Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

462 lines
18 KiB

//
// upb - a minimalist implementation of protocol buffers.
//
// Copyright (c) 2011-2012 Google Inc. See LICENSE for details.
// Author: Josh Haberman <jhaberman@gmail.com>
//
// The set of upb::*Def classes and upb::SymbolTable allow for defining and
// manipulating schema information (as defined in .proto files).
//
// Defs go through two distinct phases of life:
//
// 1. MUTABLE: when first created, the properties of the def can be set freely
// (for example a message's name, its list of fields, the name/number of
// fields, etc). During this phase the def is *not* thread-safe, and may
// not be used for any purpose except to set its properties (it can't be
// used to parse anything, create any messages in memory, etc).
//
// 2. FINALIZED: the Def::Finzlie() operation finalizes a set of defs,
// which makes them thread-safe and immutable. Finalized defs may only be
// accessed through a CONST POINTER. If you want to modify an existing
// immutable def, copy it with Dup() and modify and finalize the copy.
//
// The refcounting of defs works properly no matter what state the def is in.
// Once the def is finalized it is guaranteed that any def reachable from a
// live def is also live (so a ref on the base of a message tree keeps the
// whole tree alive).
//
// You can test for which stage of life a def is in by calling IsMutable().
// This is particularly useful for dynamic language bindings, which must
// properly guarantee that the dynamic language cannot break the rules laid out
// above.
//
// It would be possible to make the defs thread-safe during stage 1 by using
// mutexes internally and changing any methods returning pointers to return
// copies instead. This could be important if we are integrating with a VM or
// interpreter that does not naturally serialize access to wrapped objects (for
// example, in the case of Python this is not necessary because of the GIL).
#ifndef UPB_DEF_HPP
#define UPB_DEF_HPP
#include <algorithm>
#include <string>
#include <vector>
#include "upb/def.h"
#include "upb/upb.hpp"
namespace upb {
class Def;
class MessageDef;
typedef upb_fieldtype_t FieldType;
typedef upb_label_t Label;
class FieldDef : public upb_fielddef {
public:
static FieldDef* Cast(upb_fielddef *f) { return static_cast<FieldDef*>(f); }
static const FieldDef* Cast(const upb_fielddef *f) {
return static_cast<const FieldDef*>(f);
}
static FieldDef* New(const void *owner) {
return Cast(upb_fielddef_new(owner));
}
FieldDef* Dup(const void *owner) const {
return Cast(upb_fielddef_dup(this, owner));
}
void Ref(const void *owner) { upb_fielddef_ref(this, owner); }
void Unref(const void *owner) { upb_fielddef_unref(this, owner); }
bool IsMutable() const { return upb_fielddef_ismutable(this); }
bool IsFinalized() const { return upb_fielddef_isfinalized(this); }
bool IsString() const { return upb_isstring(this); }
bool IsSequence() const { return upb_isseq(this); }
bool IsSubmessage() const { return upb_issubmsg(this); }
// Simple accessors. /////////////////////////////////////////////////////////
FieldType type() const { return upb_fielddef_type(this); }
Label label() const { return upb_fielddef_label(this); }
int32_t number() const { return upb_fielddef_number(this); }
std::string name() const { return std::string(upb_fielddef_name(this)); }
Value default_() const { return upb_fielddef_default(this); }
Value bound_value() const { return upb_fielddef_fval(this); }
uint16_t offset() const { return upb_fielddef_offset(this); }
int16_t hasbit() const { return upb_fielddef_hasbit(this); }
bool set_type(FieldType type) { return upb_fielddef_settype(this, type); }
bool set_label(Label label) { return upb_fielddef_setlabel(this, label); }
void set_offset(uint16_t offset) { upb_fielddef_setoffset(this, offset); }
void set_hasbit(int16_t hasbit) { upb_fielddef_sethasbit(this, hasbit); }
void set_fval(Value fval) { upb_fielddef_setfval(this, fval); }
void set_accessor(struct _upb_accessor_vtbl* vtbl) {
upb_fielddef_setaccessor(this, vtbl);
}
MessageDef* message();
const MessageDef* message() const;
struct _upb_accessor_vtbl *accessor() const {
return upb_fielddef_accessor(this);
}
// "Number" and "name" must be set before the fielddef is added to a msgdef.
// For the moment we do not allow these to be set once the fielddef is added
// to a msgdef -- this could be relaxed in the future.
bool set_number(int32_t number) {
return upb_fielddef_setnumber(this, number);
}
bool set_name(const char *name) { return upb_fielddef_setname(this, name); }
bool set_name(const std::string& name) { return set_name(name.c_str()); }
// Default value. ////////////////////////////////////////////////////////////
// Returns the default value for this fielddef, which may either be something
// the client set explicitly or the "default default" (0 for numbers, empty
// for strings). The field's type indicates the type of the returned value,
// except for enum fields that are still mutable.
//
// For enums the default can be set either numerically or symbolically -- the
// upb_fielddef_default_is_symbolic() function below will indicate which it
// is. For string defaults, the value will be a upb_byteregion which is
// invalidated by any other non-const call on this object. Once the fielddef
// is finalized, symbolic enum defaults are resolved, so finalized enum
// fielddefs always have a default of type int32.
Value defaultval() { return upb_fielddef_default(this); }
// Sets default value for the field. For numeric types, use
// upb_fielddef_setdefault(), and "value" must match the type of the field.
// For string/bytes types, use upb_fielddef_setdefaultstr(). Enum types may
// use either, since the default may be set either numerically or
// symbolically.
//
// NOTE: May only be called for fields whose type has already been set.
// Also, will be reset to default if the field's type is set again.
void set_default(Value value) { upb_fielddef_setdefault(this, value); }
void set_default(const char *str) { upb_fielddef_setdefaultcstr(this, str); }
void set_default(const char *str, size_t len) {
upb_fielddef_setdefaultstr(this, str, len);
}
void set_default(const std::string& str) {
upb_fielddef_setdefaultstr(this, str.c_str(), str.size());
}
// The results of this function are only meaningful for mutable enum fields,
// which can have a default specified either as an integer or as a string.
// If this returns true, the default returned from upb_fielddef_default() is
// a string, otherwise it is an integer.
bool DefaultIsSymbolic() { return upb_fielddef_default_is_symbolic(this); }
// Subdef. ///////////////////////////////////////////////////////////////////
// Submessage and enum fields must reference a "subdef", which is the
// MessageDef or EnumDef that defines their type. Note that when the
// FieldDef is mutable it may not have a subdef *yet*, but this still returns
// true to indicate that the field's type requires a subdef.
bool HasSubDef() { return upb_hassubdef(this); }
// Before a FieldDef is finalized, its subdef may be set either directly
// (with a Def*) or symbolically. Symbolic refs must be resolved by the
// client before the containing msgdef can be finalized.
//
// Both methods require that HasSubDef() (so the type must be set prior to
// calling these methods). Returns false if this is not the case, or if the
// given subdef is not of the correct type. The subtype is reset if the
// field's type is changed.
bool set_subdef(Def* def);
bool set_subtype_name(const char *name) {
return upb_fielddef_setsubtypename(this, name);
}
bool set_subtype_name(const std::string& str) {
return set_subtype_name(str.c_str());
}
// Returns the enum or submessage def or symbolic name for this field, if
// any. May only be called for fields where HasSubDef() is true. Returns
// NULL if the subdef has not been set or if you ask for a subtype name when
// the subtype is currently set symbolically (or vice-versa).
//
// Caller does *not* own a ref on the returned def or string.
// subtypename_name() is non-const because only mutable defs can have the
// subtype name set symbolically (symbolic references must be resolved before
// the MessageDef can be finalized).
const Def* subdef() const;
const char *subtype_name() { return upb_fielddef_subtypename(this); }
private:
UPB_DISALLOW_CONSTRUCT_AND_DESTRUCT(FieldDef);
};
class Def : public upb_def {
public:
// Converting from C types to C++ wrapper types.
static Def* Cast(upb_def *def) { return static_cast<Def*>(def); }
static const Def* Cast(const upb_def *def) {
return static_cast<const Def*>(def);
}
void Ref(const void *owner) const { upb_def_ref(this, owner); }
void Unref(const void *owner) const { upb_def_unref(this, owner); }
void set_full_name(const char *name) { upb_def_setfullname(this, name); }
void set_full_name(const std::string& name) {
upb_def_setfullname(this, name.c_str());
}
const char *full_name() const { return upb_def_fullname(this); }
// Finalizes the given list of defs (as well as the fielddefs for the given
// msgdefs). All defs reachable from any def in this list must either be
// already finalized or elsewhere in the list. Any symbolic references to
// enums or submessages must already have been resolved. Returns true on
// success, otherwise false is returned and status contains details. In the
// error case the input defs are unmodified. See the comment at the top of
// this file for the semantics of finalized defs.
//
// n is currently limited to 64k defs, if more are required break them into
// batches of 64k (or we could raise this limit, at the cost of a bigger
// upb_def structure or complexity in upb_def_finalize()).
static bool Finalize(Def*const* defs, int n, Status* status) {
return upb_finalize(reinterpret_cast<upb_def*const*>(defs), n, status);
}
static bool Finalize(const std::vector<Def*>& defs, Status* status) {
return Finalize(&defs[0], defs.size(), status);
}
};
class MessageDef : public upb_msgdef {
public:
// Converting from C types to C++ wrapper types.
static MessageDef* Cast(upb_msgdef *md) {
return static_cast<MessageDef*>(md);
}
static const MessageDef* Cast(const upb_msgdef *md) {
return static_cast<const MessageDef*>(md);
}
static MessageDef* DynamicCast(Def* def) {
return Cast(upb_dyncast_msgdef(def));
}
static const MessageDef* DynamicCast(const Def* def) {
return Cast(upb_dyncast_msgdef_const(def));
}
Def* AsDef() { return Def::Cast(UPB_UPCAST(this)); }
const Def* AsDef() const { return Def::Cast(UPB_UPCAST(this)); }
static MessageDef* New(void *owner) { return Cast(upb_msgdef_new(owner)); }
MessageDef* Dup(void *owner) const {
return Cast(upb_msgdef_dup(this, owner));
}
void Ref(const void *owner) const { upb_msgdef_ref(this, owner); }
void Unref(const void *owner) const { upb_msgdef_unref(this, owner); }
// Read accessors -- may be called at any time.
const char *full_name() const { return AsDef()->full_name(); }
// The total size of in-memory messages created with this MessageDef.
uint16_t instance_size() const { return upb_msgdef_size(this); }
// The number of "hasbit" bytes in a message instance.
uint8_t hasbit_bytes() const { return upb_msgdef_hasbit_bytes(this); }
uint32_t extension_start() const { return upb_msgdef_extstart(this); }
uint32_t extension_end() const { return upb_msgdef_extend(this); }
// Write accessors. May only be called before the msgdef is in a symtab.
void set_full_name(const char *name) { AsDef()->set_full_name(name); }
void set_full_name(const std::string& name) { AsDef()->set_full_name(name); }
void set_instance_size(uint16_t size) { upb_msgdef_setsize(this, size); }
void set_hasbit_bytes(uint16_t size) { upb_msgdef_setsize(this, size); }
bool SetExtensionRange(uint32_t start, uint32_t end) {
return upb_msgdef_setextrange(this, start, end);
}
// Adds a set of fields (FieldDef objects) to a MessageDef. Caller passes a
// ref on the FieldDef to the MessageDef in both success and failure cases.
// May only be done before the MessageDef is in a SymbolTable (requires
// m->IsMutable() for the MessageDef). The FieldDef's name and number must
// be set, and the message may not already contain any field with this name
// or number, and this FieldDef may not be part of another message, otherwise
// false is returned and the MessageDef is unchanged.
bool AddField(FieldDef* f, const void *owner) {
return AddFields(&f, 1, owner);
}
bool AddFields(FieldDef*const * f, int n, const void *owner) {
return upb_msgdef_addfields(this, (upb_fielddef*const*)f, n, owner);
}
bool AddFields(const std::vector<FieldDef*>& fields, const void *owner) {
return AddFields(&fields[0], fields.size(), owner);
}
int field_count() const { return upb_msgdef_numfields(this); }
// Lookup fields by name or number, returning NULL if no such field exists.
FieldDef* FindFieldByName(const char *name) {
return FieldDef::Cast(upb_msgdef_ntof(this, name));
}
FieldDef* FindFieldByName(const std::string& name) {
return FieldDef::Cast(upb_msgdef_ntof(this, name.c_str()));
}
FieldDef* FindFieldByNumber(uint32_t num) {
return FieldDef::Cast(upb_msgdef_itof(this, num));
}
const FieldDef* FindFieldByName(const char *name) const {
return FindFieldByName(name);
}
const FieldDef* FindFieldByName(const std::string& name) const {
return FindFieldByName(name);
}
const FieldDef* FindFieldByNumber(uint32_t num) const {
return FindFieldByNumber(num);
}
class Iterator : public upb_msg_iter {
public:
explicit Iterator(MessageDef* md) { upb_msg_begin(this, md); }
Iterator() {}
FieldDef* field() { return FieldDef::Cast(upb_msg_iter_field(this)); }
bool Done() { return upb_msg_done(this); }
void Next() { return upb_msg_next(this); }
};
class ConstIterator : public upb_msg_iter {
public:
explicit ConstIterator(const MessageDef* md) { upb_msg_begin(this, md); }
ConstIterator() {}
const FieldDef* field() { return FieldDef::Cast(upb_msg_iter_field(this)); }
bool Done() { return upb_msg_done(this); }
void Next() { return upb_msg_next(this); }
};
private:
UPB_DISALLOW_CONSTRUCT_AND_DESTRUCT(MessageDef);
};
class EnumDef : public upb_enumdef {
public:
// Converting from C types to C++ wrapper types.
static EnumDef* Cast(upb_enumdef *e) { return static_cast<EnumDef*>(e); }
static const EnumDef* Cast(const upb_enumdef *e) {
return static_cast<const EnumDef*>(e);
}
static EnumDef* New(const void *owner) { return Cast(upb_enumdef_new(owner)); }
void Ref(const void *owner) { upb_enumdef_ref(this, owner); }
void Unref(const void *owner) { upb_enumdef_unref(this, owner); }
EnumDef* Dup(const void *owner) const {
return Cast(upb_enumdef_dup(this, owner));
}
Def* AsDef() { return Def::Cast(UPB_UPCAST(this)); }
const Def* AsDef() const { return Def::Cast(UPB_UPCAST(this)); }
int32_t default_value() const { return upb_enumdef_default(this); }
// May only be set if IsMutable().
void set_full_name(const char *name) { AsDef()->set_full_name(name); }
void set_full_name(const std::string& name) { AsDef()->set_full_name(name); }
void set_default_value(int32_t val) {
return upb_enumdef_setdefault(this, val);
}
// Adds a value to the enumdef. Requires that no existing val has this
// name or number (returns false and does not add if there is). May only
// be called if IsMutable().
bool AddValue(char *name, int32_t num) {
return upb_enumdef_addval(this, name, num);
}
bool AddValue(const std::string& name, int32_t num) {
return upb_enumdef_addval(this, name.c_str(), num);
}
// Lookups from name to integer and vice-versa.
bool LookupName(const char *name, int32_t* num) const {
return upb_enumdef_ntoi(this, name, num);
}
// Lookup from integer to name, returns a NULL-terminated string which
// the caller does not own, or NULL if not found.
const char *LookupNumber(int32_t num) const {
return upb_enumdef_iton(this, num);
}
private:
UPB_DISALLOW_CONSTRUCT_AND_DESTRUCT(EnumDef);
};
class SymbolTable : public upb_symtab {
public:
// Converting from C types to C++ wrapper types.
static SymbolTable* Cast(upb_symtab *s) {
return static_cast<SymbolTable*>(s);
}
static const SymbolTable* Cast(const upb_symtab *s) {
return static_cast<const SymbolTable*>(s);
}
static SymbolTable* New(const void *owner) {
return Cast(upb_symtab_new(owner));
}
void Ref(const void *owner) const { upb_symtab_unref(this, owner); }
void Unref(const void *owner) const { upb_symtab_unref(this, owner); }
void DonateRef(const void *from, const void *to) const {
upb_symtab_donateref(this, from, to);
}
// Adds the given defs to the symtab, resolving all symbols. Only one def
// per name may be in the list, but defs can replace existing defs in the
// symtab. The entire operation either succeeds or fails. If the operation
// fails, the symtab is unchanged, false is returned, and status indicates
// the error. The caller passes a ref on the defs in all cases.
bool Add(Def *const *defs, int n, void *owner, Status* status) {
return upb_symtab_add(this, (upb_def*const*)defs, n, owner, status);
}
bool Add(const std::vector<Def*>& defs, void *owner, Status* status) {
return Add(&defs[0], defs.size(), owner, status);
}
// If the given name refers to a message in this symbol table, returns a new
// ref to that MessageDef object, otherwise returns NULL.
const MessageDef* LookupMessage(const char *name, void *owner) const {
return MessageDef::Cast(upb_symtab_lookupmsg(this, name, owner));
}
private:
UPB_DISALLOW_CONSTRUCT_AND_DESTRUCT(SymbolTable);
};
template <> inline const FieldDef* GetValue<const FieldDef*>(Value v) {
return static_cast<const FieldDef*>(upb_value_getfielddef(v));
}
template <> inline Value MakeValue<FieldDef*>(FieldDef* v) {
return upb_value_fielddef(v);
}
inline MessageDef* FieldDef::message() {
return MessageDef::Cast(upb_fielddef_msgdef(this));
}
inline const MessageDef* FieldDef::message() const {
return MessageDef::Cast(upb_fielddef_msgdef(this));
}
inline const Def* FieldDef::subdef() const {
return Def::Cast(upb_fielddef_subdef(this));
}
inline bool FieldDef::set_subdef(Def* def) {
return upb_fielddef_setsubdef(this, def);
}
} // namespace upb
#endif