Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

818 lines
28 KiB

/*
* Copyright (c) 2009-2021, Google LLC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Google LLC nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Google LLC BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
** Our memory representation for parsing tables and messages themselves.
** Functions in this file are used by generated code and possibly reflection.
**
** The definitions in this file are internal to upb.
**/
#ifndef UPB_MSG_INT_H_
#define UPB_MSG_INT_H_
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "upb/msg.h"
#include "upb/table_internal.h"
#include "upb/upb.h"
/* Must be last. */
#include "upb/port_def.inc"
#ifdef __cplusplus
extern "C" {
#endif
/** upb_MiniTable *************************************************************/
/* upb_MiniTable represents the memory layout of a given upb_MessageDef. The
* members are public so generated code can initialize them, but users MUST NOT
* read or write any of its members. */
typedef struct {
uint32_t number;
uint16_t offset;
int16_t presence; // If >0, hasbit_index. If <0, ~oneof_index
uint16_t submsg_index; // undefined if descriptortype != MESSAGE/GROUP/ENUM
uint8_t descriptortype;
uint8_t mode; /* upb_FieldMode | upb_LabelFlags |
(upb_FieldRep << upb_FieldRep_Shift) */
} upb_MiniTable_Field;
typedef enum {
kUpb_FieldMode_Map = 0,
kUpb_FieldMode_Array = 1,
kUpb_FieldMode_Scalar = 2,
kUpb_FieldMode_Mask = 3, /* Mask to isolate the mode from upb_FieldRep. */
} upb_FieldMode;
/* Extra flags on the mode field. */
enum upb_LabelFlags {
upb_LabelFlags_IsPacked = 4,
upb_LabelFlags_IsExtension = 8,
};
/* Representation in the message. Derivable from descriptortype and mode, but
* fast access helps the serializer. */
enum upb_FieldRep {
upb_FieldRep_1Byte = 0,
upb_FieldRep_4Byte = 1,
upb_FieldRep_8Byte = 2,
upb_FieldRep_StringView = 3,
#if UINTPTR_MAX == 0xffffffff
upb_FieldRep_Pointer = upb_FieldRep_4Byte,
#else
upb_FieldRep_Pointer = upb_FieldRep_8Byte,
#endif
upb_FieldRep_Shift =
6, /* Bit offset of the rep in upb_MiniTable_Field.mode */
};
UPB_INLINE upb_FieldMode upb_FieldMode_Get(const upb_MiniTable_Field* field) {
return (upb_FieldMode)(field->mode & 3);
}
UPB_INLINE bool upb_IsRepeatedOrMap(const upb_MiniTable_Field* field) {
/* This works because upb_FieldMode has no value 3. */
return !(field->mode & kUpb_FieldMode_Scalar);
}
UPB_INLINE bool upb_IsSubMessage(const upb_MiniTable_Field* field) {
return field->descriptortype == upb_FieldType_Message ||
field->descriptortype == upb_FieldType_Group;
}
struct upb_Decoder;
struct upb_MiniTable;
typedef const char* _upb_FieldParser(struct upb_Decoder* d, const char* ptr,
upb_Message* msg, intptr_t table,
uint64_t hasbits, uint64_t data);
typedef struct {
uint64_t field_data;
_upb_FieldParser* field_parser;
} _upb_FastTable_Entry;
typedef struct {
const int32_t* values; // List of values <0 or >63
uint64_t mask; // Bits are set for acceptable value 0 <= x < 64
int value_count;
} upb_MiniTable_Enum;
UPB_INLINE bool upb_MiniTable_Enum_CheckValue(const upb_MiniTable_Enum* e,
int32_t val) {
uint32_t uval = (uint32_t)val;
if (uval < 64) return e->mask & (1 << uval);
// OPT: binary search long lists?
int n = e->value_count;
for (int i = 0; i < n; i++) {
if (e->values[i] == val) return true;
}
return false;
}
typedef union {
const struct upb_MiniTable* submsg;
const upb_MiniTable_Enum* subenum;
} upb_MiniTable_Sub;
typedef enum {
upb_ExtMode_NonExtendable = 0, // Non-extendable message.
upb_ExtMode_Extendable = 1, // Normal extendable message.
upb_ExtMode_IsMessageSet = 2, // MessageSet message.
upb_ExtMode_IsMessageSet_ITEM =
3, // MessageSet item (temporary only, see decode.c)
} upb_ExtMode;
/* MessageSet wire format is:
* message MessageSet {
* repeated group Item = 1 {
* required int32 type_id = 2;
* required string message = 3;
* }
* }
*/
typedef enum {
_UPB_MSGSET_ITEM = 1,
_UPB_MSGSET_TYPEID = 2,
_UPB_MSGSET_MESSAGE = 3,
} upb_msgext_fieldnum;
struct upb_MiniTable {
const upb_MiniTable_Sub* subs;
const upb_MiniTable_Field* fields;
/* Must be aligned to sizeof(void*). Doesn't include internal members like
* unknown fields, extension dict, pointer to msglayout, etc. */
uint16_t size;
uint16_t field_count;
uint8_t ext; // upb_ExtMode, declared as uint8_t so sizeof(ext) == 1
uint8_t dense_below;
uint8_t table_mask;
uint8_t required_count; // Required fields have the lowest hasbits.
/* To statically initialize the tables of variable length, we need a flexible
* array member, and we need to compile in gnu99 mode (constant initialization
* of flexible array members is a GNU extension, not in C99 unfortunately. */
_upb_FastTable_Entry fasttable[];
};
typedef struct {
upb_MiniTable_Field field;
const upb_MiniTable* extendee;
upb_MiniTable_Sub sub; /* NULL unless submessage or proto2 enum */
} upb_MiniTable_Extension;
typedef struct {
const upb_MiniTable** msgs;
const upb_MiniTable_Enum** enums;
const upb_MiniTable_Extension** exts;
int msg_count;
int enum_count;
int ext_count;
} upb_MiniTable_File;
// Computes a bitmask in which the |l->required_count| lowest bits are set,
// except that we skip the lowest bit (because upb never uses hasbit 0).
//
// Sample output:
// requiredmask(1) => 0b10 (0x2)
// requiredmask(5) => 0b111110 (0x3e)
UPB_INLINE uint64_t upb_MiniTable_requiredmask(const upb_MiniTable* l) {
int n = l->required_count;
assert(0 < n && n <= 63);
return ((1ULL << n) - 1) << 1;
}
/** upb_ExtensionRegistry
* ****************************************************************/
/* Adds the given extension info for message type |l| and field number |num|
* into the registry. Returns false if this message type and field number were
* already in the map, or if memory allocation fails. */
bool _upb_extreg_add(upb_ExtensionRegistry* r,
const upb_MiniTable_Extension** e, size_t count);
/* Looks up the extension (if any) defined for message type |l| and field
* number |num|. If an extension was found, copies the field info into |*ext|
* and returns true. Otherwise returns false. */
const upb_MiniTable_Extension* _upb_extreg_get(const upb_ExtensionRegistry* r,
const upb_MiniTable* l,
uint32_t num);
/** upb_Message
* *******************************************************************/
/* Internal members of a upb_Message that track unknown fields and/or
* extensions. We can change this without breaking binary compatibility. We put
* these before the user's data. The user's upb_Message* points after the
* upb_Message_Internal. */
typedef struct {
/* Total size of this structure, including the data that follows.
* Must be aligned to 8, which is alignof(upb_Message_Extension) */
uint32_t size;
/* Offsets relative to the beginning of this structure.
*
* Unknown data grows forward from the beginning to unknown_end.
* Extension data grows backward from size to ext_begin.
* When the two meet, we're out of data and have to realloc.
*
* If we imagine that the final member of this struct is:
* char data[size - overhead]; // overhead =
* sizeof(upb_Message_InternalData)
*
* Then we have:
* unknown data: data[0 .. (unknown_end - overhead)]
* extensions data: data[(ext_begin - overhead) .. (size - overhead)] */
uint32_t unknown_end;
uint32_t ext_begin;
/* Data follows, as if there were an array:
* char data[size - sizeof(upb_Message_InternalData)]; */
} upb_Message_InternalData;
typedef struct {
upb_Message_InternalData* internal;
/* Message data follows. */
} upb_Message_Internal;
/* Maps upb_CType -> memory size. */
extern char _upb_CTypeo_size[12];
UPB_INLINE size_t upb_msg_sizeof(const upb_MiniTable* l) {
return l->size + sizeof(upb_Message_Internal);
}
UPB_INLINE upb_Message* _upb_Message_New_inl(const upb_MiniTable* l,
upb_Arena* a) {
size_t size = upb_msg_sizeof(l);
void* mem = upb_Arena_Malloc(a, size);
upb_Message* msg;
if (UPB_UNLIKELY(!mem)) return NULL;
msg = UPB_PTR_AT(mem, sizeof(upb_Message_Internal), upb_Message);
memset(mem, 0, size);
return msg;
}
/* Creates a new messages with the given layout on the given arena. */
upb_Message* _upb_Message_New(const upb_MiniTable* l, upb_Arena* a);
UPB_INLINE upb_Message_Internal* upb_Message_Getinternal(upb_Message* msg) {
ptrdiff_t size = sizeof(upb_Message_Internal);
return (upb_Message_Internal*)((char*)msg - size);
}
/* Clears the given message. */
void _upb_Message_Clear(upb_Message* msg, const upb_MiniTable* l);
/* Discards the unknown fields for this message only. */
void _upb_Message_DiscardUnknown_shallow(upb_Message* msg);
/* Adds unknown data (serialized protobuf data) to the given message. The data
* is copied into the message instance. */
bool _upb_Message_AddUnknown(upb_Message* msg, const char* data, size_t len,
upb_Arena* arena);
/** upb_Message_Extension
* ***************************************************************/
/* The internal representation of an extension is self-describing: it contains
* enough information that we can serialize it to binary format without needing
* to look it up in a upb_ExtensionRegistry.
*
* This representation allocates 16 bytes to data on 64-bit platforms. This is
* rather wasteful for scalars (in the extreme case of bool, it wastes 15
* bytes). We accept this because we expect messages to be the most common
* extension type. */
typedef struct {
const upb_MiniTable_Extension* ext;
union {
upb_StringView str;
void* ptr;
char scalar_data[8];
} data;
} upb_Message_Extension;
/* Adds the given extension data to the given message. |ext| is copied into the
* message instance. This logically replaces any previously-added extension with
* this number */
upb_Message_Extension* _upb_Message_Getorcreateext(
upb_Message* msg, const upb_MiniTable_Extension* ext, upb_Arena* arena);
/* Returns an array of extensions for this message. Note: the array is
* ordered in reverse relative to the order of creation. */
const upb_Message_Extension* _upb_Message_Getexts(const upb_Message* msg,
size_t* count);
/* Returns an extension for the given field number, or NULL if no extension
* exists for this field number. */
const upb_Message_Extension* _upb_Message_Getext(
const upb_Message* msg, const upb_MiniTable_Extension* ext);
void _upb_Message_Clearext(upb_Message* msg,
const upb_MiniTable_Extension* ext);
void _upb_Message_Clearext(upb_Message* msg,
const upb_MiniTable_Extension* ext);
/** Hasbit access *************************************************************/
UPB_INLINE bool _upb_hasbit(const upb_Message* msg, size_t idx) {
return (*UPB_PTR_AT(msg, idx / 8, const char) & (1 << (idx % 8))) != 0;
}
UPB_INLINE void _upb_sethas(const upb_Message* msg, size_t idx) {
(*UPB_PTR_AT(msg, idx / 8, char)) |= (char)(1 << (idx % 8));
}
UPB_INLINE void _upb_clearhas(const upb_Message* msg, size_t idx) {
(*UPB_PTR_AT(msg, idx / 8, char)) &= (char)(~(1 << (idx % 8)));
}
UPB_INLINE size_t _upb_Message_Hasidx(const upb_MiniTable_Field* f) {
UPB_ASSERT(f->presence > 0);
return f->presence;
}
UPB_INLINE bool _upb_hasbit_field(const upb_Message* msg,
const upb_MiniTable_Field* f) {
return _upb_hasbit(msg, _upb_Message_Hasidx(f));
}
UPB_INLINE void _upb_sethas_field(const upb_Message* msg,
const upb_MiniTable_Field* f) {
_upb_sethas(msg, _upb_Message_Hasidx(f));
}
UPB_INLINE void _upb_clearhas_field(const upb_Message* msg,
const upb_MiniTable_Field* f) {
_upb_clearhas(msg, _upb_Message_Hasidx(f));
}
/** Oneof case access *********************************************************/
UPB_INLINE uint32_t* _upb_oneofcase(upb_Message* msg, size_t case_ofs) {
return UPB_PTR_AT(msg, case_ofs, uint32_t);
}
UPB_INLINE uint32_t _upb_getoneofcase(const void* msg, size_t case_ofs) {
return *UPB_PTR_AT(msg, case_ofs, uint32_t);
}
UPB_INLINE size_t _upb_oneofcase_ofs(const upb_MiniTable_Field* f) {
UPB_ASSERT(f->presence < 0);
return ~(ptrdiff_t)f->presence;
}
UPB_INLINE uint32_t* _upb_oneofcase_field(upb_Message* msg,
const upb_MiniTable_Field* f) {
return _upb_oneofcase(msg, _upb_oneofcase_ofs(f));
}
UPB_INLINE uint32_t _upb_getoneofcase_field(const upb_Message* msg,
const upb_MiniTable_Field* f) {
return _upb_getoneofcase(msg, _upb_oneofcase_ofs(f));
}
UPB_INLINE bool _upb_has_submsg_nohasbit(const upb_Message* msg, size_t ofs) {
return *UPB_PTR_AT(msg, ofs, const upb_Message*) != NULL;
}
/** upb_Array *****************************************************************/
/* Our internal representation for repeated fields. */
typedef struct {
uintptr_t data; /* Tagged ptr: low 3 bits of ptr are lg2(elem size). */
size_t len; /* Measured in elements. */
size_t size; /* Measured in elements. */
uint64_t junk;
} upb_Array;
UPB_INLINE const void* _upb_array_constptr(const upb_Array* arr) {
UPB_ASSERT((arr->data & 7) <= 4);
return (void*)(arr->data & ~(uintptr_t)7);
}
UPB_INLINE uintptr_t _upb_array_tagptr(void* ptr, int elem_size_lg2) {
UPB_ASSERT(elem_size_lg2 <= 4);
return (uintptr_t)ptr | elem_size_lg2;
}
UPB_INLINE void* _upb_array_ptr(upb_Array* arr) {
return (void*)_upb_array_constptr(arr);
}
UPB_INLINE uintptr_t _upb_tag_arrptr(void* ptr, int elem_size_lg2) {
UPB_ASSERT(elem_size_lg2 <= 4);
UPB_ASSERT(((uintptr_t)ptr & 7) == 0);
return (uintptr_t)ptr | (unsigned)elem_size_lg2;
}
UPB_INLINE upb_Array* _upb_Array_New(upb_Arena* a, size_t init_size,
int elem_size_lg2) {
const size_t arr_size = UPB_ALIGN_UP(sizeof(upb_Array), 8);
const size_t bytes = sizeof(upb_Array) + (init_size << elem_size_lg2);
upb_Array* arr = (upb_Array*)upb_Arena_Malloc(a, bytes);
if (!arr) return NULL;
arr->data = _upb_tag_arrptr(UPB_PTR_AT(arr, arr_size, void), elem_size_lg2);
arr->len = 0;
arr->size = init_size;
return arr;
}
/* Resizes the capacity of the array to be at least min_size. */
bool _upb_array_realloc(upb_Array* arr, size_t min_size, upb_Arena* arena);
/* Fallback functions for when the accessors require a resize. */
void* _upb_Array_Resize_fallback(upb_Array** arr_ptr, size_t size,
int elem_size_lg2, upb_Arena* arena);
bool _upb_Array_Append_fallback(upb_Array** arr_ptr, const void* value,
int elem_size_lg2, upb_Arena* arena);
UPB_INLINE bool _upb_array_reserve(upb_Array* arr, size_t size,
upb_Arena* arena) {
if (arr->size < size) return _upb_array_realloc(arr, size, arena);
return true;
}
UPB_INLINE bool _upb_Array_Resize(upb_Array* arr, size_t size,
upb_Arena* arena) {
if (!_upb_array_reserve(arr, size, arena)) return false;
arr->len = size;
return true;
}
UPB_INLINE const void* _upb_array_accessor(const void* msg, size_t ofs,
size_t* size) {
const upb_Array* arr = *UPB_PTR_AT(msg, ofs, const upb_Array*);
if (arr) {
if (size) *size = arr->len;
return _upb_array_constptr(arr);
} else {
if (size) *size = 0;
return NULL;
}
}
UPB_INLINE void* _upb_array_mutable_accessor(void* msg, size_t ofs,
size_t* size) {
upb_Array* arr = *UPB_PTR_AT(msg, ofs, upb_Array*);
if (arr) {
if (size) *size = arr->len;
return _upb_array_ptr(arr);
} else {
if (size) *size = 0;
return NULL;
}
}
UPB_INLINE void* _upb_Array_Resize_accessor2(void* msg, size_t ofs, size_t size,
int elem_size_lg2,
upb_Arena* arena) {
upb_Array** arr_ptr = UPB_PTR_AT(msg, ofs, upb_Array*);
upb_Array* arr = *arr_ptr;
if (!arr || arr->size < size) {
return _upb_Array_Resize_fallback(arr_ptr, size, elem_size_lg2, arena);
}
arr->len = size;
return _upb_array_ptr(arr);
}
UPB_INLINE bool _upb_Array_Append_accessor2(void* msg, size_t ofs,
int elem_size_lg2,
const void* value,
upb_Arena* arena) {
upb_Array** arr_ptr = UPB_PTR_AT(msg, ofs, upb_Array*);
size_t elem_size = 1 << elem_size_lg2;
upb_Array* arr = *arr_ptr;
void* ptr;
if (!arr || arr->len == arr->size) {
return _upb_Array_Append_fallback(arr_ptr, value, elem_size_lg2, arena);
}
ptr = _upb_array_ptr(arr);
memcpy(UPB_PTR_AT(ptr, arr->len * elem_size, char), value, elem_size);
arr->len++;
return true;
}
/* Used by old generated code, remove once all code has been regenerated. */
UPB_INLINE int _upb_sizelg2(upb_CType type) {
switch (type) {
case kUpb_CType_Bool:
return 0;
case kUpb_CType_Float:
case kUpb_CType_Int32:
case kUpb_CType_UInt32:
case kUpb_CType_Enum:
return 2;
case kUpb_CType_Message:
return UPB_SIZE(2, 3);
case kUpb_CType_Double:
case kUpb_CType_Int64:
case kUpb_CType_UInt64:
return 3;
case kUpb_CType_String:
case kUpb_CType_Bytes:
return UPB_SIZE(3, 4);
}
UPB_UNREACHABLE();
}
UPB_INLINE void* _upb_Array_Resize_accessor(void* msg, size_t ofs, size_t size,
upb_CType type, upb_Arena* arena) {
return _upb_Array_Resize_accessor2(msg, ofs, size, _upb_sizelg2(type), arena);
}
UPB_INLINE bool _upb_Array_Append_accessor(void* msg, size_t ofs,
size_t elem_size, upb_CType type,
const void* value,
upb_Arena* arena) {
(void)elem_size;
return _upb_Array_Append_accessor2(msg, ofs, _upb_sizelg2(type), value,
arena);
}
/** upb_Map *******************************************************************/
/* Right now we use strmaps for everything. We'll likely want to use
* integer-specific maps for integer-keyed maps.*/
typedef struct {
/* Size of key and val, based on the map type. Strings are represented as '0'
* because they must be handled specially. */
char key_size;
char val_size;
upb_strtable table;
} upb_Map;
/* Map entries aren't actually stored, they are only used during parsing. For
* parsing, it helps a lot if all map entry messages have the same layout.
* The compiler and def.c must ensure that all map entries have this layout. */
typedef struct {
upb_Message_Internal internal;
union {
upb_StringView str; /* For str/bytes. */
upb_value val; /* For all other types. */
} k;
union {
upb_StringView str; /* For str/bytes. */
upb_value val; /* For all other types. */
} v;
} upb_MapEntry;
/* Creates a new map on the given arena with this key/value type. */
upb_Map* _upb_Map_New(upb_Arena* a, size_t key_size, size_t value_size);
/* Converting between internal table representation and user values.
*
* _upb_map_tokey() and _upb_map_fromkey() are inverses.
* _upb_map_tovalue() and _upb_map_fromvalue() are inverses.
*
* These functions account for the fact that strings are treated differently
* from other types when stored in a map.
*/
UPB_INLINE upb_StringView _upb_map_tokey(const void* key, size_t size) {
if (size == UPB_MAPTYPE_STRING) {
return *(upb_StringView*)key;
} else {
return upb_StringView_FromDataAndSize((const char*)key, size);
}
}
UPB_INLINE void _upb_map_fromkey(upb_StringView key, void* out, size_t size) {
if (size == UPB_MAPTYPE_STRING) {
memcpy(out, &key, sizeof(key));
} else {
memcpy(out, key.data, size);
}
}
UPB_INLINE bool _upb_map_tovalue(const void* val, size_t size,
upb_value* msgval, upb_Arena* a) {
if (size == UPB_MAPTYPE_STRING) {
upb_StringView* strp = (upb_StringView*)upb_Arena_Malloc(a, sizeof(*strp));
if (!strp) return false;
*strp = *(upb_StringView*)val;
*msgval = upb_value_ptr(strp);
} else {
memcpy(msgval, val, size);
}
return true;
}
UPB_INLINE void _upb_map_fromvalue(upb_value val, void* out, size_t size) {
if (size == UPB_MAPTYPE_STRING) {
const upb_StringView* strp = (const upb_StringView*)upb_value_getptr(val);
memcpy(out, strp, sizeof(upb_StringView));
} else {
memcpy(out, &val, size);
}
}
/* Map operations, shared by reflection and generated code. */
UPB_INLINE size_t _upb_Map_Size(const upb_Map* map) {
return map->table.t.count;
}
UPB_INLINE bool _upb_Map_Get(const upb_Map* map, const void* key,
size_t key_size, void* val, size_t val_size) {
upb_value tabval;
upb_StringView k = _upb_map_tokey(key, key_size);
bool ret = upb_strtable_lookup2(&map->table, k.data, k.size, &tabval);
if (ret && val) {
_upb_map_fromvalue(tabval, val, val_size);
}
return ret;
}
UPB_INLINE void* _upb_map_next(const upb_Map* map, size_t* iter) {
upb_strtable_iter it;
it.t = &map->table;
it.index = *iter;
upb_strtable_next(&it);
*iter = it.index;
if (upb_strtable_done(&it)) return NULL;
return (void*)str_tabent(&it);
}
UPB_INLINE bool _upb_Map_Set(upb_Map* map, const void* key, size_t key_size,
void* val, size_t val_size, upb_Arena* a) {
upb_StringView strkey = _upb_map_tokey(key, key_size);
upb_value tabval = {0};
if (!_upb_map_tovalue(val, val_size, &tabval, a)) return false;
/* TODO(haberman): add overwrite operation to minimize number of lookups. */
upb_strtable_remove2(&map->table, strkey.data, strkey.size, NULL);
return upb_strtable_insert(&map->table, strkey.data, strkey.size, tabval, a);
}
UPB_INLINE bool _upb_Map_Delete(upb_Map* map, const void* key,
size_t key_size) {
upb_StringView k = _upb_map_tokey(key, key_size);
return upb_strtable_remove2(&map->table, k.data, k.size, NULL);
}
UPB_INLINE void _upb_Map_Clear(upb_Map* map) {
upb_strtable_clear(&map->table);
}
/* Message map operations, these get the map from the message first. */
UPB_INLINE size_t _upb_msg_map_size(const upb_Message* msg, size_t ofs) {
upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*);
return map ? _upb_Map_Size(map) : 0;
}
UPB_INLINE bool _upb_msg_map_get(const upb_Message* msg, size_t ofs,
const void* key, size_t key_size, void* val,
size_t val_size) {
upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*);
if (!map) return false;
return _upb_Map_Get(map, key, key_size, val, val_size);
}
UPB_INLINE void* _upb_msg_map_next(const upb_Message* msg, size_t ofs,
size_t* iter) {
upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*);
if (!map) return NULL;
return _upb_map_next(map, iter);
}
UPB_INLINE bool _upb_msg_map_set(upb_Message* msg, size_t ofs, const void* key,
size_t key_size, void* val, size_t val_size,
upb_Arena* arena) {
upb_Map** map = UPB_PTR_AT(msg, ofs, upb_Map*);
if (!*map) {
*map = _upb_Map_New(arena, key_size, val_size);
}
return _upb_Map_Set(*map, key, key_size, val, val_size, arena);
}
UPB_INLINE bool _upb_msg_map_delete(upb_Message* msg, size_t ofs,
const void* key, size_t key_size) {
upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*);
if (!map) return false;
return _upb_Map_Delete(map, key, key_size);
}
UPB_INLINE void _upb_msg_map_clear(upb_Message* msg, size_t ofs) {
upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*);
if (!map) return;
_upb_Map_Clear(map);
}
/* Accessing map key/value from a pointer, used by generated code only. */
UPB_INLINE void _upb_msg_map_key(const void* msg, void* key, size_t size) {
const upb_tabent* ent = (const upb_tabent*)msg;
uint32_t u32len;
upb_StringView k;
k.data = upb_tabstr(ent->key, &u32len);
k.size = u32len;
_upb_map_fromkey(k, key, size);
}
UPB_INLINE void _upb_msg_map_value(const void* msg, void* val, size_t size) {
const upb_tabent* ent = (const upb_tabent*)msg;
upb_value v = {ent->val.val};
_upb_map_fromvalue(v, val, size);
}
UPB_INLINE void _upb_msg_map_set_value(void* msg, const void* val,
size_t size) {
upb_tabent* ent = (upb_tabent*)msg;
/* This is like _upb_map_tovalue() except the entry already exists so we can
* reuse the allocated upb_StringView for string fields. */
if (size == UPB_MAPTYPE_STRING) {
upb_StringView* strp = (upb_StringView*)(uintptr_t)ent->val.val;
memcpy(strp, val, sizeof(*strp));
} else {
memcpy(&ent->val.val, val, size);
}
}
/** _upb_mapsorter
* *************************************************************/
/* _upb_mapsorter sorts maps and provides ordered iteration over the entries.
* Since maps can be recursive (map values can be messages which contain other
* maps). _upb_mapsorter can contain a stack of maps. */
typedef struct {
upb_tabent const** entries;
int size;
int cap;
} _upb_mapsorter;
typedef struct {
int start;
int pos;
int end;
} _upb_sortedmap;
UPB_INLINE void _upb_mapsorter_init(_upb_mapsorter* s) {
s->entries = NULL;
s->size = 0;
s->cap = 0;
}
UPB_INLINE void _upb_mapsorter_destroy(_upb_mapsorter* s) {
if (s->entries) free(s->entries);
}
bool _upb_mapsorter_pushmap(_upb_mapsorter* s, upb_FieldType key_type,
const upb_Map* map, _upb_sortedmap* sorted);
UPB_INLINE void _upb_mapsorter_popmap(_upb_mapsorter* s,
_upb_sortedmap* sorted) {
s->size = sorted->start;
}
UPB_INLINE bool _upb_sortedmap_next(_upb_mapsorter* s, const upb_Map* map,
_upb_sortedmap* sorted, upb_MapEntry* ent) {
if (sorted->pos == sorted->end) return false;
const upb_tabent* tabent = s->entries[sorted->pos++];
upb_StringView key = upb_tabstrview(tabent->key);
_upb_map_fromkey(key, &ent->k, map->key_size);
upb_value val = {tabent->val.val};
_upb_map_fromvalue(val, &ent->v, map->val_size);
return true;
}
#ifdef __cplusplus
} /* extern "C" */
#endif
#include "upb/port_undef.inc"
#endif /* UPB_MSG_INT_H_ */