Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
982 lines
33 KiB
982 lines
33 KiB
#region Copyright notice and license |
|
// Protocol Buffers - Google's data interchange format |
|
// Copyright 2008 Google Inc. All rights reserved. |
|
// http://github.com/jskeet/dotnet-protobufs/ |
|
// Original C++/Java/Python code: |
|
// http://code.google.com/p/protobuf/ |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
#endregion |
|
|
|
using System; |
|
using System.Collections.Generic; |
|
using System.IO; |
|
using System.Text; |
|
using Google.ProtocolBuffers.Descriptors; |
|
|
|
namespace Google.ProtocolBuffers { |
|
|
|
/// <summary> |
|
/// Readings and decodes protocol message fields. |
|
/// </summary> |
|
/// <remarks> |
|
/// This class contains two kinds of methods: methods that read specific |
|
/// protocol message constructs and field types (e.g. ReadTag and |
|
/// ReadInt32) and methods that read low-level values (e.g. |
|
/// ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol |
|
/// messages, you should use the former methods, but if you are reading some |
|
/// other format of your own design, use the latter. The names of the former |
|
/// methods are taken from the protocol buffer type names, not .NET types. |
|
/// (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.) |
|
/// |
|
/// TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly, |
|
/// set at construction time. |
|
/// </remarks> |
|
public sealed class CodedInputStream { |
|
private readonly byte[] buffer; |
|
private int bufferSize; |
|
private int bufferSizeAfterLimit = 0; |
|
private int bufferPos = 0; |
|
private readonly Stream input; |
|
private uint lastTag = 0; |
|
|
|
internal const int DefaultRecursionLimit = 64; |
|
internal const int DefaultSizeLimit = 64 << 20; // 64MB |
|
internal const int BufferSize = 4096; |
|
|
|
/// <summary> |
|
/// The total number of bytes read before the current buffer. The |
|
/// total bytes read up to the current position can be computed as |
|
/// totalBytesRetired + bufferPos. |
|
/// </summary> |
|
private int totalBytesRetired = 0; |
|
|
|
/// <summary> |
|
/// The absolute position of the end of the current message. |
|
/// </summary> |
|
private int currentLimit = int.MaxValue; |
|
|
|
/// <summary> |
|
/// <see cref="SetRecursionLimit"/> |
|
/// </summary> |
|
private int recursionDepth = 0; |
|
private int recursionLimit = DefaultRecursionLimit; |
|
|
|
/// <summary> |
|
/// <see cref="SetSizeLimit"/> |
|
/// </summary> |
|
private int sizeLimit = DefaultSizeLimit; |
|
|
|
#region Construction |
|
/// <summary> |
|
/// Creates a new CodedInputStream reading data from the given |
|
/// stream. |
|
/// </summary> |
|
public static CodedInputStream CreateInstance(Stream input) { |
|
return new CodedInputStream(input); |
|
} |
|
|
|
/// <summary> |
|
/// Creates a new CodedInputStream reading data from the given |
|
/// byte array. |
|
/// </summary> |
|
public static CodedInputStream CreateInstance(byte[] buf) { |
|
return new CodedInputStream(buf, 0, buf.Length); |
|
} |
|
|
|
/// <summary> |
|
/// Creates a new CodedInputStream that reads from the given |
|
/// byte array slice. |
|
/// </summary> |
|
public static CodedInputStream CreateInstance(byte[] buf, int offset, int length) { |
|
return new CodedInputStream(buf, offset, length); |
|
} |
|
|
|
private CodedInputStream(byte[] buffer, int offset, int length) { |
|
this.buffer = buffer; |
|
this.bufferPos = offset; |
|
this.bufferSize = offset + length; |
|
this.input = null; |
|
} |
|
|
|
private CodedInputStream(Stream input) { |
|
this.buffer = new byte[BufferSize]; |
|
this.bufferSize = 0; |
|
this.input = input; |
|
} |
|
#endregion |
|
|
|
#region Validation |
|
/// <summary> |
|
/// Verifies that the last call to ReadTag() returned the given tag value. |
|
/// This is used to verify that a nested group ended with the correct |
|
/// end tag. |
|
/// </summary> |
|
/// <exception cref="InvalidProtocolBufferException">The last |
|
/// tag read was not the one specified</exception> |
|
[CLSCompliant(false)] |
|
public void CheckLastTagWas(uint value) { |
|
if (lastTag != value) { |
|
throw InvalidProtocolBufferException.InvalidEndTag(); |
|
} |
|
} |
|
#endregion |
|
|
|
#region Reading of tags etc |
|
/// <summary> |
|
/// Attempt to read a field tag, returning 0 if we have reached the end |
|
/// of the input data. Protocol message parsers use this to read tags, |
|
/// since a protocol message may legally end wherever a tag occurs, and |
|
/// zero is not a valid tag number. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public uint ReadTag() { |
|
if (IsAtEnd) { |
|
lastTag = 0; |
|
return 0; |
|
} |
|
|
|
lastTag = ReadRawVarint32(); |
|
if (lastTag == 0) { |
|
// If we actually read zero, that's not a valid tag. |
|
throw InvalidProtocolBufferException.InvalidTag(); |
|
} |
|
return lastTag; |
|
} |
|
|
|
/// <summary> |
|
/// Read a double field from the stream. |
|
/// </summary> |
|
public double ReadDouble() { |
|
#if SILVERLIGHT2 || COMPACT_FRAMEWORK_35 |
|
byte[] bytes = ReadRawBytes(8); |
|
return BitConverter.ToDouble(bytes, 0); |
|
#else |
|
return BitConverter.Int64BitsToDouble((long) ReadRawLittleEndian64()); |
|
#endif |
|
} |
|
|
|
/// <summary> |
|
/// Read a float field from the stream. |
|
/// </summary> |
|
public float ReadFloat() { |
|
// TODO(jonskeet): Test this on different endiannesses |
|
uint raw = ReadRawLittleEndian32(); |
|
byte[] rawBytes = BitConverter.GetBytes(raw); |
|
return BitConverter.ToSingle(rawBytes, 0); |
|
} |
|
|
|
/// <summary> |
|
/// Read a uint64 field from the stream. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public ulong ReadUInt64() { |
|
return ReadRawVarint64(); |
|
} |
|
|
|
/// <summary> |
|
/// Read an int64 field from the stream. |
|
/// </summary> |
|
public long ReadInt64() { |
|
return (long) ReadRawVarint64(); |
|
} |
|
|
|
/// <summary> |
|
/// Read an int32 field from the stream. |
|
/// </summary> |
|
public int ReadInt32() { |
|
return (int) ReadRawVarint32(); |
|
} |
|
|
|
/// <summary> |
|
/// Read a fixed64 field from the stream. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public ulong ReadFixed64() { |
|
return ReadRawLittleEndian64(); |
|
} |
|
|
|
/// <summary> |
|
/// Read a fixed32 field from the stream. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public uint ReadFixed32() { |
|
return ReadRawLittleEndian32(); |
|
} |
|
|
|
/// <summary> |
|
/// Read a bool field from the stream. |
|
/// </summary> |
|
public bool ReadBool() { |
|
return ReadRawVarint32() != 0; |
|
} |
|
|
|
/// <summary> |
|
/// Reads a string field from the stream. |
|
/// </summary> |
|
public String ReadString() { |
|
int size = (int) ReadRawVarint32(); |
|
// No need to read any data for an empty string. |
|
if (size == 0) { |
|
return ""; |
|
} |
|
if (size <= bufferSize - bufferPos) { |
|
// Fast path: We already have the bytes in a contiguous buffer, so |
|
// just copy directly from it. |
|
String result = Encoding.UTF8.GetString(buffer, bufferPos, size); |
|
bufferPos += size; |
|
return result; |
|
} |
|
// Slow path: Build a byte array first then copy it. |
|
return Encoding.UTF8.GetString(ReadRawBytes(size), 0, size); |
|
} |
|
|
|
/// <summary> |
|
/// Reads a group field value from the stream. |
|
/// </summary> |
|
public void ReadGroup(int fieldNumber, IBuilder builder, |
|
ExtensionRegistry extensionRegistry) { |
|
if (recursionDepth >= recursionLimit) { |
|
throw InvalidProtocolBufferException.RecursionLimitExceeded(); |
|
} |
|
++recursionDepth; |
|
builder.WeakMergeFrom(this, extensionRegistry); |
|
CheckLastTagWas(WireFormat.MakeTag(fieldNumber, WireFormat.WireType.EndGroup)); |
|
--recursionDepth; |
|
} |
|
|
|
/// <summary> |
|
/// Reads a group field value from the stream and merges it into the given |
|
/// UnknownFieldSet. |
|
/// </summary> |
|
public void ReadUnknownGroup(int fieldNumber, UnknownFieldSet.Builder builder) { |
|
if (recursionDepth >= recursionLimit) { |
|
throw InvalidProtocolBufferException.RecursionLimitExceeded(); |
|
} |
|
++recursionDepth; |
|
builder.MergeFrom(this); |
|
CheckLastTagWas(WireFormat.MakeTag(fieldNumber, WireFormat.WireType.EndGroup)); |
|
--recursionDepth; |
|
} |
|
|
|
/// <summary> |
|
/// Reads an embedded message field value from the stream. |
|
/// </summary> |
|
public void ReadMessage(IBuilder builder, ExtensionRegistry extensionRegistry) { |
|
int length = (int) ReadRawVarint32(); |
|
if (recursionDepth >= recursionLimit) { |
|
throw InvalidProtocolBufferException.RecursionLimitExceeded(); |
|
} |
|
int oldLimit = PushLimit(length); |
|
++recursionDepth; |
|
builder.WeakMergeFrom(this, extensionRegistry); |
|
CheckLastTagWas(0); |
|
--recursionDepth; |
|
PopLimit(oldLimit); |
|
} |
|
|
|
/// <summary> |
|
/// Reads a bytes field value from the stream. |
|
/// </summary> |
|
public ByteString ReadBytes() { |
|
int size = (int) ReadRawVarint32(); |
|
if (size < bufferSize - bufferPos && size > 0) { |
|
// Fast path: We already have the bytes in a contiguous buffer, so |
|
// just copy directly from it. |
|
ByteString result = ByteString.CopyFrom(buffer, bufferPos, size); |
|
bufferPos += size; |
|
return result; |
|
} else { |
|
// Slow path: Build a byte array first then copy it. |
|
return ByteString.CopyFrom(ReadRawBytes(size)); |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Reads a uint32 field value from the stream. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public uint ReadUInt32() { |
|
return ReadRawVarint32(); |
|
} |
|
|
|
/// <summary> |
|
/// Reads an enum field value from the stream. The caller is responsible |
|
/// for converting the numeric value to an actual enum. |
|
/// </summary> |
|
public int ReadEnum() { |
|
return (int) ReadRawVarint32(); |
|
} |
|
|
|
/// <summary> |
|
/// Reads an sfixed32 field value from the stream. |
|
/// </summary> |
|
public int ReadSFixed32() { |
|
return (int) ReadRawLittleEndian32(); |
|
} |
|
|
|
/// <summary> |
|
/// Reads an sfixed64 field value from the stream. |
|
/// </summary> |
|
public long ReadSFixed64() { |
|
return (long) ReadRawLittleEndian64(); |
|
} |
|
|
|
/// <summary> |
|
/// Reads an sint32 field value from the stream. |
|
/// </summary> |
|
public int ReadSInt32() { |
|
return DecodeZigZag32(ReadRawVarint32()); |
|
} |
|
|
|
/// <summary> |
|
/// Reads an sint64 field value from the stream. |
|
/// </summary> |
|
public long ReadSInt64() { |
|
return DecodeZigZag64(ReadRawVarint64()); |
|
} |
|
|
|
/// <summary> |
|
/// Reads a field of any primitive type. Enums, groups and embedded |
|
/// messages are not handled by this method. |
|
/// </summary> |
|
public object ReadPrimitiveField(FieldType fieldType) { |
|
switch (fieldType) { |
|
case FieldType.Double: return ReadDouble(); |
|
case FieldType.Float: return ReadFloat(); |
|
case FieldType.Int64: return ReadInt64(); |
|
case FieldType.UInt64: return ReadUInt64(); |
|
case FieldType.Int32: return ReadInt32(); |
|
case FieldType.Fixed64: return ReadFixed64(); |
|
case FieldType.Fixed32: return ReadFixed32(); |
|
case FieldType.Bool: return ReadBool(); |
|
case FieldType.String: return ReadString(); |
|
case FieldType.Bytes: return ReadBytes(); |
|
case FieldType.UInt32: return ReadUInt32(); |
|
case FieldType.SFixed32: return ReadSFixed32(); |
|
case FieldType.SFixed64: return ReadSFixed64(); |
|
case FieldType.SInt32: return ReadSInt32(); |
|
case FieldType.SInt64: return ReadSInt64(); |
|
case FieldType.Group: |
|
throw new ArgumentException("ReadPrimitiveField() cannot handle nested groups."); |
|
case FieldType.Message: |
|
throw new ArgumentException("ReadPrimitiveField() cannot handle embedded messages."); |
|
// We don't handle enums because we don't know what to do if the |
|
// value is not recognized. |
|
case FieldType.Enum: |
|
throw new ArgumentException("ReadPrimitiveField() cannot handle enums."); |
|
default: |
|
throw new ArgumentOutOfRangeException("Invalid field type " + fieldType); |
|
} |
|
} |
|
|
|
#endregion |
|
|
|
#region Underlying reading primitives |
|
|
|
/// <summary> |
|
/// Same code as ReadRawVarint32, but read each byte individually, checking for |
|
/// buffer overflow. |
|
/// </summary> |
|
private uint SlowReadRawVarint32() { |
|
int tmp = ReadRawByte(); |
|
if (tmp < 128) { |
|
return (uint)tmp; |
|
} |
|
int result = tmp & 0x7f; |
|
if ((tmp = ReadRawByte()) < 128) { |
|
result |= tmp << 7; |
|
} else { |
|
result |= (tmp & 0x7f) << 7; |
|
if ((tmp = ReadRawByte()) < 128) { |
|
result |= tmp << 14; |
|
} else { |
|
result |= (tmp & 0x7f) << 14; |
|
if ((tmp = ReadRawByte()) < 128) { |
|
result |= tmp << 21; |
|
} else { |
|
result |= (tmp & 0x7f) << 21; |
|
result |= (tmp = ReadRawByte()) << 28; |
|
if (tmp >= 128) { |
|
// Discard upper 32 bits. |
|
for (int i = 0; i < 5; i++) { |
|
if (ReadRawByte() < 128) return (uint)result; |
|
} |
|
throw InvalidProtocolBufferException.MalformedVarint(); |
|
} |
|
} |
|
} |
|
} |
|
return (uint)result; |
|
} |
|
|
|
/// <summary> |
|
/// Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits. |
|
/// This method is optimised for the case where we've got lots of data in the buffer. |
|
/// That means we can check the size just once, then just read directly from the buffer |
|
/// without constant rechecking of the buffer length. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public uint ReadRawVarint32() { |
|
if (bufferPos + 5 > bufferSize) { |
|
return SlowReadRawVarint32(); |
|
} |
|
|
|
int tmp = buffer[bufferPos++]; |
|
if (tmp < 128) { |
|
return (uint)tmp; |
|
} |
|
int result = tmp & 0x7f; |
|
if ((tmp = buffer[bufferPos++]) < 128) { |
|
result |= tmp << 7; |
|
} else { |
|
result |= (tmp & 0x7f) << 7; |
|
if ((tmp = buffer[bufferPos++]) < 128) { |
|
result |= tmp << 14; |
|
} else { |
|
result |= (tmp & 0x7f) << 14; |
|
if ((tmp = buffer[bufferPos++]) < 128) { |
|
result |= tmp << 21; |
|
} else { |
|
result |= (tmp & 0x7f) << 21; |
|
result |= (tmp = buffer[bufferPos++]) << 28; |
|
if (tmp >= 128) { |
|
// Discard upper 32 bits. |
|
// Note that this has to use ReadRawByte() as we only ensure we've |
|
// got at least 5 bytes at the start of the method. This lets us |
|
// use the fast path in more cases, and we rarely hit this section of code. |
|
for (int i = 0; i < 5; i++) { |
|
if (ReadRawByte() < 128) return (uint)result; |
|
} |
|
throw InvalidProtocolBufferException.MalformedVarint(); |
|
} |
|
} |
|
} |
|
} |
|
return (uint)result; |
|
} |
|
|
|
/// <summary> |
|
/// Reads a varint from the input one byte at a time, so that it does not |
|
/// read any bytes after the end of the varint. If you simply wrapped the |
|
/// stream in a CodedInputStream and used ReadRawVarint32(Stream)} |
|
/// then you would probably end up reading past the end of the varint since |
|
/// CodedInputStream buffers its input. |
|
/// </summary> |
|
/// <param name="input"></param> |
|
/// <returns></returns> |
|
internal static uint ReadRawVarint32(Stream input) { |
|
int result = 0; |
|
int offset = 0; |
|
for (; offset < 32; offset += 7) { |
|
int b = input.ReadByte(); |
|
if (b == -1) { |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
result |= (b & 0x7f) << offset; |
|
if ((b & 0x80) == 0) { |
|
return (uint) result; |
|
} |
|
} |
|
// Keep reading up to 64 bits. |
|
for (; offset < 64; offset += 7) { |
|
int b = input.ReadByte(); |
|
if (b == -1) { |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
if ((b & 0x80) == 0) { |
|
return (uint) result; |
|
} |
|
} |
|
throw InvalidProtocolBufferException.MalformedVarint(); |
|
} |
|
|
|
/// <summary> |
|
/// Read a raw varint from the stream. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public ulong ReadRawVarint64() { |
|
int shift = 0; |
|
ulong result = 0; |
|
while (shift < 64) { |
|
byte b = ReadRawByte(); |
|
result |= (ulong)(b & 0x7F) << shift; |
|
if ((b & 0x80) == 0) { |
|
return result; |
|
} |
|
shift += 7; |
|
} |
|
throw InvalidProtocolBufferException.MalformedVarint(); |
|
} |
|
|
|
/// <summary> |
|
/// Read a 32-bit little-endian integer from the stream. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public uint ReadRawLittleEndian32() { |
|
uint b1 = ReadRawByte(); |
|
uint b2 = ReadRawByte(); |
|
uint b3 = ReadRawByte(); |
|
uint b4 = ReadRawByte(); |
|
return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24); |
|
} |
|
|
|
/// <summary> |
|
/// Read a 64-bit little-endian integer from the stream. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public ulong ReadRawLittleEndian64() { |
|
ulong b1 = ReadRawByte(); |
|
ulong b2 = ReadRawByte(); |
|
ulong b3 = ReadRawByte(); |
|
ulong b4 = ReadRawByte(); |
|
ulong b5 = ReadRawByte(); |
|
ulong b6 = ReadRawByte(); |
|
ulong b7 = ReadRawByte(); |
|
ulong b8 = ReadRawByte(); |
|
return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24) |
|
| (b5 << 32) | (b6 << 40) | (b7 << 48) | (b8 << 56); |
|
} |
|
#endregion |
|
|
|
/// <summary> |
|
/// Decode a 32-bit value with ZigZag encoding. |
|
/// </summary> |
|
/// <remarks> |
|
/// ZigZag encodes signed integers into values that can be efficiently |
|
/// encoded with varint. (Otherwise, negative values must be |
|
/// sign-extended to 64 bits to be varint encoded, thus always taking |
|
/// 10 bytes on the wire.) |
|
/// </remarks> |
|
[CLSCompliant(false)] |
|
public static int DecodeZigZag32(uint n) { |
|
return (int)(n >> 1) ^ -(int)(n & 1); |
|
} |
|
|
|
/// <summary> |
|
/// Decode a 32-bit value with ZigZag encoding. |
|
/// </summary> |
|
/// <remarks> |
|
/// ZigZag encodes signed integers into values that can be efficiently |
|
/// encoded with varint. (Otherwise, negative values must be |
|
/// sign-extended to 64 bits to be varint encoded, thus always taking |
|
/// 10 bytes on the wire.) |
|
/// </remarks> |
|
[CLSCompliant(false)] |
|
public static long DecodeZigZag64(ulong n) { |
|
return (long)(n >> 1) ^ -(long)(n & 1); |
|
} |
|
|
|
/// <summary> |
|
/// Set the maximum message recursion depth. |
|
/// </summary> |
|
/// <remarks> |
|
/// In order to prevent malicious |
|
/// messages from causing stack overflows, CodedInputStream limits |
|
/// how deeply messages may be nested. The default limit is 64. |
|
/// </remarks> |
|
public int SetRecursionLimit(int limit) { |
|
if (limit < 0) { |
|
throw new ArgumentOutOfRangeException("Recursion limit cannot be negative: " + limit); |
|
} |
|
int oldLimit = recursionLimit; |
|
recursionLimit = limit; |
|
return oldLimit; |
|
} |
|
|
|
/// <summary> |
|
/// Set the maximum message size. |
|
/// </summary> |
|
/// <remarks> |
|
/// In order to prevent malicious messages from exhausting memory or |
|
/// causing integer overflows, CodedInputStream limits how large a message may be. |
|
/// The default limit is 64MB. You should set this limit as small |
|
/// as you can without harming your app's functionality. Note that |
|
/// size limits only apply when reading from an InputStream, not |
|
/// when constructed around a raw byte array (nor with ByteString.NewCodedInput). |
|
/// If you want to read several messages from a single CodedInputStream, you |
|
/// can call ResetSizeCounter() after each message to avoid hitting the |
|
/// size limit. |
|
/// </remarks> |
|
public int SetSizeLimit(int limit) { |
|
if (limit < 0) { |
|
throw new ArgumentOutOfRangeException("Size limit cannot be negative: " + limit); |
|
} |
|
int oldLimit = sizeLimit; |
|
sizeLimit = limit; |
|
return oldLimit; |
|
} |
|
|
|
#region Internal reading and buffer management |
|
/// <summary> |
|
/// Resets the current size counter to zero (see SetSizeLimit). |
|
/// </summary> |
|
public void ResetSizeCounter() { |
|
totalBytesRetired = 0; |
|
} |
|
|
|
/// <summary> |
|
/// Sets currentLimit to (current position) + byteLimit. This is called |
|
/// when descending into a length-delimited embedded message. The previous |
|
/// limit is returned. |
|
/// </summary> |
|
/// <returns>The old limit.</returns> |
|
public int PushLimit(int byteLimit) { |
|
if (byteLimit < 0) { |
|
throw InvalidProtocolBufferException.NegativeSize(); |
|
} |
|
byteLimit += totalBytesRetired + bufferPos; |
|
int oldLimit = currentLimit; |
|
if (byteLimit > oldLimit) { |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
currentLimit = byteLimit; |
|
|
|
RecomputeBufferSizeAfterLimit(); |
|
|
|
return oldLimit; |
|
} |
|
|
|
private void RecomputeBufferSizeAfterLimit() { |
|
bufferSize += bufferSizeAfterLimit; |
|
int bufferEnd = totalBytesRetired + bufferSize; |
|
if (bufferEnd > currentLimit) { |
|
// Limit is in current buffer. |
|
bufferSizeAfterLimit = bufferEnd - currentLimit; |
|
bufferSize -= bufferSizeAfterLimit; |
|
} else { |
|
bufferSizeAfterLimit = 0; |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Discards the current limit, returning the previous limit. |
|
/// </summary> |
|
public void PopLimit(int oldLimit) { |
|
currentLimit = oldLimit; |
|
RecomputeBufferSizeAfterLimit(); |
|
} |
|
|
|
/// <summary> |
|
/// Returns whether or not all the data before the limit has been read. |
|
/// </summary> |
|
/// <returns></returns> |
|
public bool ReachedLimit { |
|
get { |
|
if (currentLimit == int.MaxValue) { |
|
return false; |
|
} |
|
int currentAbsolutePosition = totalBytesRetired + bufferPos; |
|
return currentAbsolutePosition >= currentLimit; |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Returns true if the stream has reached the end of the input. This is the |
|
/// case if either the end of the underlying input source has been reached or |
|
/// the stream has reached a limit created using PushLimit. |
|
/// </summary> |
|
public bool IsAtEnd { |
|
get { |
|
return bufferPos == bufferSize && !RefillBuffer(false); |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Called when buffer is empty to read more bytes from the |
|
/// input. If <paramref name="mustSucceed"/> is true, RefillBuffer() gurantees that |
|
/// either there will be at least one byte in the buffer when it returns |
|
/// or it will throw an exception. If <paramref name="mustSucceed"/> is false, |
|
/// RefillBuffer() returns false if no more bytes were available. |
|
/// </summary> |
|
/// <param name="mustSucceed"></param> |
|
/// <returns></returns> |
|
private bool RefillBuffer(bool mustSucceed) { |
|
if (bufferPos < bufferSize) { |
|
throw new InvalidOperationException("RefillBuffer() called when buffer wasn't empty."); |
|
} |
|
|
|
if (totalBytesRetired + bufferSize == currentLimit) { |
|
// Oops, we hit a limit. |
|
if (mustSucceed) { |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
totalBytesRetired += bufferSize; |
|
|
|
bufferPos = 0; |
|
bufferSize = (input == null) ? 0 : input.Read(buffer, 0, buffer.Length); |
|
if (bufferSize < 0) { |
|
throw new InvalidOperationException("Stream.Read returned a negative count"); |
|
} |
|
if (bufferSize == 0) { |
|
if (mustSucceed) { |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} else { |
|
return false; |
|
} |
|
} else { |
|
RecomputeBufferSizeAfterLimit(); |
|
int totalBytesRead = |
|
totalBytesRetired + bufferSize + bufferSizeAfterLimit; |
|
if (totalBytesRead > sizeLimit || totalBytesRead < 0) { |
|
throw InvalidProtocolBufferException.SizeLimitExceeded(); |
|
} |
|
return true; |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Read one byte from the input. |
|
/// </summary> |
|
/// <exception cref="InvalidProtocolBufferException"> |
|
/// the end of the stream or the current limit was reached |
|
/// </exception> |
|
public byte ReadRawByte() { |
|
if (bufferPos == bufferSize) { |
|
RefillBuffer(true); |
|
} |
|
return buffer[bufferPos++]; |
|
} |
|
|
|
/// <summary> |
|
/// Read a fixed size of bytes from the input. |
|
/// </summary> |
|
/// <exception cref="InvalidProtocolBufferException"> |
|
/// the end of the stream or the current limit was reached |
|
/// </exception> |
|
public byte[] ReadRawBytes(int size) { |
|
if (size < 0) { |
|
throw InvalidProtocolBufferException.NegativeSize(); |
|
} |
|
|
|
if (totalBytesRetired + bufferPos + size > currentLimit) { |
|
// Read to the end of the stream anyway. |
|
SkipRawBytes(currentLimit - totalBytesRetired - bufferPos); |
|
// Then fail. |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
|
|
if (size <= bufferSize - bufferPos) { |
|
// We have all the bytes we need already. |
|
byte[] bytes = new byte[size]; |
|
Array.Copy(buffer, bufferPos, bytes, 0, size); |
|
bufferPos += size; |
|
return bytes; |
|
} else if (size < BufferSize) { |
|
// Reading more bytes than are in the buffer, but not an excessive number |
|
// of bytes. We can safely allocate the resulting array ahead of time. |
|
|
|
// First copy what we have. |
|
byte[] bytes = new byte[size]; |
|
int pos = bufferSize - bufferPos; |
|
Array.Copy(buffer, bufferPos, bytes, 0, pos); |
|
bufferPos = bufferSize; |
|
|
|
// We want to use RefillBuffer() and then copy from the buffer into our |
|
// byte array rather than reading directly into our byte array because |
|
// the input may be unbuffered. |
|
RefillBuffer(true); |
|
|
|
while (size - pos > bufferSize) { |
|
Array.Copy(buffer, 0, bytes, pos, bufferSize); |
|
pos += bufferSize; |
|
bufferPos = bufferSize; |
|
RefillBuffer(true); |
|
} |
|
|
|
Array.Copy(buffer, 0, bytes, pos, size - pos); |
|
bufferPos = size - pos; |
|
|
|
return bytes; |
|
} else { |
|
// The size is very large. For security reasons, we can't allocate the |
|
// entire byte array yet. The size comes directly from the input, so a |
|
// maliciously-crafted message could provide a bogus very large size in |
|
// order to trick the app into allocating a lot of memory. We avoid this |
|
// by allocating and reading only a small chunk at a time, so that the |
|
// malicious message must actually *be* extremely large to cause |
|
// problems. Meanwhile, we limit the allowed size of a message elsewhere. |
|
|
|
// Remember the buffer markers since we'll have to copy the bytes out of |
|
// it later. |
|
int originalBufferPos = bufferPos; |
|
int originalBufferSize = bufferSize; |
|
|
|
// Mark the current buffer consumed. |
|
totalBytesRetired += bufferSize; |
|
bufferPos = 0; |
|
bufferSize = 0; |
|
|
|
// Read all the rest of the bytes we need. |
|
int sizeLeft = size - (originalBufferSize - originalBufferPos); |
|
List<byte[]> chunks = new List<byte[]>(); |
|
|
|
while (sizeLeft > 0) { |
|
byte[] chunk = new byte[Math.Min(sizeLeft, BufferSize)]; |
|
int pos = 0; |
|
while (pos < chunk.Length) { |
|
int n = (input == null) ? -1 : input.Read(chunk, pos, chunk.Length - pos); |
|
if (n <= 0) { |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
totalBytesRetired += n; |
|
pos += n; |
|
} |
|
sizeLeft -= chunk.Length; |
|
chunks.Add(chunk); |
|
} |
|
|
|
// OK, got everything. Now concatenate it all into one buffer. |
|
byte[] bytes = new byte[size]; |
|
|
|
// Start by copying the leftover bytes from this.buffer. |
|
int newPos = originalBufferSize - originalBufferPos; |
|
Array.Copy(buffer, originalBufferPos, bytes, 0, newPos); |
|
|
|
// And now all the chunks. |
|
foreach (byte[] chunk in chunks) { |
|
Array.Copy(chunk, 0, bytes, newPos, chunk.Length); |
|
newPos += chunk.Length; |
|
} |
|
|
|
// Done. |
|
return bytes; |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Reads and discards a single field, given its tag value. |
|
/// </summary> |
|
/// <returns>false if the tag is an end-group tag, in which case |
|
/// nothing is skipped. Otherwise, returns true.</returns> |
|
[CLSCompliant(false)] |
|
public bool SkipField(uint tag) { |
|
switch (WireFormat.GetTagWireType(tag)) { |
|
case WireFormat.WireType.Varint: |
|
ReadInt32(); |
|
return true; |
|
case WireFormat.WireType.Fixed64: |
|
ReadRawLittleEndian64(); |
|
return true; |
|
case WireFormat.WireType.LengthDelimited: |
|
SkipRawBytes((int) ReadRawVarint32()); |
|
return true; |
|
case WireFormat.WireType.StartGroup: |
|
SkipMessage(); |
|
CheckLastTagWas( |
|
WireFormat.MakeTag(WireFormat.GetTagFieldNumber(tag), |
|
WireFormat.WireType.EndGroup)); |
|
return true; |
|
case WireFormat.WireType.EndGroup: |
|
return false; |
|
case WireFormat.WireType.Fixed32: |
|
ReadRawLittleEndian32(); |
|
return true; |
|
default: |
|
throw InvalidProtocolBufferException.InvalidWireType(); |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Reads and discards an entire message. This will read either until EOF |
|
/// or until an endgroup tag, whichever comes first. |
|
/// </summary> |
|
public void SkipMessage() { |
|
while (true) { |
|
uint tag = ReadTag(); |
|
if (tag == 0 || !SkipField(tag)) { |
|
return; |
|
} |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Reads and discards <paramref name="size"/> bytes. |
|
/// </summary> |
|
/// <exception cref="InvalidProtocolBufferException">the end of the stream |
|
/// or the current limit was reached</exception> |
|
public void SkipRawBytes(int size) { |
|
if (size < 0) { |
|
throw InvalidProtocolBufferException.NegativeSize(); |
|
} |
|
|
|
if (totalBytesRetired + bufferPos + size > currentLimit) { |
|
// Read to the end of the stream anyway. |
|
SkipRawBytes(currentLimit - totalBytesRetired - bufferPos); |
|
// Then fail. |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
|
|
if (size <= bufferSize - bufferPos) { |
|
// We have all the bytes we need already. |
|
bufferPos += size; |
|
} else { |
|
// Skipping more bytes than are in the buffer. First skip what we have. |
|
int pos = bufferSize - bufferPos; |
|
totalBytesRetired += pos; |
|
bufferPos = 0; |
|
bufferSize = 0; |
|
|
|
// Then skip directly from the InputStream for the rest. |
|
if (pos < size) { |
|
if (input == null) { |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
SkipImpl(size - pos); |
|
totalBytesRetired += size - pos; |
|
} |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Abstraction of skipping to cope with streams which can't really skip. |
|
/// </summary> |
|
private void SkipImpl(int amountToSkip) { |
|
if (input.CanSeek) { |
|
long previousPosition = input.Position; |
|
input.Position += amountToSkip; |
|
if (input.Position != previousPosition + amountToSkip) { |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
} else { |
|
byte[] skipBuffer = new byte[1024]; |
|
while (amountToSkip > 0) { |
|
int bytesRead = input.Read(skipBuffer, 0, skipBuffer.Length); |
|
if (bytesRead <= 0) { |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
amountToSkip -= bytesRead; |
|
} |
|
} |
|
} |
|
#endregion |
|
} |
|
}
|
|
|