Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1585 lines
50 KiB
1585 lines
50 KiB
// Protocol Buffers - Google's data interchange format |
|
// Copyright 2008 Google Inc. All rights reserved. |
|
// https://developers.google.com/protocol-buffers/ |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
// Author: kenton@google.com (Kenton Varda) and others |
|
// |
|
// Contains basic types and utilities used by the rest of the library. |
|
|
|
#ifndef GOOGLE_PROTOBUF_COMMON_H__ |
|
#define GOOGLE_PROTOBUF_COMMON_H__ |
|
|
|
#include <assert.h> |
|
#include <stdlib.h> |
|
#include <cstddef> |
|
#include <string> |
|
#include <string.h> |
|
#if defined(__osf__) |
|
// Tru64 lacks stdint.h, but has inttypes.h which defines a superset of |
|
// what stdint.h would define. |
|
#include <inttypes.h> |
|
#elif !defined(_MSC_VER) |
|
#include <stdint.h> |
|
#endif |
|
|
|
#undef PROTOBUF_LITTLE_ENDIAN |
|
#ifdef _MSC_VER |
|
#if defined(_M_IX86) && \ |
|
!defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) |
|
#define PROTOBUF_LITTLE_ENDIAN 1 |
|
#endif |
|
#if _MSC_VER >= 1300 |
|
// If MSVC has "/RTCc" set, it will complain about truncating casts at |
|
// runtime. This file contains some intentional truncating casts. |
|
#pragma runtime_checks("c", off) |
|
#endif |
|
#else |
|
#include <sys/param.h> // __BYTE_ORDER |
|
#if ((defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)) || \ |
|
(defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN)) && \ |
|
!defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) |
|
#define PROTOBUF_LITTLE_ENDIAN 1 |
|
#endif |
|
#endif |
|
|
|
#ifndef PROTOBUF_USE_EXCEPTIONS |
|
#if defined(_MSC_VER) && defined(_CPPUNWIND) |
|
#define PROTOBUF_USE_EXCEPTIONS 1 |
|
#elif defined(__EXCEPTIONS) |
|
#define PROTOBUF_USE_EXCEPTIONS 1 |
|
#else |
|
#define PROTOBUF_USE_EXCEPTIONS 0 |
|
#endif |
|
#endif |
|
|
|
#if PROTOBUF_USE_EXCEPTIONS |
|
#include <exception> |
|
#endif |
|
|
|
#include <google/protobuf/stubs/platform_macros.h> |
|
|
|
#if defined(__APPLE__) |
|
#include <TargetConditionals.h> // for TARGET_OS_IPHONE |
|
#endif |
|
|
|
#if defined(__ANDROID__) || defined(GOOGLE_PROTOBUF_OS_ANDROID) || (defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE) || defined(GOOGLE_PROTOBUF_OS_IPHONE) |
|
#include <pthread.h> |
|
#endif |
|
|
|
#if defined(_WIN32) && defined(GetMessage) |
|
// Allow GetMessage to be used as a valid method name in protobuf classes. |
|
// windows.h defines GetMessage() as a macro. Let's re-define it as an inline |
|
// function. The inline function should be equivalent for C++ users. |
|
inline BOOL GetMessage_Win32( |
|
LPMSG lpMsg, HWND hWnd, |
|
UINT wMsgFilterMin, UINT wMsgFilterMax) { |
|
return GetMessage(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax); |
|
} |
|
#undef GetMessage |
|
inline BOOL GetMessage( |
|
LPMSG lpMsg, HWND hWnd, |
|
UINT wMsgFilterMin, UINT wMsgFilterMax) { |
|
return GetMessage_Win32(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax); |
|
} |
|
#endif |
|
|
|
|
|
namespace std {} |
|
|
|
namespace google { |
|
namespace protobuf { |
|
|
|
#undef GOOGLE_DISALLOW_EVIL_CONSTRUCTORS |
|
#define GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(TypeName) \ |
|
TypeName(const TypeName&); \ |
|
void operator=(const TypeName&) |
|
|
|
#undef GOOGLE_DISALLOW_IMPLICIT_CONSTRUCTORS |
|
#define GOOGLE_DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ |
|
TypeName(); \ |
|
TypeName(const TypeName&); \ |
|
void operator=(const TypeName&) |
|
|
|
#if defined(_MSC_VER) && defined(PROTOBUF_USE_DLLS) |
|
#ifdef LIBPROTOBUF_EXPORTS |
|
#define LIBPROTOBUF_EXPORT __declspec(dllexport) |
|
#else |
|
#define LIBPROTOBUF_EXPORT __declspec(dllimport) |
|
#endif |
|
#ifdef LIBPROTOC_EXPORTS |
|
#define LIBPROTOC_EXPORT __declspec(dllexport) |
|
#else |
|
#define LIBPROTOC_EXPORT __declspec(dllimport) |
|
#endif |
|
#else |
|
#define LIBPROTOBUF_EXPORT |
|
#define LIBPROTOC_EXPORT |
|
#endif |
|
|
|
namespace internal { |
|
|
|
// Some of these constants are macros rather than const ints so that they can |
|
// be used in #if directives. |
|
|
|
// The current version, represented as a single integer to make comparison |
|
// easier: major * 10^6 + minor * 10^3 + micro |
|
#define GOOGLE_PROTOBUF_VERSION 3000000 |
|
|
|
// The minimum library version which works with the current version of the |
|
// headers. |
|
#define GOOGLE_PROTOBUF_MIN_LIBRARY_VERSION 3000000 |
|
|
|
// The minimum header version which works with the current version of |
|
// the library. This constant should only be used by protoc's C++ code |
|
// generator. |
|
static const int kMinHeaderVersionForLibrary = 3000000; |
|
|
|
// The minimum protoc version which works with the current version of the |
|
// headers. |
|
#define GOOGLE_PROTOBUF_MIN_PROTOC_VERSION 3000000 |
|
|
|
// The minimum header version which works with the current version of |
|
// protoc. This constant should only be used in VerifyVersion(). |
|
static const int kMinHeaderVersionForProtoc = 3000000; |
|
|
|
// Verifies that the headers and libraries are compatible. Use the macro |
|
// below to call this. |
|
void LIBPROTOBUF_EXPORT VerifyVersion(int headerVersion, int minLibraryVersion, |
|
const char* filename); |
|
|
|
// Converts a numeric version number to a string. |
|
std::string LIBPROTOBUF_EXPORT VersionString(int version); |
|
|
|
} // namespace internal |
|
|
|
// Place this macro in your main() function (or somewhere before you attempt |
|
// to use the protobuf library) to verify that the version you link against |
|
// matches the headers you compiled against. If a version mismatch is |
|
// detected, the process will abort. |
|
#define GOOGLE_PROTOBUF_VERIFY_VERSION \ |
|
::google::protobuf::internal::VerifyVersion( \ |
|
GOOGLE_PROTOBUF_VERSION, GOOGLE_PROTOBUF_MIN_LIBRARY_VERSION, \ |
|
__FILE__) |
|
|
|
// =================================================================== |
|
// from google3/base/port.h |
|
|
|
typedef unsigned int uint; |
|
|
|
#ifdef _MSC_VER |
|
typedef signed __int8 int8; |
|
typedef __int16 int16; |
|
typedef __int32 int32; |
|
typedef __int64 int64; |
|
|
|
typedef unsigned __int8 uint8; |
|
typedef unsigned __int16 uint16; |
|
typedef unsigned __int32 uint32; |
|
typedef unsigned __int64 uint64; |
|
#else |
|
typedef int8_t int8; |
|
typedef int16_t int16; |
|
typedef int32_t int32; |
|
typedef int64_t int64; |
|
|
|
typedef uint8_t uint8; |
|
typedef uint16_t uint16; |
|
typedef uint32_t uint32; |
|
typedef uint64_t uint64; |
|
#endif |
|
|
|
// long long macros to be used because gcc and vc++ use different suffixes, |
|
// and different size specifiers in format strings |
|
#undef GOOGLE_LONGLONG |
|
#undef GOOGLE_ULONGLONG |
|
#undef GOOGLE_LL_FORMAT |
|
|
|
#ifdef _MSC_VER |
|
#define GOOGLE_LONGLONG(x) x##I64 |
|
#define GOOGLE_ULONGLONG(x) x##UI64 |
|
#define GOOGLE_LL_FORMAT "I64" // As in printf("%I64d", ...) |
|
#else |
|
#define GOOGLE_LONGLONG(x) x##LL |
|
#define GOOGLE_ULONGLONG(x) x##ULL |
|
#define GOOGLE_LL_FORMAT "ll" // As in "%lld". Note that "q" is poor form also. |
|
#endif |
|
|
|
static const int32 kint32max = 0x7FFFFFFF; |
|
static const int32 kint32min = -kint32max - 1; |
|
static const int64 kint64max = GOOGLE_LONGLONG(0x7FFFFFFFFFFFFFFF); |
|
static const int64 kint64min = -kint64max - 1; |
|
static const uint32 kuint32max = 0xFFFFFFFFu; |
|
static const uint64 kuint64max = GOOGLE_ULONGLONG(0xFFFFFFFFFFFFFFFF); |
|
|
|
// ------------------------------------------------------------------- |
|
// Annotations: Some parts of the code have been annotated in ways that might |
|
// be useful to some compilers or tools, but are not supported universally. |
|
// You can #define these annotations yourself if the default implementation |
|
// is not right for you. |
|
|
|
#ifndef GOOGLE_ATTRIBUTE_ALWAYS_INLINE |
|
#if defined(__GNUC__) && (__GNUC__ > 3 ||(__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) |
|
// For functions we want to force inline. |
|
// Introduced in gcc 3.1. |
|
#define GOOGLE_ATTRIBUTE_ALWAYS_INLINE __attribute__ ((always_inline)) |
|
#else |
|
// Other compilers will have to figure it out for themselves. |
|
#define GOOGLE_ATTRIBUTE_ALWAYS_INLINE |
|
#endif |
|
#endif |
|
|
|
#ifndef GOOGLE_ATTRIBUTE_NOINLINE |
|
#if defined(__GNUC__) && (__GNUC__ > 3 ||(__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) |
|
// For functions we want to force not inline. |
|
// Introduced in gcc 3.1. |
|
#define GOOGLE_ATTRIBUTE_NOINLINE __attribute__ ((noinline)) |
|
#else |
|
// Other compilers will have to figure it out for themselves. |
|
#define GOOGLE_ATTRIBUTE_NOINLINE |
|
#endif |
|
#endif |
|
|
|
#ifndef GOOGLE_ATTRIBUTE_DEPRECATED |
|
#ifdef __GNUC__ |
|
// If the method/variable/type is used anywhere, produce a warning. |
|
#define GOOGLE_ATTRIBUTE_DEPRECATED __attribute__((deprecated)) |
|
#else |
|
#define GOOGLE_ATTRIBUTE_DEPRECATED |
|
#endif |
|
#endif |
|
|
|
#ifndef GOOGLE_PREDICT_TRUE |
|
#ifdef __GNUC__ |
|
// Provided at least since GCC 3.0. |
|
#define GOOGLE_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1)) |
|
#else |
|
#define GOOGLE_PREDICT_TRUE |
|
#endif |
|
#endif |
|
|
|
#ifndef GOOGLE_PREDICT_FALSE |
|
#ifdef __GNUC__ |
|
// Provided at least since GCC 3.0. |
|
#define GOOGLE_PREDICT_FALSE(x) (__builtin_expect(x, 0)) |
|
#else |
|
#define GOOGLE_PREDICT_FALSE |
|
#endif |
|
#endif |
|
|
|
// Delimits a block of code which may write to memory which is simultaneously |
|
// written by other threads, but which has been determined to be thread-safe |
|
// (e.g. because it is an idempotent write). |
|
#ifndef GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN |
|
#define GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN() |
|
#endif |
|
#ifndef GOOGLE_SAFE_CONCURRENT_WRITES_END |
|
#define GOOGLE_SAFE_CONCURRENT_WRITES_END() |
|
#endif |
|
|
|
#define GOOGLE_GUARDED_BY(x) |
|
#define GOOGLE_FALLTHROUGH_INTENDED |
|
#define GOOGLE_ATTRIBUTE_COLD |
|
|
|
// x86 and x86-64 can perform unaligned loads/stores directly. |
|
#if defined(_M_X64) || defined(__x86_64__) || \ |
|
defined(_M_IX86) || defined(__i386__) |
|
|
|
#define GOOGLE_UNALIGNED_LOAD16(_p) (*reinterpret_cast<const uint16 *>(_p)) |
|
#define GOOGLE_UNALIGNED_LOAD32(_p) (*reinterpret_cast<const uint32 *>(_p)) |
|
#define GOOGLE_UNALIGNED_LOAD64(_p) (*reinterpret_cast<const uint64 *>(_p)) |
|
|
|
#define GOOGLE_UNALIGNED_STORE16(_p, _val) (*reinterpret_cast<uint16 *>(_p) = (_val)) |
|
#define GOOGLE_UNALIGNED_STORE32(_p, _val) (*reinterpret_cast<uint32 *>(_p) = (_val)) |
|
#define GOOGLE_UNALIGNED_STORE64(_p, _val) (*reinterpret_cast<uint64 *>(_p) = (_val)) |
|
|
|
#else |
|
inline uint16 GOOGLE_UNALIGNED_LOAD16(const void *p) { |
|
uint16 t; |
|
memcpy(&t, p, sizeof t); |
|
return t; |
|
} |
|
|
|
inline uint32 GOOGLE_UNALIGNED_LOAD32(const void *p) { |
|
uint32 t; |
|
memcpy(&t, p, sizeof t); |
|
return t; |
|
} |
|
|
|
inline uint64 GOOGLE_UNALIGNED_LOAD64(const void *p) { |
|
uint64 t; |
|
memcpy(&t, p, sizeof t); |
|
return t; |
|
} |
|
|
|
inline void GOOGLE_UNALIGNED_STORE16(void *p, uint16 v) { |
|
memcpy(p, &v, sizeof v); |
|
} |
|
|
|
inline void GOOGLE_UNALIGNED_STORE32(void *p, uint32 v) { |
|
memcpy(p, &v, sizeof v); |
|
} |
|
|
|
inline void GOOGLE_UNALIGNED_STORE64(void *p, uint64 v) { |
|
memcpy(p, &v, sizeof v); |
|
} |
|
#endif |
|
|
|
#if defined(_MSC_VER) |
|
#define GOOGLE_THREAD_LOCAL __declspec(thread) |
|
#else |
|
#define GOOGLE_THREAD_LOCAL __thread |
|
#endif |
|
|
|
// =================================================================== |
|
// from google3/base/basictypes.h |
|
|
|
// The GOOGLE_ARRAYSIZE(arr) macro returns the # of elements in an array arr. |
|
// The expression is a compile-time constant, and therefore can be |
|
// used in defining new arrays, for example. |
|
// |
|
// GOOGLE_ARRAYSIZE catches a few type errors. If you see a compiler error |
|
// |
|
// "warning: division by zero in ..." |
|
// |
|
// when using GOOGLE_ARRAYSIZE, you are (wrongfully) giving it a pointer. |
|
// You should only use GOOGLE_ARRAYSIZE on statically allocated arrays. |
|
// |
|
// The following comments are on the implementation details, and can |
|
// be ignored by the users. |
|
// |
|
// ARRAYSIZE(arr) works by inspecting sizeof(arr) (the # of bytes in |
|
// the array) and sizeof(*(arr)) (the # of bytes in one array |
|
// element). If the former is divisible by the latter, perhaps arr is |
|
// indeed an array, in which case the division result is the # of |
|
// elements in the array. Otherwise, arr cannot possibly be an array, |
|
// and we generate a compiler error to prevent the code from |
|
// compiling. |
|
// |
|
// Since the size of bool is implementation-defined, we need to cast |
|
// !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final |
|
// result has type size_t. |
|
// |
|
// This macro is not perfect as it wrongfully accepts certain |
|
// pointers, namely where the pointer size is divisible by the pointee |
|
// size. Since all our code has to go through a 32-bit compiler, |
|
// where a pointer is 4 bytes, this means all pointers to a type whose |
|
// size is 3 or greater than 4 will be (righteously) rejected. |
|
// |
|
// Kudos to Jorg Brown for this simple and elegant implementation. |
|
|
|
#undef GOOGLE_ARRAYSIZE |
|
#define GOOGLE_ARRAYSIZE(a) \ |
|
((sizeof(a) / sizeof(*(a))) / \ |
|
static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) |
|
|
|
// The COMPILE_ASSERT macro can be used to verify that a compile time |
|
// expression is true. For example, you could use it to verify the |
|
// size of a static array: |
|
// |
|
// COMPILE_ASSERT(ARRAYSIZE(content_type_names) == CONTENT_NUM_TYPES, |
|
// content_type_names_incorrect_size); |
|
// |
|
// or to make sure a struct is smaller than a certain size: |
|
// |
|
// COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large); |
|
// |
|
// The second argument to the macro is the name of the variable. If |
|
// the expression is false, most compilers will issue a warning/error |
|
// containing the name of the variable. |
|
|
|
namespace internal { |
|
|
|
template <bool> |
|
struct CompileAssert { |
|
}; |
|
|
|
} // namespace internal |
|
|
|
#undef GOOGLE_COMPILE_ASSERT |
|
#define GOOGLE_COMPILE_ASSERT(expr, msg) \ |
|
::google::protobuf::internal::CompileAssert<(bool(expr))> \ |
|
msg[bool(expr) ? 1 : -1]; \ |
|
(void)msg |
|
|
|
|
|
// Implementation details of COMPILE_ASSERT: |
|
// |
|
// - COMPILE_ASSERT works by defining an array type that has -1 |
|
// elements (and thus is invalid) when the expression is false. |
|
// |
|
// - The simpler definition |
|
// |
|
// #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1] |
|
// |
|
// does not work, as gcc supports variable-length arrays whose sizes |
|
// are determined at run-time (this is gcc's extension and not part |
|
// of the C++ standard). As a result, gcc fails to reject the |
|
// following code with the simple definition: |
|
// |
|
// int foo; |
|
// COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is |
|
// // not a compile-time constant. |
|
// |
|
// - By using the type CompileAssert<(bool(expr))>, we ensures that |
|
// expr is a compile-time constant. (Template arguments must be |
|
// determined at compile-time.) |
|
// |
|
// - The outter parentheses in CompileAssert<(bool(expr))> are necessary |
|
// to work around a bug in gcc 3.4.4 and 4.0.1. If we had written |
|
// |
|
// CompileAssert<bool(expr)> |
|
// |
|
// instead, these compilers will refuse to compile |
|
// |
|
// COMPILE_ASSERT(5 > 0, some_message); |
|
// |
|
// (They seem to think the ">" in "5 > 0" marks the end of the |
|
// template argument list.) |
|
// |
|
// - The array size is (bool(expr) ? 1 : -1), instead of simply |
|
// |
|
// ((expr) ? 1 : -1). |
|
// |
|
// This is to avoid running into a bug in MS VC 7.1, which |
|
// causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1. |
|
|
|
// =================================================================== |
|
// from google3/base/scoped_ptr.h |
|
|
|
namespace internal { |
|
|
|
// This is an implementation designed to match the anticipated future TR2 |
|
// implementation of the scoped_ptr class, and its closely-related brethren, |
|
// scoped_array, scoped_ptr_malloc, and make_scoped_ptr. |
|
|
|
template <class C> class scoped_ptr; |
|
template <class C> class scoped_array; |
|
|
|
// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> |
|
// automatically deletes the pointer it holds (if any). |
|
// That is, scoped_ptr<T> owns the T object that it points to. |
|
// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. |
|
// |
|
// The size of a scoped_ptr is small: |
|
// sizeof(scoped_ptr<C>) == sizeof(C*) |
|
template <class C> |
|
class scoped_ptr { |
|
public: |
|
|
|
// The element type |
|
typedef C element_type; |
|
|
|
// Constructor. Defaults to initializing with NULL. |
|
// There is no way to create an uninitialized scoped_ptr. |
|
// The input parameter must be allocated with new. |
|
explicit scoped_ptr(C* p = NULL) : ptr_(p) { } |
|
|
|
// Destructor. If there is a C object, delete it. |
|
// We don't need to test ptr_ == NULL because C++ does that for us. |
|
~scoped_ptr() { |
|
enum { type_must_be_complete = sizeof(C) }; |
|
delete ptr_; |
|
} |
|
|
|
// Reset. Deletes the current owned object, if any. |
|
// Then takes ownership of a new object, if given. |
|
// this->reset(this->get()) works. |
|
void reset(C* p = NULL) { |
|
if (p != ptr_) { |
|
enum { type_must_be_complete = sizeof(C) }; |
|
delete ptr_; |
|
ptr_ = p; |
|
} |
|
} |
|
|
|
// Accessors to get the owned object. |
|
// operator* and operator-> will assert() if there is no current object. |
|
C& operator*() const { |
|
assert(ptr_ != NULL); |
|
return *ptr_; |
|
} |
|
C* operator->() const { |
|
assert(ptr_ != NULL); |
|
return ptr_; |
|
} |
|
C* get() const { return ptr_; } |
|
|
|
// Comparison operators. |
|
// These return whether two scoped_ptr refer to the same object, not just to |
|
// two different but equal objects. |
|
bool operator==(C* p) const { return ptr_ == p; } |
|
bool operator!=(C* p) const { return ptr_ != p; } |
|
|
|
// Swap two scoped pointers. |
|
void swap(scoped_ptr& p2) { |
|
C* tmp = ptr_; |
|
ptr_ = p2.ptr_; |
|
p2.ptr_ = tmp; |
|
} |
|
|
|
// Release a pointer. |
|
// The return value is the current pointer held by this object. |
|
// If this object holds a NULL pointer, the return value is NULL. |
|
// After this operation, this object will hold a NULL pointer, |
|
// and will not own the object any more. |
|
C* release() { |
|
C* retVal = ptr_; |
|
ptr_ = NULL; |
|
return retVal; |
|
} |
|
|
|
private: |
|
C* ptr_; |
|
|
|
// Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't |
|
// make sense, and if C2 == C, it still doesn't make sense because you should |
|
// never have the same object owned by two different scoped_ptrs. |
|
template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; |
|
template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; |
|
|
|
// Disallow evil constructors |
|
scoped_ptr(const scoped_ptr&); |
|
void operator=(const scoped_ptr&); |
|
}; |
|
|
|
// scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate |
|
// with new [] and the destructor deletes objects with delete []. |
|
// |
|
// As with scoped_ptr<C>, a scoped_array<C> either points to an object |
|
// or is NULL. A scoped_array<C> owns the object that it points to. |
|
// |
|
// Size: sizeof(scoped_array<C>) == sizeof(C*) |
|
template <class C> |
|
class scoped_array { |
|
public: |
|
|
|
// The element type |
|
typedef C element_type; |
|
|
|
// Constructor. Defaults to initializing with NULL. |
|
// There is no way to create an uninitialized scoped_array. |
|
// The input parameter must be allocated with new []. |
|
explicit scoped_array(C* p = NULL) : array_(p) { } |
|
|
|
// Destructor. If there is a C object, delete it. |
|
// We don't need to test ptr_ == NULL because C++ does that for us. |
|
~scoped_array() { |
|
enum { type_must_be_complete = sizeof(C) }; |
|
delete[] array_; |
|
} |
|
|
|
// Reset. Deletes the current owned object, if any. |
|
// Then takes ownership of a new object, if given. |
|
// this->reset(this->get()) works. |
|
void reset(C* p = NULL) { |
|
if (p != array_) { |
|
enum { type_must_be_complete = sizeof(C) }; |
|
delete[] array_; |
|
array_ = p; |
|
} |
|
} |
|
|
|
// Get one element of the current object. |
|
// Will assert() if there is no current object, or index i is negative. |
|
C& operator[](std::ptrdiff_t i) const { |
|
assert(i >= 0); |
|
assert(array_ != NULL); |
|
return array_[i]; |
|
} |
|
|
|
// Get a pointer to the zeroth element of the current object. |
|
// If there is no current object, return NULL. |
|
C* get() const { |
|
return array_; |
|
} |
|
|
|
// Comparison operators. |
|
// These return whether two scoped_array refer to the same object, not just to |
|
// two different but equal objects. |
|
bool operator==(C* p) const { return array_ == p; } |
|
bool operator!=(C* p) const { return array_ != p; } |
|
|
|
// Swap two scoped arrays. |
|
void swap(scoped_array& p2) { |
|
C* tmp = array_; |
|
array_ = p2.array_; |
|
p2.array_ = tmp; |
|
} |
|
|
|
// Release an array. |
|
// The return value is the current pointer held by this object. |
|
// If this object holds a NULL pointer, the return value is NULL. |
|
// After this operation, this object will hold a NULL pointer, |
|
// and will not own the object any more. |
|
C* release() { |
|
C* retVal = array_; |
|
array_ = NULL; |
|
return retVal; |
|
} |
|
|
|
private: |
|
C* array_; |
|
|
|
// Forbid comparison of different scoped_array types. |
|
template <class C2> bool operator==(scoped_array<C2> const& p2) const; |
|
template <class C2> bool operator!=(scoped_array<C2> const& p2) const; |
|
|
|
// Disallow evil constructors |
|
scoped_array(const scoped_array&); |
|
void operator=(const scoped_array&); |
|
}; |
|
|
|
} // namespace internal |
|
|
|
// We made these internal so that they would show up as such in the docs, |
|
// but we don't want to stick "internal::" in front of them everywhere. |
|
using internal::scoped_ptr; |
|
using internal::scoped_array; |
|
|
|
// =================================================================== |
|
// emulates google3/base/logging.h |
|
|
|
enum LogLevel { |
|
LOGLEVEL_INFO, // Informational. This is never actually used by |
|
// libprotobuf. |
|
LOGLEVEL_WARNING, // Warns about issues that, although not technically a |
|
// problem now, could cause problems in the future. For |
|
// example, a // warning will be printed when parsing a |
|
// message that is near the message size limit. |
|
LOGLEVEL_ERROR, // An error occurred which should never happen during |
|
// normal use. |
|
LOGLEVEL_FATAL, // An error occurred from which the library cannot |
|
// recover. This usually indicates a programming error |
|
// in the code which calls the library, especially when |
|
// compiled in debug mode. |
|
|
|
#ifdef NDEBUG |
|
LOGLEVEL_DFATAL = LOGLEVEL_ERROR |
|
#else |
|
LOGLEVEL_DFATAL = LOGLEVEL_FATAL |
|
#endif |
|
}; |
|
|
|
class StringPiece; |
|
namespace util { |
|
class Status; |
|
} |
|
namespace internal { |
|
|
|
class LogFinisher; |
|
|
|
class LIBPROTOBUF_EXPORT LogMessage { |
|
public: |
|
LogMessage(LogLevel level, const char* filename, int line); |
|
~LogMessage(); |
|
|
|
LogMessage& operator<<(const std::string& value); |
|
LogMessage& operator<<(const char* value); |
|
LogMessage& operator<<(char value); |
|
LogMessage& operator<<(int value); |
|
LogMessage& operator<<(uint value); |
|
LogMessage& operator<<(long value); |
|
LogMessage& operator<<(unsigned long value); |
|
LogMessage& operator<<(double value); |
|
LogMessage& operator<<(void* value); |
|
LogMessage& operator<<(const StringPiece& value); |
|
LogMessage& operator<<(const ::google::protobuf::util::Status& status); |
|
|
|
private: |
|
friend class LogFinisher; |
|
void Finish(); |
|
|
|
LogLevel level_; |
|
const char* filename_; |
|
int line_; |
|
std::string message_; |
|
}; |
|
|
|
// Used to make the entire "LOG(BLAH) << etc." expression have a void return |
|
// type and print a newline after each message. |
|
class LIBPROTOBUF_EXPORT LogFinisher { |
|
public: |
|
void operator=(LogMessage& other); |
|
}; |
|
|
|
template<typename T> |
|
bool IsOk(T status) { return status.ok(); } |
|
template<> |
|
inline bool IsOk(bool status) { return status; } |
|
|
|
} // namespace internal |
|
|
|
// Undef everything in case we're being mixed with some other Google library |
|
// which already defined them itself. Presumably all Google libraries will |
|
// support the same syntax for these so it should not be a big deal if they |
|
// end up using our definitions instead. |
|
#undef GOOGLE_LOG |
|
#undef GOOGLE_LOG_IF |
|
|
|
#undef GOOGLE_CHECK |
|
#undef GOOGLE_CHECK_OK |
|
#undef GOOGLE_CHECK_EQ |
|
#undef GOOGLE_CHECK_NE |
|
#undef GOOGLE_CHECK_LT |
|
#undef GOOGLE_CHECK_LE |
|
#undef GOOGLE_CHECK_GT |
|
#undef GOOGLE_CHECK_GE |
|
#undef GOOGLE_CHECK_NOTNULL |
|
|
|
#undef GOOGLE_DLOG |
|
#undef GOOGLE_DCHECK |
|
#undef GOOGLE_DCHECK_OK |
|
#undef GOOGLE_DCHECK_EQ |
|
#undef GOOGLE_DCHECK_NE |
|
#undef GOOGLE_DCHECK_LT |
|
#undef GOOGLE_DCHECK_LE |
|
#undef GOOGLE_DCHECK_GT |
|
#undef GOOGLE_DCHECK_GE |
|
|
|
#define GOOGLE_LOG(LEVEL) \ |
|
::google::protobuf::internal::LogFinisher() = \ |
|
::google::protobuf::internal::LogMessage( \ |
|
::google::protobuf::LOGLEVEL_##LEVEL, __FILE__, __LINE__) |
|
#define GOOGLE_LOG_IF(LEVEL, CONDITION) \ |
|
!(CONDITION) ? (void)0 : GOOGLE_LOG(LEVEL) |
|
|
|
#define GOOGLE_CHECK(EXPRESSION) \ |
|
GOOGLE_LOG_IF(FATAL, !(EXPRESSION)) << "CHECK failed: " #EXPRESSION ": " |
|
#define GOOGLE_CHECK_OK(A) GOOGLE_CHECK(::google::protobuf::internal::IsOk(A)) |
|
#define GOOGLE_CHECK_EQ(A, B) GOOGLE_CHECK((A) == (B)) |
|
#define GOOGLE_CHECK_NE(A, B) GOOGLE_CHECK((A) != (B)) |
|
#define GOOGLE_CHECK_LT(A, B) GOOGLE_CHECK((A) < (B)) |
|
#define GOOGLE_CHECK_LE(A, B) GOOGLE_CHECK((A) <= (B)) |
|
#define GOOGLE_CHECK_GT(A, B) GOOGLE_CHECK((A) > (B)) |
|
#define GOOGLE_CHECK_GE(A, B) GOOGLE_CHECK((A) >= (B)) |
|
|
|
namespace internal { |
|
template<typename T> |
|
T* CheckNotNull(const char* /* file */, int /* line */, |
|
const char* name, T* val) { |
|
if (val == NULL) { |
|
GOOGLE_LOG(FATAL) << name; |
|
} |
|
return val; |
|
} |
|
} // namespace internal |
|
#define GOOGLE_CHECK_NOTNULL(A) \ |
|
::google::protobuf::internal::CheckNotNull(\ |
|
__FILE__, __LINE__, "'" #A "' must not be NULL", (A)) |
|
|
|
#ifdef NDEBUG |
|
|
|
#define GOOGLE_DLOG GOOGLE_LOG_IF(INFO, false) |
|
|
|
#define GOOGLE_DCHECK(EXPRESSION) while(false) GOOGLE_CHECK(EXPRESSION) |
|
#define GOOGLE_DCHECK_OK(E) GOOGLE_DCHECK(::google::protobuf::internal::IsOk(E)) |
|
#define GOOGLE_DCHECK_EQ(A, B) GOOGLE_DCHECK((A) == (B)) |
|
#define GOOGLE_DCHECK_NE(A, B) GOOGLE_DCHECK((A) != (B)) |
|
#define GOOGLE_DCHECK_LT(A, B) GOOGLE_DCHECK((A) < (B)) |
|
#define GOOGLE_DCHECK_LE(A, B) GOOGLE_DCHECK((A) <= (B)) |
|
#define GOOGLE_DCHECK_GT(A, B) GOOGLE_DCHECK((A) > (B)) |
|
#define GOOGLE_DCHECK_GE(A, B) GOOGLE_DCHECK((A) >= (B)) |
|
|
|
#else // NDEBUG |
|
|
|
#define GOOGLE_DLOG GOOGLE_LOG |
|
|
|
#define GOOGLE_DCHECK GOOGLE_CHECK |
|
#define GOOGLE_DCHECK_OK GOOGLE_CHECK_OK |
|
#define GOOGLE_DCHECK_EQ GOOGLE_CHECK_EQ |
|
#define GOOGLE_DCHECK_NE GOOGLE_CHECK_NE |
|
#define GOOGLE_DCHECK_LT GOOGLE_CHECK_LT |
|
#define GOOGLE_DCHECK_LE GOOGLE_CHECK_LE |
|
#define GOOGLE_DCHECK_GT GOOGLE_CHECK_GT |
|
#define GOOGLE_DCHECK_GE GOOGLE_CHECK_GE |
|
|
|
#endif // !NDEBUG |
|
|
|
typedef void LogHandler(LogLevel level, const char* filename, int line, |
|
const std::string& message); |
|
|
|
// The protobuf library sometimes writes warning and error messages to |
|
// stderr. These messages are primarily useful for developers, but may |
|
// also help end users figure out a problem. If you would prefer that |
|
// these messages be sent somewhere other than stderr, call SetLogHandler() |
|
// to set your own handler. This returns the old handler. Set the handler |
|
// to NULL to ignore log messages (but see also LogSilencer, below). |
|
// |
|
// Obviously, SetLogHandler is not thread-safe. You should only call it |
|
// at initialization time, and probably not from library code. If you |
|
// simply want to suppress log messages temporarily (e.g. because you |
|
// have some code that tends to trigger them frequently and you know |
|
// the warnings are not important to you), use the LogSilencer class |
|
// below. |
|
LIBPROTOBUF_EXPORT LogHandler* SetLogHandler(LogHandler* new_func); |
|
|
|
// Create a LogSilencer if you want to temporarily suppress all log |
|
// messages. As long as any LogSilencer objects exist, non-fatal |
|
// log messages will be discarded (the current LogHandler will *not* |
|
// be called). Constructing a LogSilencer is thread-safe. You may |
|
// accidentally suppress log messages occurring in another thread, but |
|
// since messages are generally for debugging purposes only, this isn't |
|
// a big deal. If you want to intercept log messages, use SetLogHandler(). |
|
class LIBPROTOBUF_EXPORT LogSilencer { |
|
public: |
|
LogSilencer(); |
|
~LogSilencer(); |
|
}; |
|
|
|
// =================================================================== |
|
// emulates google3/base/callback.h |
|
|
|
// Abstract interface for a callback. When calling an RPC, you must provide |
|
// a Closure to call when the procedure completes. See the Service interface |
|
// in service.h. |
|
// |
|
// To automatically construct a Closure which calls a particular function or |
|
// method with a particular set of parameters, use the NewCallback() function. |
|
// Example: |
|
// void FooDone(const FooResponse* response) { |
|
// ... |
|
// } |
|
// |
|
// void CallFoo() { |
|
// ... |
|
// // When done, call FooDone() and pass it a pointer to the response. |
|
// Closure* callback = NewCallback(&FooDone, response); |
|
// // Make the call. |
|
// service->Foo(controller, request, response, callback); |
|
// } |
|
// |
|
// Example that calls a method: |
|
// class Handler { |
|
// public: |
|
// ... |
|
// |
|
// void FooDone(const FooResponse* response) { |
|
// ... |
|
// } |
|
// |
|
// void CallFoo() { |
|
// ... |
|
// // When done, call FooDone() and pass it a pointer to the response. |
|
// Closure* callback = NewCallback(this, &Handler::FooDone, response); |
|
// // Make the call. |
|
// service->Foo(controller, request, response, callback); |
|
// } |
|
// }; |
|
// |
|
// Currently NewCallback() supports binding zero, one, or two arguments. |
|
// |
|
// Callbacks created with NewCallback() automatically delete themselves when |
|
// executed. They should be used when a callback is to be called exactly |
|
// once (usually the case with RPC callbacks). If a callback may be called |
|
// a different number of times (including zero), create it with |
|
// NewPermanentCallback() instead. You are then responsible for deleting the |
|
// callback (using the "delete" keyword as normal). |
|
// |
|
// Note that NewCallback() is a bit touchy regarding argument types. Generally, |
|
// the values you provide for the parameter bindings must exactly match the |
|
// types accepted by the callback function. For example: |
|
// void Foo(string s); |
|
// NewCallback(&Foo, "foo"); // WON'T WORK: const char* != string |
|
// NewCallback(&Foo, string("foo")); // WORKS |
|
// Also note that the arguments cannot be references: |
|
// void Foo(const string& s); |
|
// string my_str; |
|
// NewCallback(&Foo, my_str); // WON'T WORK: Can't use referecnes. |
|
// However, correctly-typed pointers will work just fine. |
|
class LIBPROTOBUF_EXPORT Closure { |
|
public: |
|
Closure() {} |
|
virtual ~Closure(); |
|
|
|
virtual void Run() = 0; |
|
|
|
private: |
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Closure); |
|
}; |
|
|
|
template<typename R, typename A1> |
|
class LIBPROTOBUF_EXPORT ResultCallback1 { |
|
public: |
|
ResultCallback1() {} |
|
virtual ~ResultCallback1() {} |
|
|
|
virtual R Run(A1) = 0; |
|
|
|
private: |
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ResultCallback1); |
|
}; |
|
|
|
template<typename R, typename A1, typename A2> |
|
class LIBPROTOBUF_EXPORT ResultCallback2 { |
|
public: |
|
ResultCallback2() {} |
|
virtual ~ResultCallback2() {} |
|
|
|
virtual R Run(A1,A2) = 0; |
|
|
|
private: |
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ResultCallback2); |
|
}; |
|
|
|
namespace internal { |
|
|
|
class LIBPROTOBUF_EXPORT FunctionClosure0 : public Closure { |
|
public: |
|
typedef void (*FunctionType)(); |
|
|
|
FunctionClosure0(FunctionType function, bool self_deleting) |
|
: function_(function), self_deleting_(self_deleting) {} |
|
~FunctionClosure0(); |
|
|
|
void Run() { |
|
bool needs_delete = self_deleting_; // read in case callback deletes |
|
function_(); |
|
if (needs_delete) delete this; |
|
} |
|
|
|
private: |
|
FunctionType function_; |
|
bool self_deleting_; |
|
}; |
|
|
|
template <typename Class> |
|
class MethodClosure0 : public Closure { |
|
public: |
|
typedef void (Class::*MethodType)(); |
|
|
|
MethodClosure0(Class* object, MethodType method, bool self_deleting) |
|
: object_(object), method_(method), self_deleting_(self_deleting) {} |
|
~MethodClosure0() {} |
|
|
|
void Run() { |
|
bool needs_delete = self_deleting_; // read in case callback deletes |
|
(object_->*method_)(); |
|
if (needs_delete) delete this; |
|
} |
|
|
|
private: |
|
Class* object_; |
|
MethodType method_; |
|
bool self_deleting_; |
|
}; |
|
|
|
template <typename Arg1> |
|
class FunctionClosure1 : public Closure { |
|
public: |
|
typedef void (*FunctionType)(Arg1 arg1); |
|
|
|
FunctionClosure1(FunctionType function, bool self_deleting, |
|
Arg1 arg1) |
|
: function_(function), self_deleting_(self_deleting), |
|
arg1_(arg1) {} |
|
~FunctionClosure1() {} |
|
|
|
void Run() { |
|
bool needs_delete = self_deleting_; // read in case callback deletes |
|
function_(arg1_); |
|
if (needs_delete) delete this; |
|
} |
|
|
|
private: |
|
FunctionType function_; |
|
bool self_deleting_; |
|
Arg1 arg1_; |
|
}; |
|
|
|
template <typename Class, typename Arg1> |
|
class MethodClosure1 : public Closure { |
|
public: |
|
typedef void (Class::*MethodType)(Arg1 arg1); |
|
|
|
MethodClosure1(Class* object, MethodType method, bool self_deleting, |
|
Arg1 arg1) |
|
: object_(object), method_(method), self_deleting_(self_deleting), |
|
arg1_(arg1) {} |
|
~MethodClosure1() {} |
|
|
|
void Run() { |
|
bool needs_delete = self_deleting_; // read in case callback deletes |
|
(object_->*method_)(arg1_); |
|
if (needs_delete) delete this; |
|
} |
|
|
|
private: |
|
Class* object_; |
|
MethodType method_; |
|
bool self_deleting_; |
|
Arg1 arg1_; |
|
}; |
|
|
|
template <typename Arg1, typename Arg2> |
|
class FunctionClosure2 : public Closure { |
|
public: |
|
typedef void (*FunctionType)(Arg1 arg1, Arg2 arg2); |
|
|
|
FunctionClosure2(FunctionType function, bool self_deleting, |
|
Arg1 arg1, Arg2 arg2) |
|
: function_(function), self_deleting_(self_deleting), |
|
arg1_(arg1), arg2_(arg2) {} |
|
~FunctionClosure2() {} |
|
|
|
void Run() { |
|
bool needs_delete = self_deleting_; // read in case callback deletes |
|
function_(arg1_, arg2_); |
|
if (needs_delete) delete this; |
|
} |
|
|
|
private: |
|
FunctionType function_; |
|
bool self_deleting_; |
|
Arg1 arg1_; |
|
Arg2 arg2_; |
|
}; |
|
|
|
template <typename Class, typename Arg1, typename Arg2> |
|
class MethodClosure2 : public Closure { |
|
public: |
|
typedef void (Class::*MethodType)(Arg1 arg1, Arg2 arg2); |
|
|
|
MethodClosure2(Class* object, MethodType method, bool self_deleting, |
|
Arg1 arg1, Arg2 arg2) |
|
: object_(object), method_(method), self_deleting_(self_deleting), |
|
arg1_(arg1), arg2_(arg2) {} |
|
~MethodClosure2() {} |
|
|
|
void Run() { |
|
bool needs_delete = self_deleting_; // read in case callback deletes |
|
(object_->*method_)(arg1_, arg2_); |
|
if (needs_delete) delete this; |
|
} |
|
|
|
private: |
|
Class* object_; |
|
MethodType method_; |
|
bool self_deleting_; |
|
Arg1 arg1_; |
|
Arg2 arg2_; |
|
}; |
|
|
|
template<typename R, typename Arg1> |
|
class FunctionResultCallback_0_1 : public ResultCallback1<R, Arg1> { |
|
public: |
|
typedef R (*FunctionType)(Arg1 arg1); |
|
|
|
FunctionResultCallback_0_1(FunctionType function, bool self_deleting) |
|
: function_(function), self_deleting_(self_deleting) {} |
|
~FunctionResultCallback_0_1() {} |
|
|
|
R Run(Arg1 a1) { |
|
bool needs_delete = self_deleting_; // read in case callback deletes |
|
R result = function_(a1); |
|
if (needs_delete) delete this; |
|
return result; |
|
} |
|
|
|
private: |
|
FunctionType function_; |
|
bool self_deleting_; |
|
}; |
|
|
|
template<typename R, typename P1, typename A1> |
|
class FunctionResultCallback_1_1 : public ResultCallback1<R, A1> { |
|
public: |
|
typedef R (*FunctionType)(P1, A1); |
|
|
|
FunctionResultCallback_1_1(FunctionType function, bool self_deleting, |
|
P1 p1) |
|
: function_(function), self_deleting_(self_deleting), p1_(p1) {} |
|
~FunctionResultCallback_1_1() {} |
|
|
|
R Run(A1 a1) { |
|
bool needs_delete = self_deleting_; // read in case callback deletes |
|
R result = function_(p1_, a1); |
|
if (needs_delete) delete this; |
|
return result; |
|
} |
|
|
|
private: |
|
FunctionType function_; |
|
bool self_deleting_; |
|
P1 p1_; |
|
}; |
|
|
|
// Duplicate this again in the type_traits.h, due to dependency problems. |
|
template <class T> struct internal_remove_reference; |
|
template<typename T> struct internal_remove_reference { typedef T type; }; |
|
template<typename T> struct internal_remove_reference<T&> { typedef T type; }; |
|
|
|
template <typename T> |
|
struct InternalConstRef { |
|
typedef typename internal_remove_reference<T>::type base_type; |
|
typedef const base_type& type; |
|
}; |
|
|
|
template <typename R, typename T, typename P1, typename P2, typename P3, |
|
typename P4, typename P5, typename A1, typename A2> |
|
class MethodResultCallback_5_2 : public ResultCallback2<R, A1, A2> { |
|
public: |
|
typedef R (T::*MethodType)(P1, P2, P3, P4, P5, A1, A2); |
|
MethodResultCallback_5_2(T* object, MethodType method, bool self_deleting, |
|
P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) |
|
: object_(object), |
|
method_(method), |
|
self_deleting_(self_deleting), |
|
p1_(p1), |
|
p2_(p2), |
|
p3_(p3), |
|
p4_(p4), |
|
p5_(p5) {} |
|
~MethodResultCallback_5_2() {} |
|
|
|
R Run(A1 a1, A2 a2) { |
|
bool needs_delete = self_deleting_; |
|
R result = (object_->*method_)(p1_, p2_, p3_, p4_, p5_, a1, a2); |
|
if (needs_delete) delete this; |
|
return result; |
|
} |
|
|
|
private: |
|
T* object_; |
|
MethodType method_; |
|
bool self_deleting_; |
|
typename internal_remove_reference<P1>::type p1_; |
|
typename internal_remove_reference<P2>::type p2_; |
|
typename internal_remove_reference<P3>::type p3_; |
|
typename internal_remove_reference<P4>::type p4_; |
|
typename internal_remove_reference<P5>::type p5_; |
|
}; |
|
|
|
} // namespace internal |
|
|
|
// See Closure. |
|
inline Closure* NewCallback(void (*function)()) { |
|
return new internal::FunctionClosure0(function, true); |
|
} |
|
|
|
// See Closure. |
|
inline Closure* NewPermanentCallback(void (*function)()) { |
|
return new internal::FunctionClosure0(function, false); |
|
} |
|
|
|
// See Closure. |
|
template <typename Class> |
|
inline Closure* NewCallback(Class* object, void (Class::*method)()) { |
|
return new internal::MethodClosure0<Class>(object, method, true); |
|
} |
|
|
|
// See Closure. |
|
template <typename Class> |
|
inline Closure* NewPermanentCallback(Class* object, void (Class::*method)()) { |
|
return new internal::MethodClosure0<Class>(object, method, false); |
|
} |
|
|
|
// See Closure. |
|
template <typename Arg1> |
|
inline Closure* NewCallback(void (*function)(Arg1), |
|
Arg1 arg1) { |
|
return new internal::FunctionClosure1<Arg1>(function, true, arg1); |
|
} |
|
|
|
// See Closure. |
|
template <typename Arg1> |
|
inline Closure* NewPermanentCallback(void (*function)(Arg1), |
|
Arg1 arg1) { |
|
return new internal::FunctionClosure1<Arg1>(function, false, arg1); |
|
} |
|
|
|
// See Closure. |
|
template <typename Class, typename Arg1> |
|
inline Closure* NewCallback(Class* object, void (Class::*method)(Arg1), |
|
Arg1 arg1) { |
|
return new internal::MethodClosure1<Class, Arg1>(object, method, true, arg1); |
|
} |
|
|
|
// See Closure. |
|
template <typename Class, typename Arg1> |
|
inline Closure* NewPermanentCallback(Class* object, void (Class::*method)(Arg1), |
|
Arg1 arg1) { |
|
return new internal::MethodClosure1<Class, Arg1>(object, method, false, arg1); |
|
} |
|
|
|
// See Closure. |
|
template <typename Arg1, typename Arg2> |
|
inline Closure* NewCallback(void (*function)(Arg1, Arg2), |
|
Arg1 arg1, Arg2 arg2) { |
|
return new internal::FunctionClosure2<Arg1, Arg2>( |
|
function, true, arg1, arg2); |
|
} |
|
|
|
// See Closure. |
|
template <typename Arg1, typename Arg2> |
|
inline Closure* NewPermanentCallback(void (*function)(Arg1, Arg2), |
|
Arg1 arg1, Arg2 arg2) { |
|
return new internal::FunctionClosure2<Arg1, Arg2>( |
|
function, false, arg1, arg2); |
|
} |
|
|
|
// See Closure. |
|
template <typename Class, typename Arg1, typename Arg2> |
|
inline Closure* NewCallback(Class* object, void (Class::*method)(Arg1, Arg2), |
|
Arg1 arg1, Arg2 arg2) { |
|
return new internal::MethodClosure2<Class, Arg1, Arg2>( |
|
object, method, true, arg1, arg2); |
|
} |
|
|
|
// See Closure. |
|
template <typename Class, typename Arg1, typename Arg2> |
|
inline Closure* NewPermanentCallback( |
|
Class* object, void (Class::*method)(Arg1, Arg2), |
|
Arg1 arg1, Arg2 arg2) { |
|
return new internal::MethodClosure2<Class, Arg1, Arg2>( |
|
object, method, false, arg1, arg2); |
|
} |
|
|
|
// See ResultCallback1 |
|
template<typename R, typename A1> |
|
inline ResultCallback1<R, A1>* NewCallback(R (*function)(A1)) { |
|
return new internal::FunctionResultCallback_0_1<R, A1>(function, true); |
|
} |
|
|
|
// See ResultCallback1 |
|
template<typename R, typename A1> |
|
inline ResultCallback1<R, A1>* NewPermanentCallback(R (*function)(A1)) { |
|
return new internal::FunctionResultCallback_0_1<R, A1>(function, false); |
|
} |
|
|
|
// See ResultCallback1 |
|
template<typename R, typename P1, typename A1> |
|
inline ResultCallback1<R, A1>* NewCallback(R (*function)(P1, A1), P1 p1) { |
|
return new internal::FunctionResultCallback_1_1<R, P1, A1>( |
|
function, true, p1); |
|
} |
|
|
|
// See ResultCallback1 |
|
template<typename R, typename P1, typename A1> |
|
inline ResultCallback1<R, A1>* NewPermanentCallback( |
|
R (*function)(P1, A1), P1 p1) { |
|
return new internal::FunctionResultCallback_1_1<R, P1, A1>( |
|
function, false, p1); |
|
} |
|
|
|
// See MethodResultCallback_5_2 |
|
template <typename R, typename T, typename P1, typename P2, typename P3, |
|
typename P4, typename P5, typename A1, typename A2> |
|
inline ResultCallback2<R, A1, A2>* NewPermanentCallback( |
|
T* object, R (T::*function)(P1, P2, P3, P4, P5, A1, A2), |
|
typename internal::InternalConstRef<P1>::type p1, |
|
typename internal::InternalConstRef<P2>::type p2, |
|
typename internal::InternalConstRef<P3>::type p3, |
|
typename internal::InternalConstRef<P4>::type p4, |
|
typename internal::InternalConstRef<P5>::type p5) { |
|
return new internal::MethodResultCallback_5_2<R, T, P1, P2, P3, P4, P5, A1, |
|
A2>(object, function, false, p1, |
|
p2, p3, p4, p5); |
|
} |
|
|
|
// A function which does nothing. Useful for creating no-op callbacks, e.g.: |
|
// Closure* nothing = NewCallback(&DoNothing); |
|
void LIBPROTOBUF_EXPORT DoNothing(); |
|
|
|
// =================================================================== |
|
// emulates google3/base/mutex.h |
|
|
|
namespace internal { |
|
|
|
// A Mutex is a non-reentrant (aka non-recursive) mutex. At most one thread T |
|
// may hold a mutex at a given time. If T attempts to Lock() the same Mutex |
|
// while holding it, T will deadlock. |
|
class LIBPROTOBUF_EXPORT Mutex { |
|
public: |
|
// Create a Mutex that is not held by anybody. |
|
Mutex(); |
|
|
|
// Destructor |
|
~Mutex(); |
|
|
|
// Block if necessary until this Mutex is free, then acquire it exclusively. |
|
void Lock(); |
|
|
|
// Release this Mutex. Caller must hold it exclusively. |
|
void Unlock(); |
|
|
|
// Crash if this Mutex is not held exclusively by this thread. |
|
// May fail to crash when it should; will never crash when it should not. |
|
void AssertHeld(); |
|
|
|
private: |
|
struct Internal; |
|
Internal* mInternal; |
|
|
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Mutex); |
|
}; |
|
|
|
// Undefine the macros to workaround the conflicts with Google internal |
|
// MutexLock implementation. |
|
// TODO(liujisi): Remove the undef once internal macros are removed. |
|
#undef MutexLock |
|
#undef ReaderMutexLock |
|
#undef WriterMutexLock |
|
#undef MutexLockMaybe |
|
|
|
// MutexLock(mu) acquires mu when constructed and releases it when destroyed. |
|
class LIBPROTOBUF_EXPORT MutexLock { |
|
public: |
|
explicit MutexLock(Mutex *mu) : mu_(mu) { this->mu_->Lock(); } |
|
~MutexLock() { this->mu_->Unlock(); } |
|
private: |
|
Mutex *const mu_; |
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MutexLock); |
|
}; |
|
|
|
// TODO(kenton): Implement these? Hard to implement portably. |
|
typedef MutexLock ReaderMutexLock; |
|
typedef MutexLock WriterMutexLock; |
|
|
|
// MutexLockMaybe is like MutexLock, but is a no-op when mu is NULL. |
|
class LIBPROTOBUF_EXPORT MutexLockMaybe { |
|
public: |
|
explicit MutexLockMaybe(Mutex *mu) : |
|
mu_(mu) { if (this->mu_ != NULL) { this->mu_->Lock(); } } |
|
~MutexLockMaybe() { if (this->mu_ != NULL) { this->mu_->Unlock(); } } |
|
private: |
|
Mutex *const mu_; |
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MutexLockMaybe); |
|
}; |
|
|
|
#if defined(GOOGLE_PROTOBUF_NO_THREADLOCAL) |
|
template<typename T> |
|
class ThreadLocalStorage { |
|
public: |
|
ThreadLocalStorage() { |
|
pthread_key_create(&key_, &ThreadLocalStorage::Delete); |
|
} |
|
~ThreadLocalStorage() { |
|
pthread_key_delete(key_); |
|
} |
|
T* Get() { |
|
T* result = static_cast<T*>(pthread_getspecific(key_)); |
|
if (result == NULL) { |
|
result = new T(); |
|
pthread_setspecific(key_, result); |
|
} |
|
return result; |
|
} |
|
private: |
|
static void Delete(void* value) { |
|
delete static_cast<T*>(value); |
|
} |
|
pthread_key_t key_; |
|
|
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ThreadLocalStorage); |
|
}; |
|
#endif |
|
|
|
} // namespace internal |
|
|
|
// We made these internal so that they would show up as such in the docs, |
|
// but we don't want to stick "internal::" in front of them everywhere. |
|
using internal::Mutex; |
|
using internal::MutexLock; |
|
using internal::ReaderMutexLock; |
|
using internal::WriterMutexLock; |
|
using internal::MutexLockMaybe; |
|
|
|
// =================================================================== |
|
// from google3/util/utf8/public/unilib.h |
|
|
|
namespace internal { |
|
|
|
// Checks if the buffer contains structurally-valid UTF-8. Implemented in |
|
// structurally_valid.cc. |
|
LIBPROTOBUF_EXPORT bool IsStructurallyValidUTF8(const char* buf, int len); |
|
|
|
} // namespace internal |
|
|
|
// =================================================================== |
|
// from google3/base/port.h |
|
|
|
// The following guarantees declaration of the byte swap functions, and |
|
// defines __BYTE_ORDER for MSVC |
|
#ifdef _MSC_VER |
|
#include <stdlib.h> // NOLINT(build/include) |
|
#define __BYTE_ORDER __LITTLE_ENDIAN |
|
#define bswap_16(x) _byteswap_ushort(x) |
|
#define bswap_32(x) _byteswap_ulong(x) |
|
#define bswap_64(x) _byteswap_uint64(x) |
|
|
|
#elif defined(__APPLE__) |
|
// Mac OS X / Darwin features |
|
#include <libkern/OSByteOrder.h> |
|
#define bswap_16(x) OSSwapInt16(x) |
|
#define bswap_32(x) OSSwapInt32(x) |
|
#define bswap_64(x) OSSwapInt64(x) |
|
|
|
#elif defined(__GLIBC__) || defined(__CYGWIN__) |
|
#include <byteswap.h> // IWYU pragma: export |
|
|
|
#else |
|
|
|
static inline uint16 bswap_16(uint16 x) { |
|
return static_cast<uint16>(((x & 0xFF) << 8) | ((x & 0xFF00) >> 8)); |
|
} |
|
#define bswap_16(x) bswap_16(x) |
|
static inline uint32 bswap_32(uint32 x) { |
|
return (((x & 0xFF) << 24) | |
|
((x & 0xFF00) << 8) | |
|
((x & 0xFF0000) >> 8) | |
|
((x & 0xFF000000) >> 24)); |
|
} |
|
#define bswap_32(x) bswap_32(x) |
|
static inline uint64 bswap_64(uint64 x) { |
|
return (((x & GG_ULONGLONG(0xFF)) << 56) | |
|
((x & GG_ULONGLONG(0xFF00)) << 40) | |
|
((x & GG_ULONGLONG(0xFF0000)) << 24) | |
|
((x & GG_ULONGLONG(0xFF000000)) << 8) | |
|
((x & GG_ULONGLONG(0xFF00000000)) >> 8) | |
|
((x & GG_ULONGLONG(0xFF0000000000)) >> 24) | |
|
((x & GG_ULONGLONG(0xFF000000000000)) >> 40) | |
|
((x & GG_ULONGLONG(0xFF00000000000000)) >> 56)); |
|
} |
|
#define bswap_64(x) bswap_64(x) |
|
|
|
#endif |
|
|
|
// =================================================================== |
|
// from google3/util/endian/endian.h |
|
LIBPROTOBUF_EXPORT uint32 ghtonl(uint32 x); |
|
|
|
class BigEndian { |
|
public: |
|
#ifdef PROTOBUF_LITTLE_ENDIAN |
|
|
|
static uint16 FromHost16(uint16 x) { return bswap_16(x); } |
|
static uint16 ToHost16(uint16 x) { return bswap_16(x); } |
|
|
|
static uint32 FromHost32(uint32 x) { return bswap_32(x); } |
|
static uint32 ToHost32(uint32 x) { return bswap_32(x); } |
|
|
|
static uint64 FromHost64(uint64 x) { return bswap_64(x); } |
|
static uint64 ToHost64(uint64 x) { return bswap_64(x); } |
|
|
|
static bool IsLittleEndian() { return true; } |
|
|
|
#else |
|
|
|
static uint16 FromHost16(uint16 x) { return x; } |
|
static uint16 ToHost16(uint16 x) { return x; } |
|
|
|
static uint32 FromHost32(uint32 x) { return x; } |
|
static uint32 ToHost32(uint32 x) { return x; } |
|
|
|
static uint64 FromHost64(uint64 x) { return x; } |
|
static uint64 ToHost64(uint64 x) { return x; } |
|
|
|
static bool IsLittleEndian() { return false; } |
|
|
|
#endif /* ENDIAN */ |
|
|
|
// Functions to do unaligned loads and stores in big-endian order. |
|
static uint16 Load16(const void *p) { |
|
return ToHost16(GOOGLE_UNALIGNED_LOAD16(p)); |
|
} |
|
|
|
static void Store16(void *p, uint16 v) { |
|
GOOGLE_UNALIGNED_STORE16(p, FromHost16(v)); |
|
} |
|
|
|
static uint32 Load32(const void *p) { |
|
return ToHost32(GOOGLE_UNALIGNED_LOAD32(p)); |
|
} |
|
|
|
static void Store32(void *p, uint32 v) { |
|
GOOGLE_UNALIGNED_STORE32(p, FromHost32(v)); |
|
} |
|
|
|
static uint64 Load64(const void *p) { |
|
return ToHost64(GOOGLE_UNALIGNED_LOAD64(p)); |
|
} |
|
|
|
static void Store64(void *p, uint64 v) { |
|
GOOGLE_UNALIGNED_STORE64(p, FromHost64(v)); |
|
} |
|
}; |
|
|
|
// =================================================================== |
|
// Shutdown support. |
|
|
|
// Shut down the entire protocol buffers library, deleting all static-duration |
|
// objects allocated by the library or by generated .pb.cc files. |
|
// |
|
// There are two reasons you might want to call this: |
|
// * You use a draconian definition of "memory leak" in which you expect |
|
// every single malloc() to have a corresponding free(), even for objects |
|
// which live until program exit. |
|
// * You are writing a dynamically-loaded library which needs to clean up |
|
// after itself when the library is unloaded. |
|
// |
|
// It is safe to call this multiple times. However, it is not safe to use |
|
// any other part of the protocol buffers library after |
|
// ShutdownProtobufLibrary() has been called. |
|
LIBPROTOBUF_EXPORT void ShutdownProtobufLibrary(); |
|
|
|
namespace internal { |
|
|
|
// Register a function to be called when ShutdownProtocolBuffers() is called. |
|
LIBPROTOBUF_EXPORT void OnShutdown(void (*func)()); |
|
|
|
} // namespace internal |
|
|
|
#if PROTOBUF_USE_EXCEPTIONS |
|
class FatalException : public std::exception { |
|
public: |
|
FatalException(const char* filename, int line, const std::string& message) |
|
: filename_(filename), line_(line), message_(message) {} |
|
virtual ~FatalException() throw(); |
|
|
|
virtual const char* what() const throw(); |
|
|
|
const char* filename() const { return filename_; } |
|
int line() const { return line_; } |
|
const std::string& message() const { return message_; } |
|
|
|
private: |
|
const char* filename_; |
|
const int line_; |
|
const std::string message_; |
|
}; |
|
#endif |
|
|
|
// This is at the end of the file instead of the beginning to work around a bug |
|
// in some versions of MSVC. |
|
using namespace std; // Don't do this at home, kids. |
|
|
|
} // namespace protobuf |
|
} // namespace google |
|
|
|
#endif // GOOGLE_PROTOBUF_COMMON_H__
|
|
|