|
|
layout->size = off; |
|
layout->msgdef = msgdef; |
|
|
|
#ifndef NDEBUG |
|
for (i = 0; i < nfields; i++) { |
|
assert(layout->fields[i].offset != -1); |
|
} |
|
|
|
for (i = 0; i < noneofs; i++) { |
|
assert(layout->oneofs[i].offset != -1); |
|
} |
|
#endif |
|
|
|
// Create the empty message template. |
|
layout->empty_template = ALLOC_N(char, layout->size); |
|
memset(layout->empty_template, 0, layout->size); |
|
|
|
for (upb_msg_field_begin(&it, layout->msgdef); |
|
!upb_msg_field_done(&it); |
|
upb_msg_field_next(&it)) { |
|
layout_clear(layout, layout->empty_template, upb_msg_iter_field(&it)); |
|
} |
|
} |
|
|
|
void free_layout(MessageLayout* layout) { |
|
xfree(layout->empty_template); |
|
xfree(layout->fields); |
|
xfree(layout->oneofs); |
|
xfree(layout); |
|
} |
|
|
|
VALUE field_type_class(const MessageLayout* layout, const upb_fielddef* field) { |
|
VALUE type_class = Qnil; |
|
if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) { |
|
VALUE submsgdesc = get_msgdef_obj(layout->desc->descriptor_pool, |
|
upb_fielddef_msgsubdef(field)); |
|
type_class = Descriptor_msgclass(submsgdesc); |
|
} else if (upb_fielddef_type(field) == UPB_TYPE_ENUM) { |
|
VALUE subenumdesc = get_enumdef_obj(layout->desc->descriptor_pool, |
|
upb_fielddef_enumsubdef(field)); |
|
type_class = EnumDescriptor_enummodule(subenumdesc); |
|
} |
|
return type_class; |
|
} |
|
|
|
static void* slot_memory(MessageLayout* layout, |
|
const void* storage, |
|
const upb_fielddef* field) { |
|
return ((uint8_t *)storage) + |
|
layout->fields[upb_fielddef_index(field)].offset; |
|
} |
|
|
|
static uint32_t* slot_oneof_case(MessageLayout* layout, |
|
const void* storage, |
|
const upb_oneofdef* oneof) { |
|
return (uint32_t*)(((uint8_t*)storage) + |
|
layout->oneofs[upb_oneofdef_index(oneof)].case_offset); |
|
} |
|
|
|
uint32_t slot_read_oneof_case(MessageLayout* layout, const void* storage, |
|
const upb_oneofdef* oneof) { |
|
uint32_t* ptr = slot_oneof_case(layout, storage, oneof); |
|
return *ptr & ~ONEOF_CASE_MASK; |
|
} |
|
|
|
static void slot_set_hasbit(MessageLayout* layout, |
|
const void* storage, |
|
const upb_fielddef* field) { |
|
size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit; |
|
assert(hasbit != MESSAGE_FIELD_NO_HASBIT); |
|
|
|
((uint8_t*)storage)[hasbit / 8] |= 1 << (hasbit % 8); |
|
} |
|
|
|
static void slot_clear_hasbit(MessageLayout* layout, |
|
const void* storage, |
|
const upb_fielddef* field) { |
|
size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit; |
|
assert(hasbit != MESSAGE_FIELD_NO_HASBIT); |
|
((uint8_t*)storage)[hasbit / 8] &= ~(1 << (hasbit % 8)); |
|
} |
|
|
|
static bool slot_is_hasbit_set(MessageLayout* layout, |
|
const void* storage, |
|
const upb_fielddef* field) { |
|
size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit; |
|
assert(field_contains_hasbit(layout, field)); |
|
return DEREF_OFFSET( |
|
(uint8_t*)storage, hasbit / 8, char) & (1 << (hasbit % 8)); |
|
} |
|
|
|
VALUE layout_has(MessageLayout* layout, |
|
const void* storage, |
|
const upb_fielddef* field) { |
|
const upb_oneofdef* oneof = upb_fielddef_realcontainingoneof(field); |
|
assert(upb_fielddef_haspresence(field)); |
|
if (oneof) { |
|
uint32_t oneof_case = slot_read_oneof_case(layout, storage, oneof); |
|
return oneof_case == upb_fielddef_number(field) ? Qtrue : Qfalse; |
|
} else { |
|
return slot_is_hasbit_set(layout, storage, field) ? Qtrue : Qfalse; |
|
} |
|
} |
|
|
|
void layout_clear(MessageLayout* layout, |
|
const void* storage, |
|
const upb_fielddef* field) { |
|
void* memory = slot_memory(layout, storage, field); |
|
const upb_oneofdef* oneof = upb_fielddef_realcontainingoneof(field); |
|
|
|
if (field_contains_hasbit(layout, field)) { |
|
slot_clear_hasbit(layout, storage, field); |
|
} |
|
|
|
if (oneof) { |
|
uint32_t* oneof_case = slot_oneof_case(layout, storage, oneof); |
|
memset(memory, 0, NATIVE_SLOT_MAX_SIZE); |
|
*oneof_case = ONEOF_CASE_NONE; |
|
} else if (is_map_field(field)) { |
|
VALUE map = Qnil; |
|
|
|
const upb_fielddef* key_field = map_field_key(field); |
|
const upb_fielddef* value_field = map_field_value(field); |
|
VALUE type_class = field_type_class(layout, value_field); |
|
|
|
if (type_class != Qnil) { |
|
VALUE args[3] = { |
|
fieldtype_to_ruby(upb_fielddef_type(key_field)), |
|
fieldtype_to_ruby(upb_fielddef_type(value_field)), |
|
type_class, |
|
}; |
|
map = rb_class_new_instance(3, args, cMap); |
|
} else { |
|
VALUE args[2] = { |
|
fieldtype_to_ruby(upb_fielddef_type(key_field)), |
|
fieldtype_to_ruby(upb_fielddef_type(value_field)), |
|
}; |
|
map = rb_class_new_instance(2, args, cMap); |
|
} |
|
|
|
DEREF(memory, VALUE) = map; |
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
|
VALUE ary = Qnil; |
|
|
|
VALUE type_class = field_type_class(layout, field); |
|
|
|
if (type_class != Qnil) { |
|
VALUE args[2] = { |
|
fieldtype_to_ruby(upb_fielddef_type(field)), |
|
type_class, |
|
}; |
|
ary = rb_class_new_instance(2, args, cRepeatedField); |
|
} else { |
|
VALUE args[1] = { fieldtype_to_ruby(upb_fielddef_type(field)) }; |
|
ary = rb_class_new_instance(1, args, cRepeatedField); |
|
} |
|
|
|
DEREF(memory, VALUE) = ary; |
|
} else { |
|
native_slot_set(upb_fielddef_name(field), upb_fielddef_type(field), |
|
field_type_class(layout, field), memory, |
|
layout_get_default(field)); |
|
} |
|
} |
|
|
|
VALUE layout_get_default(const upb_fielddef *field) { |
|
switch (upb_fielddef_type(field)) { |
|
case UPB_TYPE_FLOAT: return DBL2NUM(upb_fielddef_defaultfloat(field)); |
|
case UPB_TYPE_DOUBLE: return DBL2NUM(upb_fielddef_defaultdouble(field)); |
|
case UPB_TYPE_BOOL: |
|
return upb_fielddef_defaultbool(field) ? Qtrue : Qfalse; |
|
case UPB_TYPE_MESSAGE: return Qnil; |
|
case UPB_TYPE_ENUM: { |
|
const upb_enumdef *enumdef = upb_fielddef_enumsubdef(field); |
|
int32_t num = upb_fielddef_defaultint32(field); |
|
const char *label = upb_enumdef_iton(enumdef, num); |
|
if (label) { |
|
return ID2SYM(rb_intern(label)); |
|
} else { |
|
return INT2NUM(num); |
|
} |
|
} |
|
case UPB_TYPE_INT32: return INT2NUM(upb_fielddef_defaultint32(field)); |
|
case UPB_TYPE_INT64: return LL2NUM(upb_fielddef_defaultint64(field));; |
|
case UPB_TYPE_UINT32: return UINT2NUM(upb_fielddef_defaultuint32(field)); |
|
case UPB_TYPE_UINT64: return ULL2NUM(upb_fielddef_defaultuint64(field)); |
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: { |
|
size_t size; |
|
const char *str = upb_fielddef_defaultstr(field, &size); |
|
return get_frozen_string(str, size, |
|
upb_fielddef_type(field) == UPB_TYPE_BYTES); |
|
} |
|
default: return Qnil; |
|
} |
|
} |
|
|
|
VALUE layout_get(MessageLayout* layout, |
|
const void* storage, |
|
const upb_fielddef* field) { |
|
void* memory = slot_memory(layout, storage, field); |
|
const upb_oneofdef* oneof = upb_fielddef_realcontainingoneof(field); |
|
bool field_set; |
|
if (field_contains_hasbit(layout, field)) { |
|
field_set = slot_is_hasbit_set(layout, storage, field); |
|
} else { |
|
field_set = true; |
|
} |
|
|
|
if (oneof) { |
|
uint32_t oneof_case = slot_read_oneof_case(layout, storage, oneof); |
|
if (oneof_case != upb_fielddef_number(field)) { |
|
return layout_get_default(field); |
|
} |
|
return native_slot_get(upb_fielddef_type(field), |
|
field_type_class(layout, field), memory); |
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
|
return *((VALUE *)memory); |
|
} else if (!field_set) { |
|
return layout_get_default(field); |
|
} else { |
|
return native_slot_get(upb_fielddef_type(field), |
|
field_type_class(layout, field), memory); |
|
} |
|
} |
|
|
|
static void check_repeated_field_type(const MessageLayout* layout, VALUE val, |
|
const upb_fielddef* field) { |
|
RepeatedField* self; |
|
assert(upb_fielddef_label(field) == UPB_LABEL_REPEATED); |
|
|
|
if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) || |
|
RTYPEDDATA_TYPE(val) != &RepeatedField_type) { |
|
rb_raise(cTypeError, "Expected repeated field array"); |
|
} |
|
|
|
self = ruby_to_RepeatedField(val); |
|
if (self->field_type != upb_fielddef_type(field)) { |
|
rb_raise(cTypeError, "Repeated field array has wrong element type"); |
|
} |
|
|
|
if (self->field_type_class != field_type_class(layout, field)) { |
|
rb_raise(cTypeError, "Repeated field array has wrong message/enum class"); |
|
} |
|
} |
|
|
|
static void check_map_field_type(const MessageLayout* layout, VALUE val, |
|
const upb_fielddef* field) { |
|
const upb_fielddef* key_field = map_field_key(field); |
|
const upb_fielddef* value_field = map_field_value(field); |
|
Map* self; |
|
|
|
if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) || |
|
RTYPEDDATA_TYPE(val) != &Map_type) { |
|
rb_raise(cTypeError, "Expected Map instance"); |
|
} |
|
|
|
self = ruby_to_Map(val); |
|
if (self->key_type != upb_fielddef_type(key_field)) { |
|
rb_raise(cTypeError, "Map key type does not match field's key type"); |
|
} |
|
if (self->value_type != upb_fielddef_type(value_field)) { |
|
rb_raise(cTypeError, "Map value type does not match field's value type"); |
|
} |
|
if (self->value_type_class != field_type_class(layout, value_field)) { |
|
rb_raise(cTypeError, "Map value type has wrong message/enum class"); |
|
} |
|
} |
|
|
|
void layout_set(MessageLayout* layout, |
|
void* storage, |
|
const upb_fielddef* field, |
|
VALUE val) { |
|
void* memory = slot_memory(layout, storage, field); |
|
const upb_oneofdef* oneof = upb_fielddef_realcontainingoneof(field); |
|
|
|
if (oneof) { |
|
uint32_t* oneof_case = slot_oneof_case(layout, storage, oneof); |
|
if (val == Qnil) { |
|
// Assigning nil to a oneof field clears the oneof completely. |
|
*oneof_case = ONEOF_CASE_NONE; |
|
memset(memory, 0, NATIVE_SLOT_MAX_SIZE); |
|
} else { |
|
// The transition between field types for a single oneof (union) slot is |
|
// somewhat complex because we need to ensure that a GC triggered at any |
|
// point by a call into the Ruby VM sees a valid state for this field and |
|
// does not either go off into the weeds (following what it thinks is a |
|
// VALUE but is actually a different field type) or miss an object (seeing |
|
// what it thinks is a primitive field but is actually a VALUE for the new |
|
// field type). |
|
// |
|
// In order for the transition to be safe, the oneof case slot must be in |
|
// sync with the value slot whenever the Ruby VM has been called. Thus, we |
|
// use native_slot_set_value_and_case(), which ensures that both the value |
|
// and case number are altered atomically (w.r.t. the Ruby VM). |
|
uint32_t case_value = upb_fielddef_number(field); |
|
if (upb_fielddef_issubmsg(field) || upb_fielddef_isstring(field)) { |
|
case_value |= ONEOF_CASE_MASK; |
|
} |
|
|
|
native_slot_set_value_and_case( |
|
upb_fielddef_name(field), upb_fielddef_type(field), |
|
field_type_class(layout, field), memory, val, oneof_case, case_value); |
|
} |
|
} else if (is_map_field(field)) { |
|
check_map_field_type(layout, val, field); |
|
DEREF(memory, VALUE) = val; |
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
|
check_repeated_field_type(layout, val, field); |
|
DEREF(memory, VALUE) = val; |
|
} else { |
|
native_slot_set(upb_fielddef_name(field), upb_fielddef_type(field), |
|
field_type_class(layout, field), memory, val); |
|
} |
|
|
|
if (layout->fields[upb_fielddef_index(field)].hasbit != |
|
MESSAGE_FIELD_NO_HASBIT) { |
|
if (val == Qnil) { |
|
// No other field type has a hasbit and allows nil assignment. |
|
if (upb_fielddef_type(field) != UPB_TYPE_MESSAGE) { |
|
fprintf(stderr, "field: %s\n", upb_fielddef_fullname(field)); |
|
} |
|
assert(upb_fielddef_type(field) == UPB_TYPE_MESSAGE); |
|
slot_clear_hasbit(layout, storage, field); |
|
} else { |
|
slot_set_hasbit(layout, storage, field); |
|
} |
|
} |
|
} |
|
|
|
void layout_init(MessageLayout* layout, void* storage) { |
|
VALUE* value = (VALUE*)CHARPTR_AT(storage, layout->value_offset); |
|
int i; |
|
|
|
for (i = 0; i < layout->repeated_count; i++, value++) { |
|
*value = RepeatedField_new_this_type(*value); |
|
} |
|
|
|
for (i = 0; i < layout->map_count; i++, value++) { |
|
*value = Map_new_this_type(*value); |
|
} |
|
} |
|
|
|
void layout_mark(MessageLayout* layout, void* storage) { |
|
VALUE* values = (VALUE*)CHARPTR_AT(storage, layout->value_offset); |
|
int noneofs = upb_msgdef_numrealoneofs(layout->msgdef); |
|
int i; |
|
|
|
for (i = 0; i < layout->value_count; i++) { |
|
rb_gc_mark(values[i]); |
|
} |
|
|
|
for (i = 0; i < noneofs; i++) { |
|
MessageOneof* oneof = &layout->oneofs[i]; |
|
uint32_t* case_ptr = (uint32_t*)CHARPTR_AT(storage, oneof->case_offset); |
|
if (*case_ptr & ONEOF_CASE_MASK) { |
|
rb_gc_mark(DEREF_OFFSET(storage, oneof->offset, VALUE)); |
|
} |
|
} |
|
} |
|
|
|
void layout_dup(MessageLayout* layout, void* to, void* from) { |
|
upb_msg_field_iter it; |
|
for (upb_msg_field_begin(&it, layout->msgdef); |
|
!upb_msg_field_done(&it); |
|
upb_msg_field_next(&it)) { |
|
const upb_fielddef* field = upb_msg_iter_field(&it); |
|
const upb_oneofdef* oneof = upb_fielddef_realcontainingoneof(field); |
|
|
|
void* to_memory = slot_memory(layout, to, field); |
|
void* from_memory = slot_memory(layout, from, field); |
|
|
|
if (oneof) { |
|
uint32_t* to_oneof_case = slot_oneof_case(layout, to, oneof); |
|
uint32_t* from_oneof_case = slot_oneof_case(layout, from, oneof); |
|
if (slot_read_oneof_case(layout, from, oneof) == |
|
upb_fielddef_number(field)) { |
|
*to_oneof_case = *from_oneof_case; |
|
native_slot_dup(upb_fielddef_type(field), to_memory, from_memory); |
|
} |
|
} else if (is_map_field(field)) { |
|
DEREF(to_memory, VALUE) = Map_dup(DEREF(from_memory, VALUE)); |
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
|
DEREF(to_memory, VALUE) = RepeatedField_dup(DEREF(from_memory, VALUE)); |
|
} else { |
|
if (field_contains_hasbit(layout, field)) { |
|
if (!slot_is_hasbit_set(layout, from, field)) continue; |
|
slot_set_hasbit(layout, to, field); |
|
} |
|
|
|
native_slot_dup(upb_fielddef_type(field), to_memory, from_memory); |
|
} |
|
} |
|
} |
|
|
|
void layout_deep_copy(MessageLayout* layout, void* to, void* from) { |
|
upb_msg_field_iter it; |
|
for (upb_msg_field_begin(&it, layout->msgdef); |
|
!upb_msg_field_done(&it); |
|
upb_msg_field_next(&it)) { |
|
const upb_fielddef* field = upb_msg_iter_field(&it); |
|
const upb_oneofdef* oneof = upb_fielddef_realcontainingoneof(field); |
|
|
|
void* to_memory = slot_memory(layout, to, field); |
|
void* from_memory = slot_memory(layout, from, field); |
|
|
|
if (oneof) { |
|
uint32_t* to_oneof_case = slot_oneof_case(layout, to, oneof); |
|
uint32_t* from_oneof_case = slot_oneof_case(layout, from, oneof); |
|
if (slot_read_oneof_case(layout, from, oneof) == |
|
upb_fielddef_number(field)) { |
|
*to_oneof_case = *from_oneof_case; |
|
native_slot_deep_copy(upb_fielddef_type(field), |
|
field_type_class(layout, field), to_memory, |
|
from_memory); |
|
} |
|
} else if (is_map_field(field)) { |
|
DEREF(to_memory, VALUE) = |
|
Map_deep_copy(DEREF(from_memory, VALUE)); |
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
|
DEREF(to_memory, VALUE) = |
|
RepeatedField_deep_copy(DEREF(from_memory, VALUE)); |
|
} else { |
|
if (field_contains_hasbit(layout, field)) { |
|
if (!slot_is_hasbit_set(layout, from, field)) continue; |
|
slot_set_hasbit(layout, to, field); |
|
} |
|
|
|
native_slot_deep_copy(upb_fielddef_type(field), |
|
field_type_class(layout, field), to_memory, |
|
from_memory); |
|
} |
|
} |
|
} |
|
|
|
VALUE layout_eq(MessageLayout* layout, void* msg1, void* msg2) { |
|
upb_msg_field_iter it; |
|
for (upb_msg_field_begin(&it, layout->msgdef); |
|
!upb_msg_field_done(&it); |
|
upb_msg_field_next(&it)) { |
|
const upb_fielddef* field = upb_msg_iter_field(&it); |
|
const upb_oneofdef* oneof = upb_fielddef_realcontainingoneof(field); |
|
|
|
void* msg1_memory = slot_memory(layout, msg1, field); |
|
void* msg2_memory = slot_memory(layout, msg2, field); |
|
|
|
if (oneof) { |
|
uint32_t* msg1_oneof_case = slot_oneof_case(layout, msg1, oneof); |
|
uint32_t* msg2_oneof_case = slot_oneof_case(layout, msg2, oneof); |
|
if (*msg1_oneof_case != *msg2_oneof_case || |
|
(slot_read_oneof_case(layout, msg1, oneof) == |
|
upb_fielddef_number(field) && |
|
!native_slot_eq(upb_fielddef_type(field), |
|
field_type_class(layout, field), msg1_memory, |
|
msg2_memory))) { |
|
return Qfalse; |
|
} |
|
} else if (is_map_field(field)) { |
|
if (!Map_eq(DEREF(msg1_memory, VALUE), |
|
DEREF(msg2_memory, VALUE))) { |
|
return Qfalse; |
|
} |
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
|
if (!RepeatedField_eq(DEREF(msg1_memory, VALUE), |
|
DEREF(msg2_memory, VALUE))) { |
|
return Qfalse; |
|
} |
|
} else { |
|
if (field_contains_hasbit(layout, field) && |
|
slot_is_hasbit_set(layout, msg1, field) != |
|
slot_is_hasbit_set(layout, msg2, field)) { |
|
// TODO(haberman): I don't think we should actually care about hasbits |
|
// here: an unset default should be able to equal a set default. But we |
|
// can address this later (will also have to make sure defaults are |
|
// being properly set when hasbit is clear). |
|
return Qfalse; |
|
} |
|
if (!native_slot_eq(upb_fielddef_type(field), |
|
field_type_class(layout, field), msg1_memory, |
|
msg2_memory)) { |
|
return Qfalse; |
|
} |
|
} |
|
} |
|
return Qtrue; |
|
} |
|
|
|
VALUE layout_hash(MessageLayout* layout, void* storage) { |
|
upb_msg_field_iter it; |
|
st_index_t h = rb_hash_start(0); |
|
VALUE hash_sym = rb_intern("hash"); |
|
for (upb_msg_field_begin(&it, layout->msgdef); |
|
!upb_msg_field_done(&it); |
|
upb_msg_field_next(&it)) { |
|
const upb_fielddef* field = upb_msg_iter_field(&it); |
|
VALUE field_val = layout_get(layout, storage, field); |
|
h = rb_hash_uint(h, NUM2LONG(rb_funcall(field_val, hash_sym, 0))); |
|
} |
|
h = rb_hash_end(h); |
|
|
|
return INT2FIX(h); |
|
} |
|
|
|
VALUE layout_inspect(MessageLayout* layout, void* storage) { |
|
VALUE str = rb_str_new2(""); |
|
|
|
upb_msg_field_iter it; |
|
bool first = true; |
|
for (upb_msg_field_begin(&it, layout->msgdef); |
|
!upb_msg_field_done(&it); |
|
upb_msg_field_next(&it)) { |
|
const upb_fielddef* field = upb_msg_iter_field(&it); |
|
VALUE field_val = layout_get(layout, storage, field); |
|
|
|
if (!first) { |
|
str = rb_str_cat2(str, ", "); |
|
} else { |
|
first = false; |
|
} |
|
str = rb_str_cat2(str, upb_fielddef_name(field)); |
|
str = rb_str_cat2(str, ": "); |
|
|
|
str = rb_str_append(str, rb_funcall(field_val, rb_intern("inspect"), 0)); |
|
} |
|
|
|
return str; |
|
}
|
|
|