Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1178 lines
38 KiB
1178 lines
38 KiB
/* |
|
* upb - a minimalist implementation of protocol buffers. |
|
* |
|
* Copyright (c) 2014 Google Inc. See LICENSE for details. |
|
* Author: Josh Haberman <jhaberman@gmail.com> |
|
* |
|
* upb (prototype) extension for Ruby. |
|
*/ |
|
|
|
#include "ruby/ruby.h" |
|
#include "ruby/vm.h" |
|
|
|
#include "upb/def.h" |
|
#include "upb/handlers.h" |
|
#include "upb/pb/decoder.h" |
|
#include "upb/pb/encoder.h" |
|
#include "upb/pb/glue.h" |
|
#include "upb/shim/shim.h" |
|
#include "upb/symtab.h" |
|
|
|
// References to global state. |
|
// |
|
// Ruby does not have multi-VM support and it is common practice to store |
|
// references to classes and other per-VM state in global variables. |
|
static VALUE cSymbolTable; |
|
static VALUE cMessageDef; |
|
static VALUE cMessage; |
|
static VALUE message_map; |
|
static upb_inttable objcache; |
|
static bool objcache_initialized = false; |
|
|
|
struct rupb_Message; |
|
struct rupb_MessageDef; |
|
typedef struct rupb_Message rupb_Message; |
|
typedef struct rupb_MessageDef rupb_MessageDef; |
|
|
|
#define DEREF_RAW(ptr, ofs, type) *(type*)((char*)ptr + ofs) |
|
#define DEREF(msg, ofs, type) *(type*)(&msg->data[ofs]) |
|
|
|
void rupb_checkstatus(upb_status *s) { |
|
if (!upb_ok(s)) { |
|
rb_raise(rb_eRuntimeError, "%s", upb_status_errmsg(s)); |
|
} |
|
} |
|
|
|
static rupb_MessageDef *msgdef_get(VALUE self); |
|
static rupb_Message *msg_get(VALUE self); |
|
static const rupb_MessageDef *get_rbmsgdef(const upb_msgdef *md); |
|
static const upb_handlers *new_fill_handlers(const rupb_MessageDef *rmd, |
|
const void *owner); |
|
static void putmsg(rupb_Message *msg, const rupb_MessageDef *rmd, |
|
upb_sink *sink); |
|
static VALUE msgdef_getwrapper(const upb_msgdef *md); |
|
static VALUE new_message_class(VALUE message_def); |
|
static VALUE get_message_class(VALUE klass, VALUE message); |
|
static VALUE msg_new(VALUE msgdef); |
|
|
|
/* Ruby VALUE <-> C primitive conversions *************************************/ |
|
|
|
// Ruby VALUE -> C. |
|
// TODO(haberman): add type/range/precision checks. |
|
static float value_to_float(VALUE val) { return NUM2DBL(val); } |
|
static double value_to_double(VALUE val) { return NUM2DBL(val); } |
|
static bool value_to_bool(VALUE val) { return RTEST(val); } |
|
static int32_t value_to_int32(VALUE val) { return NUM2INT(val); } |
|
static uint32_t value_to_uint32(VALUE val) { return NUM2LONG(val); } |
|
static int64_t value_to_int64(VALUE val) { return NUM2LONG(val); } |
|
static uint64_t value_to_uint64(VALUE val) { return NUM2ULL(val); } |
|
|
|
// C -> Ruby VALUE |
|
static VALUE float_to_value(float val) { return rb_float_new(val); } |
|
static VALUE double_to_value(double val) { return rb_float_new(val); } |
|
static VALUE bool_to_value(bool val) { return val ? Qtrue : Qfalse; } |
|
static VALUE int32_to_value(int32_t val) { return INT2NUM(val); } |
|
static VALUE uint32_to_value(uint32_t val) { return LONG2NUM(val); } |
|
static VALUE int64_to_value(int64_t val) { return LONG2NUM(val); } |
|
static VALUE uint64_to_value(uint64_t val) { return ULL2NUM(val); } |
|
|
|
|
|
/* stringsink *****************************************************************/ |
|
|
|
// This should probably be factored into a common upb component. |
|
|
|
typedef struct { |
|
upb_byteshandler handler; |
|
upb_bytessink sink; |
|
char *ptr; |
|
size_t len, size; |
|
} stringsink; |
|
|
|
static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) { |
|
stringsink *sink = _sink; |
|
sink->len = 0; |
|
return sink; |
|
} |
|
|
|
static size_t stringsink_string(void *_sink, const void *hd, const char *ptr, |
|
size_t len, const upb_bufhandle *handle) { |
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(handle); |
|
|
|
stringsink *sink = _sink; |
|
size_t new_size = sink->size; |
|
|
|
while (sink->len + len > new_size) { |
|
new_size *= 2; |
|
} |
|
|
|
if (new_size != sink->size) { |
|
sink->ptr = realloc(sink->ptr, new_size); |
|
sink->size = new_size; |
|
} |
|
|
|
memcpy(sink->ptr + sink->len, ptr, len); |
|
sink->len += len; |
|
|
|
return len; |
|
} |
|
|
|
void stringsink_init(stringsink *sink) { |
|
upb_byteshandler_init(&sink->handler); |
|
upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL); |
|
upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL); |
|
|
|
upb_bytessink_reset(&sink->sink, &sink->handler, sink); |
|
|
|
sink->size = 32; |
|
sink->ptr = malloc(sink->size); |
|
} |
|
|
|
void stringsink_uninit(stringsink *sink) { |
|
free(sink->ptr); |
|
} |
|
|
|
|
|
/* object cache ***************************************************************/ |
|
|
|
// The object cache is a singleton mapping of void* -> Ruby Object. |
|
// It caches Ruby objects that wrap C objects. |
|
// |
|
// When we are wrapping C objects it is desirable to give them identity |
|
// semantics. In other words, if you reach the same C object via two different |
|
// paths, it is desirable (and sometimes even required) that you get the same |
|
// wrapper object both times. If we instead just created a new wrapper object |
|
// every time you ask for one, we could end up with unexpected results like: |
|
// |
|
// f1 = msgdef.field("request_id") |
|
// f2 = msgdef.field("request_id") |
|
// |
|
// # equal? tests identity equality. Returns false without a cache. |
|
// f1.equal?(f2) |
|
// |
|
// We do not register the cache with Ruby's GC, so being in this map will not |
|
// keep the object alive. This is the desired behavior, because it lets objects |
|
// be freed if they have no references from Ruby. We do require, though, that |
|
// objects remove themselves from the map when they are freed. In this respect |
|
// the cache operates like a weak map where the values are weak. |
|
|
|
typedef VALUE createfunc(const void *obj); |
|
|
|
// Call to initialize the cache. Should be done once on process startup. |
|
static void objcache_init() { |
|
upb_inttable_init(&objcache, UPB_CTYPE_UINT64); |
|
objcache_initialized = true; |
|
} |
|
|
|
// Call to uninitialize the cache. Should be done once on process shutdown. |
|
static void objcache_uninit(ruby_vm_t *vm) { |
|
assert(objcache_initialized); |
|
assert(upb_inttable_count(&objcache) == 0); |
|
|
|
objcache_initialized = false; |
|
upb_inttable_uninit(&objcache); |
|
} |
|
|
|
// Looks up the given object in the cache. If the corresponding Ruby wrapper |
|
// object is found, returns it, otherwise creates the wrapper and returns that. |
|
static VALUE objcache_getorcreate(const void *obj, createfunc *func) { |
|
assert(objcache_initialized); |
|
|
|
upb_value v; |
|
if (!upb_inttable_lookupptr(&objcache, obj, &v)) { |
|
v = upb_value_uint64(func(obj)); |
|
upb_inttable_insertptr(&objcache, obj, v); |
|
} |
|
return upb_value_getuint64(v); |
|
} |
|
|
|
// Removes the given object from the cache. Should only be called by the code |
|
// that is freeing the wrapper object. |
|
static void objcache_remove(const void *obj) { |
|
assert(objcache_initialized); |
|
|
|
bool removed = upb_inttable_removeptr(&objcache, obj, NULL); |
|
UPB_ASSERT_VAR(removed, removed); |
|
} |
|
|
|
/* message layout *************************************************************/ |
|
|
|
// We layout Ruby messages using a raw block of C memory. We assign offsets for |
|
// each member so that instances are laid out like a C struct instead of as |
|
// instance variables. This saves both memory and CPU. |
|
|
|
typedef struct { |
|
// The size of the block of memory we should allocate for instances. |
|
size_t size; |
|
|
|
// Prototype to memcpy() onto new message instances. Size is "size" above. |
|
void *prototype; |
|
|
|
// An offset for each member, indexed by upb_fielddef_index(f). |
|
uint32_t *field_offsets; |
|
} rb_msglayout; |
|
|
|
// Returns true for fields where the field value we store is a Ruby VALUE (ie. a |
|
// direct pointer to another Ruby object) instead of storing the value directly |
|
// in the message. |
|
static bool is_ruby_value(const upb_fielddef *f) { |
|
if (upb_fielddef_isseq(f)) { |
|
// Repeated fields are pointers to arrays. |
|
return true; |
|
} |
|
|
|
if (upb_fielddef_issubmsg(f)) { |
|
// Submessage fields are pointers to submessages. |
|
return true; |
|
} |
|
|
|
if (upb_fielddef_isstring(f)) { |
|
// String fields are pointers to string objects. |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
// General alignment rules are that each type needs to be stored at an address |
|
// that is a multiple of its size. |
|
static size_t align_up(size_t val, size_t align) { |
|
return val % align == 0 ? val : val + align - (val % align); |
|
} |
|
|
|
// Byte size to store each upb type. |
|
static size_t rupb_sizeof(const upb_fielddef *f) { |
|
if (is_ruby_value(f)) { |
|
return sizeof(VALUE); |
|
} |
|
|
|
switch (upb_fielddef_type(f)) { |
|
case UPB_TYPE_BOOL: |
|
return 1; |
|
case UPB_TYPE_INT32: |
|
case UPB_TYPE_UINT32: |
|
case UPB_TYPE_ENUM: |
|
case UPB_TYPE_FLOAT: |
|
return 4; |
|
case UPB_TYPE_INT64: |
|
case UPB_TYPE_UINT64: |
|
case UPB_TYPE_DOUBLE: |
|
return 8; |
|
default: |
|
break; |
|
} |
|
assert(false); |
|
return 0; |
|
} |
|
|
|
// Calculates offsets for each field. |
|
// |
|
// This lets us pack protos like structs instead of storing them like |
|
// dictionaries. This speeds up a parsing a lot and also saves memory |
|
// (unless messages are very sparse). |
|
static void assign_offsets(rb_msglayout *layout, const upb_msgdef *md) { |
|
layout->field_offsets = ALLOC_N(uint32_t, upb_msgdef_numfields(md)); |
|
size_t ofs = 0; |
|
upb_msg_field_iter i; |
|
|
|
for (upb_msg_field_begin(&i, md); |
|
!upb_msg_field_done(&i); |
|
upb_msg_field_next(&i)) { |
|
const upb_fielddef *f = upb_msg_iter_field(&i); |
|
size_t field_size = rupb_sizeof(f); |
|
|
|
// Align field properly. |
|
// |
|
// TODO(haberman): optimize layout? For example we could sort fields |
|
// big-to-small. |
|
ofs = align_up(ofs, field_size); |
|
|
|
layout->field_offsets[upb_fielddef_index(f)] = ofs; |
|
ofs += field_size; |
|
} |
|
|
|
layout->size = ofs; |
|
} |
|
|
|
// Creates a prototype; a buffer we can memcpy() onto new instances to |
|
// initialize them. |
|
static void make_prototype(rb_msglayout *layout, const upb_msgdef *md) { |
|
void *prototype = ALLOC_N(char, layout->size); |
|
|
|
// Most members default to zero, so we'll start from that and then overwrite |
|
// more specific initialization. |
|
memset(prototype, 0, layout->size); |
|
|
|
upb_msg_field_iter i; |
|
for (upb_msg_field_begin(&i, md); |
|
!upb_msg_field_done(&i); |
|
upb_msg_field_next(&i)) { |
|
const upb_fielddef *f = upb_msg_iter_field(&i); |
|
if (is_ruby_value(f)) { |
|
size_t ofs = layout->field_offsets[upb_fielddef_index(f)]; |
|
// Default all Ruby pointers to nil. |
|
DEREF_RAW(prototype, ofs, VALUE) = Qnil; |
|
} |
|
} |
|
|
|
layout->prototype = prototype; |
|
} |
|
|
|
|
|
static void msglayout_init(rb_msglayout *layout, const upb_msgdef *m) { |
|
assign_offsets(layout, m); |
|
make_prototype(layout, m); |
|
} |
|
|
|
static void msglayout_uninit(rb_msglayout *layout) { |
|
free(layout->field_offsets); |
|
free(layout->prototype); |
|
} |
|
|
|
|
|
/* Upb::MessageDef ************************************************************/ |
|
|
|
// C representation for Upb::MessageDef. |
|
// |
|
// Contains a reference to the underlying upb_msgdef, as well as associated data |
|
// like a reference to the corresponding Ruby class. |
|
struct rupb_MessageDef { |
|
// We own refs on all of these. |
|
|
|
// The upb_msgdef we are wrapping. |
|
const upb_msgdef *md; |
|
|
|
// A DecoderMethod for parsing a protobuf into this type. |
|
const upb_pbdecodermethod *fill_method; |
|
|
|
// Handlers for serializing into a protobuf of this type. |
|
const upb_handlers *serialize_handlers; |
|
|
|
// The Ruby class for instances of this type. |
|
VALUE klass; |
|
|
|
// Layout for messages of this type. |
|
rb_msglayout layout; |
|
}; |
|
|
|
// Called by the Ruby GC when a Upb::MessageDef is being freed. |
|
static void msgdef_free(void *_rmd) { |
|
rupb_MessageDef *rmd = _rmd; |
|
objcache_remove(rmd->md); |
|
upb_msgdef_unref(rmd->md, &rmd->md); |
|
if (rmd->fill_method) { |
|
upb_pbdecodermethod_unref(rmd->fill_method, &rmd->fill_method); |
|
} |
|
if (rmd->serialize_handlers) { |
|
upb_handlers_unref(rmd->serialize_handlers, &rmd->serialize_handlers); |
|
} |
|
msglayout_uninit(&rmd->layout); |
|
free(rmd); |
|
} |
|
|
|
// Called by the Ruby GC during the "mark" phase to decide what is still alive. |
|
// We call rb_gc_mark on all Ruby VALUE pointers we reference. |
|
static void msgdef_mark(void *_rmd) { |
|
rupb_MessageDef *rmd = _rmd; |
|
rb_gc_mark(rmd->klass); |
|
|
|
// Mark all submessage types. |
|
upb_msg_field_iter i; |
|
for (upb_msg_field_begin(&i, rmd->md); |
|
!upb_msg_field_done(&i); |
|
upb_msg_field_next(&i)) { |
|
upb_fielddef *f = upb_msg_iter_field(&i); |
|
if (upb_fielddef_issubmsg(f)) { |
|
// If we were trying to be more aggressively lazy, the submessage might |
|
// not be created and we only mark ones that are. |
|
rb_gc_mark(msgdef_getwrapper(upb_fielddef_msgsubdef(f))); |
|
} |
|
} |
|
} |
|
|
|
static const rb_data_type_t msgdef_type = {"Upb::MessageDef", |
|
{msgdef_mark, msgdef_free, NULL}}; |
|
|
|
// TODO(haberman): do we need an alloc func? We want to prohibit dup and |
|
// probably subclassing too. |
|
|
|
static rupb_MessageDef *msgdef_get(VALUE self) { |
|
rupb_MessageDef *msgdef; |
|
TypedData_Get_Struct(self, rupb_MessageDef, &msgdef_type, msgdef); |
|
return msgdef; |
|
} |
|
|
|
// Constructs the upb decoder method for parsing messages of this type. |
|
const upb_pbdecodermethod *new_fillmsg_decodermethod(const rupb_MessageDef *rmd, |
|
const void *owner) { |
|
const upb_handlers *fill_handlers = new_fill_handlers(rmd, &fill_handlers); |
|
upb_pbdecodermethodopts opts; |
|
upb_pbdecodermethodopts_init(&opts, fill_handlers); |
|
|
|
const upb_pbdecodermethod *ret = upb_pbdecodermethod_new(&opts, owner); |
|
upb_handlers_unref(fill_handlers, &fill_handlers); |
|
return ret; |
|
} |
|
|
|
// Constructs a new Ruby wrapper object around the given msgdef. |
|
static VALUE make_msgdef(const void *_md) { |
|
const upb_msgdef *md = _md; |
|
rupb_MessageDef *rmd; |
|
VALUE ret = |
|
TypedData_Make_Struct(cMessageDef, rupb_MessageDef, &msgdef_type, rmd); |
|
|
|
upb_msgdef_ref(md, &rmd->md); |
|
|
|
rmd->md = md; |
|
rmd->fill_method = NULL; |
|
|
|
// OPT: most of these things could be built lazily, when they are first |
|
// needed. |
|
msglayout_init(&rmd->layout, md); |
|
|
|
rmd->fill_method = NULL; |
|
rmd->klass = new_message_class(ret); |
|
rmd->serialize_handlers = |
|
upb_pb_encoder_newhandlers(md, &rmd->serialize_handlers); |
|
|
|
return ret; |
|
} |
|
|
|
// Accessor to get a decoder method for this message type. |
|
// Constructs the decoder method lazily. |
|
static const upb_pbdecodermethod *msgdef_decodermethod(rupb_MessageDef *rmd) { |
|
if (!rmd->fill_method) { |
|
rmd->fill_method = new_fillmsg_decodermethod(rmd, &rmd->fill_method); |
|
} |
|
|
|
return rmd->fill_method; |
|
} |
|
|
|
static VALUE msgdef_getwrapper(const upb_msgdef *md) { |
|
return objcache_getorcreate(md, make_msgdef); |
|
} |
|
|
|
static const rupb_MessageDef *get_rbmsgdef(const upb_msgdef *md) { |
|
return msgdef_get(msgdef_getwrapper(md)); |
|
} |
|
|
|
|
|
/* Upb::Message ***************************************************************/ |
|
|
|
// Code to implement the Upb::Message object. |
|
// |
|
// A unique Ruby class is generated for each message type, but all message types |
|
// share Upb::Message as their base class. Upb::Message contains all of the |
|
// actual functionality; the only reason the derived class exists at all is |
|
// for convenience. It lets Ruby users do things like: |
|
// |
|
// message = MyMessage.new |
|
// if message.kind_of?(MyMessage) |
|
// |
|
// ... and other similar things that Ruby users expect they can do. |
|
|
|
// C representation of Upb::Message. |
|
// |
|
// Represents a message instance, laid out like a C struct in a type-specific |
|
// layout. |
|
// |
|
// This will be sized according to what fields are actually present. |
|
struct rupb_Message { |
|
VALUE rbmsgdef; |
|
char data[]; |
|
}; |
|
|
|
// Returns the size of a message instance. |
|
size_t msg_size(const rupb_MessageDef *rmd) { |
|
return sizeof(rupb_Message) + rmd->layout.size; |
|
} |
|
|
|
static void msg_free(void *msg) { |
|
free(msg); |
|
} |
|
|
|
// Invoked by the Ruby GC whenever it is doing a mark-and-sweep. |
|
static void msg_mark(void *p) { |
|
rupb_Message *msg = p; |
|
rupb_MessageDef *rmd = msgdef_get(msg->rbmsgdef); |
|
|
|
// Mark the msgdef to keep it alive. |
|
rb_gc_mark(msg->rbmsgdef); |
|
|
|
// We need to mark all references to other Ruby values: strings, arrays, and |
|
// submessages that we point to. |
|
upb_msg_field_iter i; |
|
for (upb_msg_field_begin(&i, rmd->md); |
|
!upb_msg_field_done(&i); |
|
upb_msg_field_next(&i)) { |
|
upb_fielddef *f = upb_msg_iter_field(&i); |
|
if (is_ruby_value(f)) { |
|
size_t ofs = rmd->layout.field_offsets[upb_fielddef_index(f)]; |
|
rb_gc_mark(DEREF(msg, ofs, VALUE)); |
|
} |
|
} |
|
} |
|
|
|
static const rb_data_type_t msg_type = {"Upb::Message", |
|
{msg_mark, msg_free, NULL}}; |
|
|
|
static rupb_Message *msg_get(VALUE self) { |
|
rupb_Message *msg; |
|
TypedData_Get_Struct(self, rupb_Message, &msg_type, msg); |
|
return msg; |
|
} |
|
|
|
// Instance variable name that we use to store a reference from the Ruby class |
|
// for a message and its Upb::MessageDef. |
|
// |
|
// We avoid prefixing this by "@" to make it inaccessible by Ruby. |
|
static const char *kMessageDefMemberName = "msgdef"; |
|
|
|
static VALUE msg_getmsgdef(VALUE klass) { |
|
VALUE msgdef = rb_iv_get(klass, kMessageDefMemberName); |
|
|
|
if (msgdef == Qnil) { |
|
// TODO(haberman): If we want to allow subclassing, we might want to walk up |
|
// the hierarchy looking for this member. |
|
rb_raise(rb_eRuntimeError, |
|
"Can't call on Upb::Message directly, only subclasses"); |
|
} |
|
|
|
return msgdef; |
|
} |
|
|
|
// Called by the Ruby VM when it wants to create a new message instance. |
|
static VALUE msg_alloc(VALUE klass) { |
|
VALUE msgdef = msg_getmsgdef(klass); |
|
const rupb_MessageDef *rmd = msgdef_get(msgdef); |
|
|
|
rupb_Message *msg = (rupb_Message*)ALLOC_N(char, msg_size(rmd)); |
|
msg->rbmsgdef = msgdef; |
|
memcpy(&msg->data, rmd->layout.prototype, rmd->layout.size); |
|
|
|
VALUE ret = TypedData_Wrap_Struct(klass, &msg_type, msg); |
|
return ret; |
|
} |
|
|
|
// Creates a new Ruby class for the given Upb::MessageDef. The new class |
|
// derives from Upb::Message but also stores a reference to the Upb::MessageDef. |
|
static VALUE new_message_class(VALUE message_def) { |
|
msgdef_get(message_def); // Check type. |
|
VALUE klass = rb_class_new(cMessage); |
|
rb_iv_set(klass, kMessageDefMemberName, message_def); |
|
|
|
// This shouldn't be necessary because we should inherit the alloc func from |
|
// the base class of Message. For some reason this is not working properly |
|
// and we are having to define it manually. |
|
rb_define_alloc_func(klass, msg_alloc); |
|
|
|
return klass; |
|
} |
|
|
|
// Call to create a new Message instance. |
|
static VALUE msg_new(VALUE msgdef) { |
|
return rb_class_new_instance(0, NULL, get_message_class(Qnil, msgdef)); |
|
} |
|
|
|
// Looks up the given field. On success returns the upb_fielddef and stores the |
|
// offset in *ofs. Otherwise raises a Ruby exception. |
|
static const upb_fielddef *lookup_field(rupb_Message *msg, const char *field, |
|
size_t len, size_t *ofs) { |
|
const rupb_MessageDef *rmd = msgdef_get(msg->rbmsgdef); |
|
const upb_fielddef *f = upb_msgdef_ntof(rmd->md, field, len); |
|
|
|
if (!f) { |
|
rb_raise(rb_eArgError, "Message %s does not contain field %s", |
|
upb_msgdef_fullname(rmd->md), field); |
|
} |
|
|
|
*ofs = rmd->layout.field_offsets[upb_fielddef_index(f)]; |
|
return f; |
|
} |
|
|
|
// Sets the given field to the given value. |
|
static void setprimitive(rupb_Message *m, size_t ofs, const upb_fielddef *f, |
|
VALUE val) { |
|
switch (upb_fielddef_type(f)) { |
|
case UPB_TYPE_FLOAT: DEREF(m, ofs, float) = value_to_float(val); break; |
|
case UPB_TYPE_DOUBLE: DEREF(m, ofs, double) = value_to_double(val); break; |
|
case UPB_TYPE_BOOL: DEREF(m, ofs, bool) = value_to_bool(val); break; |
|
case UPB_TYPE_ENUM: |
|
case UPB_TYPE_INT32: DEREF(m, ofs, int32_t) = value_to_int32(val); break; |
|
case UPB_TYPE_UINT32: DEREF(m, ofs, uint32_t) = value_to_uint32(val); break; |
|
case UPB_TYPE_INT64: DEREF(m, ofs, int64_t) = value_to_int64(val); break; |
|
case UPB_TYPE_UINT64: DEREF(m, ofs, uint64_t) = value_to_uint64(val); break; |
|
default: rb_bug("Unexpected type"); |
|
} |
|
} |
|
|
|
// Returns the Ruby VALUE for the given field. |
|
static VALUE getprimitive(rupb_Message *m, size_t ofs, const upb_fielddef *f) { |
|
switch (upb_fielddef_type(f)) { |
|
case UPB_TYPE_FLOAT: return float_to_value(DEREF(m, ofs, float)); |
|
case UPB_TYPE_DOUBLE: return double_to_value(DEREF(m, ofs, double)); |
|
case UPB_TYPE_BOOL: return bool_to_value(DEREF(m, ofs, bool)); |
|
case UPB_TYPE_ENUM: |
|
case UPB_TYPE_INT32: return int32_to_value(DEREF(m, ofs, int32_t)); |
|
case UPB_TYPE_UINT32: return uint32_to_value(DEREF(m, ofs, uint32_t)); |
|
case UPB_TYPE_INT64: return int64_to_value(DEREF(m, ofs, int64_t)); |
|
case UPB_TYPE_UINT64: return uint64_to_value(DEREF(m, ofs, uint64_t)); |
|
default: rb_bug("Unexpected type"); |
|
} |
|
} |
|
|
|
static VALUE msg_setter(rupb_Message *msg, VALUE field, VALUE val) { |
|
size_t ofs; |
|
|
|
// fieldp is a string like "id=". But we want to look up "id". |
|
const upb_fielddef *f = |
|
lookup_field(msg, RSTRING_PTR(field), RSTRING_LEN(field) - 1, &ofs); |
|
|
|
// Possibly introduce stricter type checking. |
|
if (is_ruby_value(f)) { |
|
DEREF(msg, ofs, VALUE) = val; |
|
} else { |
|
setprimitive(msg, ofs, f, val); |
|
} |
|
|
|
return val; |
|
} |
|
|
|
static VALUE msg_getter(rupb_Message *msg, VALUE field) { |
|
size_t ofs; |
|
const upb_fielddef *f = |
|
lookup_field(msg, RSTRING_PTR(field), RSTRING_LEN(field), &ofs); |
|
|
|
if (is_ruby_value(f)) { |
|
return DEREF(msg, ofs, VALUE); |
|
} else { |
|
return getprimitive(msg, ofs, f); |
|
} |
|
} |
|
|
|
// This is the Message object's "method_missing" method, so it receives calls |
|
// for any method whose name was not recognized. We use it to implement getters |
|
// and setters for every field |
|
// |
|
// call-seq: |
|
// message.field -> current value of "field" |
|
// message.field = new_value |
|
static VALUE msg_accessor(int argc, VALUE *argv, VALUE obj) { |
|
rupb_Message *msg = msg_get(obj); |
|
|
|
// method_missing protocol: (method [, arg1, arg2, ...]) |
|
assert(argc >= 1 && SYMBOL_P(argv[0])); |
|
// OPT(haberman): find a better way to get the method name. |
|
// This is allocating a new string each time, which should not be necessary. |
|
VALUE method = rb_id2str(SYM2ID(argv[0])); |
|
const char *method_str = RSTRING_PTR(method); |
|
size_t method_len = RSTRING_LEN(method); |
|
|
|
if (method_str[method_len - 1] == '=') { |
|
// Call was: |
|
// foo.bar = x |
|
// |
|
// Ruby should guarantee that we have exactly one more argument (x) |
|
assert(argc == 2); |
|
return msg_setter(msg, method, argv[1]); |
|
} else { |
|
// Call was: |
|
// foo.bar |
|
// |
|
// ...but may have had arguments. We want to disallow arguments. |
|
if (argc > 1) { |
|
rb_raise(rb_eArgError, "Accessor %s takes no arguments", method_str); |
|
} |
|
return msg_getter(msg, method); |
|
} |
|
} |
|
|
|
// Called when Ruby wants to turn this value into a string. |
|
// TODO(haberman): implement. |
|
static VALUE msg_tostring(VALUE self) { |
|
return rb_str_new2("tostring!"); |
|
} |
|
|
|
// call-seq: |
|
// MessageClass.parse(binary_protobuf) -> message instance |
|
// |
|
// Parses a binary protobuf according to this message class and returns a new |
|
// message instance of this class type. |
|
static VALUE msg_parse(VALUE klass, VALUE binary_protobuf) { |
|
Check_Type(binary_protobuf, T_STRING); |
|
rupb_MessageDef *rmd = msgdef_get(msg_getmsgdef(klass)); |
|
|
|
VALUE msg = rb_class_new_instance(0, NULL, klass); |
|
rupb_Message *msgp = msg_get(msg); |
|
|
|
const upb_pbdecodermethod *method = msgdef_decodermethod(rmd); |
|
const upb_handlers *h = upb_pbdecodermethod_desthandlers(method); |
|
upb_pbdecoder decoder; |
|
upb_sink sink; |
|
upb_status status = UPB_STATUS_INIT; |
|
|
|
upb_pbdecoder_init(&decoder, method, &status); |
|
upb_sink_reset(&sink, h, msgp); |
|
upb_pbdecoder_resetoutput(&decoder, &sink); |
|
upb_bufsrc_putbuf(RSTRING_PTR(binary_protobuf), |
|
RSTRING_LEN(binary_protobuf), |
|
upb_pbdecoder_input(&decoder)); |
|
|
|
// TODO(haberman): make uninit optional if custom allocator for parsing |
|
// returns GC-rooted memory. That will make decoding longjmp-safe (required |
|
// if parsing triggers any VM errors like OOM or errors in user handlers). |
|
upb_pbdecoder_uninit(&decoder); |
|
rupb_checkstatus(&status); |
|
|
|
return msg; |
|
} |
|
|
|
// call-seq: |
|
// Message.serialize(message instance) -> serialized string |
|
// |
|
// Serializes the given message instance to a string. |
|
static VALUE msg_serialize(VALUE klass, VALUE message) { |
|
rupb_Message *msg = msg_get(message); |
|
const rupb_MessageDef *rmd = msgdef_get(msg->rbmsgdef); |
|
|
|
stringsink sink; |
|
stringsink_init(&sink); |
|
|
|
upb_pb_encoder encoder; |
|
upb_pb_encoder_init(&encoder, rmd->serialize_handlers); |
|
upb_pb_encoder_resetoutput(&encoder, &sink.sink); |
|
|
|
putmsg(msg, rmd, upb_pb_encoder_input(&encoder)); |
|
|
|
VALUE ret = rb_str_new(sink.ptr, sink.len); |
|
|
|
upb_pb_encoder_uninit(&encoder); |
|
stringsink_uninit(&sink); |
|
|
|
return ret; |
|
} |
|
|
|
|
|
/* Upb::SymbolTable ***********************************************************/ |
|
|
|
// Ruby wrapper around a SymbolTable. Allows loading of descriptors and turning |
|
// them into MessageDef objects. |
|
|
|
void symtab_free(void *s) { |
|
upb_symtab_unref(s, UPB_UNTRACKED_REF); |
|
} |
|
|
|
static const rb_data_type_t symtab_type = {"Upb::SymbolTable", |
|
{NULL, symtab_free, NULL}}; |
|
|
|
// Called by the Ruby VM to allocate a SymbolTable object. |
|
static VALUE symtab_alloc(VALUE klass) { |
|
upb_symtab *symtab = upb_symtab_new(UPB_UNTRACKED_REF); |
|
VALUE ret = TypedData_Wrap_Struct(klass, &symtab_type, symtab); |
|
|
|
return ret; |
|
} |
|
|
|
static upb_symtab *symtab_get(VALUE self) { |
|
upb_symtab *symtab; |
|
TypedData_Get_Struct(self, upb_symtab, &symtab_type, symtab); |
|
return symtab; |
|
} |
|
|
|
// call-seq: |
|
// symtab.load_descriptor(descriptor) |
|
// |
|
// Parses a FileDescriptorSet from the given string and adds the defs to the |
|
// SymbolTable. Raises if there was an error. |
|
static VALUE symtab_load_descriptor(VALUE self, VALUE descriptor) { |
|
upb_symtab *symtab = symtab_get(self); |
|
Check_Type(descriptor, T_STRING); |
|
|
|
upb_status status = UPB_STATUS_INIT; |
|
upb_load_descriptor_into_symtab( |
|
symtab, RSTRING_PTR(descriptor), RSTRING_LEN(descriptor), &status); |
|
|
|
if (!upb_ok(&status)) { |
|
rb_raise(rb_eRuntimeError, |
|
"Error loading descriptor: %s", upb_status_errmsg(&status)); |
|
} |
|
|
|
return Qnil; |
|
} |
|
|
|
// call-seq: |
|
// symtab.lookup(name) |
|
// |
|
// Returns the def for this name, or nil if none. |
|
// TODO(haberman): only support messages right now, not enums. |
|
static VALUE symtab_lookup(VALUE self, VALUE name) { |
|
upb_symtab *symtab = symtab_get(self); |
|
Check_Type(name, T_STRING); |
|
|
|
const char *cname = RSTRING_PTR(name); |
|
const upb_msgdef *m = upb_symtab_lookupmsg(symtab, cname); |
|
|
|
if (!m) { |
|
rb_raise(rb_eRuntimeError, "Message name '%s' not found", cname); |
|
} |
|
|
|
return msgdef_getwrapper(m); |
|
} |
|
|
|
|
|
/* handlers *******************************************************************/ |
|
|
|
// These are handlers for populating a Ruby protobuf message (rupb_Message) when |
|
// parsing. |
|
|
|
// Creates a handlerdata that simply contains the offset for this field. |
|
static const void *newhandlerdata(upb_handlers *h, uint32_t ofs) { |
|
size_t *hd_ofs = ALLOC(size_t); |
|
*hd_ofs = ofs; |
|
upb_handlers_addcleanup(h, hd_ofs, free); |
|
return hd_ofs; |
|
} |
|
|
|
typedef struct { |
|
size_t ofs; |
|
const upb_msgdef *md; |
|
} submsg_handlerdata_t; |
|
|
|
// Creates a handlerdata that contains offset and submessage type information. |
|
static const void *newsubmsghandlerdata(upb_handlers *h, uint32_t ofs, |
|
const upb_fielddef *f) { |
|
submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t); |
|
hd->ofs = ofs; |
|
hd->md = upb_fielddef_msgsubdef(f); |
|
upb_handlers_addcleanup(h, hd, free); |
|
return hd; |
|
} |
|
|
|
// A handler that starts a repeated field. Gets or creates a Ruby array for the |
|
// field. |
|
static void *startseq_handler(void *closure, const void *hd) { |
|
rupb_Message *msg = closure; |
|
const size_t *ofs = hd; |
|
|
|
if (DEREF(msg, *ofs, VALUE) == Qnil) { |
|
DEREF(msg, *ofs, VALUE) = rb_ary_new(); |
|
} |
|
|
|
return (void*)DEREF(msg, *ofs, VALUE); |
|
} |
|
|
|
// Handlers that append primitive values to a repeated field (a regular Ruby |
|
// array for now). |
|
#define DEFINE_APPEND_HANDLER(type, ctype) \ |
|
static bool append##type##_handler(void *closure, const void *hd, \ |
|
ctype val) { \ |
|
VALUE ary = (VALUE)closure; \ |
|
rb_ary_push(ary, type##_to_value(val)); \ |
|
return true; \ |
|
} |
|
|
|
DEFINE_APPEND_HANDLER(bool, bool) |
|
DEFINE_APPEND_HANDLER(int32, int32_t) |
|
DEFINE_APPEND_HANDLER(uint32, uint32_t) |
|
DEFINE_APPEND_HANDLER(float, float) |
|
DEFINE_APPEND_HANDLER(int64, int64_t) |
|
DEFINE_APPEND_HANDLER(uint64, uint64_t) |
|
DEFINE_APPEND_HANDLER(double, double) |
|
|
|
// Appends a string to a repeated field (a regular Ruby array for now). |
|
static size_t appendstr_handler(void *closure, const void *hd, const char *str, |
|
size_t len, const upb_bufhandle *handle) { |
|
VALUE ary = (VALUE)closure; |
|
rb_ary_push(ary, rb_str_new(str, len)); |
|
return len; |
|
} |
|
|
|
// Sets a non-repeated string field in a message. |
|
static size_t str_handler(void *closure, const void *hd, const char *str, |
|
size_t len, const upb_bufhandle *handle) { |
|
rupb_Message *msg = closure; |
|
const size_t *ofs = hd; |
|
DEREF(msg, *ofs, VALUE) = rb_str_new(str, len); |
|
return len; |
|
} |
|
|
|
// Appends a submessage to a repeated field (a regular Ruby array for now). |
|
static void *appendsubmsg_handler(void *closure, const void *hd) { |
|
VALUE ary = (VALUE)closure; |
|
const submsg_handlerdata_t *submsgdata = hd; |
|
VALUE submsg = msg_new(msgdef_getwrapper(submsgdata->md)); |
|
rb_ary_push(ary, submsg); |
|
return msg_get(submsg); |
|
} |
|
|
|
// Sets a non-repeated submessage field in a message. |
|
static void *submsg_handler(void *closure, const void *hd) { |
|
rupb_Message *msg = closure; |
|
const submsg_handlerdata_t *submsgdata = hd; |
|
|
|
if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) { |
|
DEREF(msg, submsgdata->ofs, VALUE) = |
|
msg_new(msgdef_getwrapper(submsgdata->md)); |
|
} |
|
|
|
VALUE submsg = DEREF(msg, submsgdata->ofs, VALUE); |
|
return msg_get(submsg); |
|
} |
|
|
|
static void add_handlers_for_message(const void *closure, upb_handlers *h) { |
|
const rupb_MessageDef *rmd = get_rbmsgdef(upb_handlers_msgdef(h)); |
|
upb_msg_field_iter i; |
|
|
|
for (upb_msg_field_begin(&i, rmd->md); |
|
!upb_msg_field_done(&i); |
|
upb_msg_field_next(&i)) { |
|
const upb_fielddef *f = upb_msg_iter_field(&i); |
|
size_t ofs = rmd->layout.field_offsets[upb_fielddef_index(f)]; |
|
|
|
if (upb_fielddef_isseq(f)) { |
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
|
upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, ofs)); |
|
upb_handlers_setstartseq(h, f, startseq_handler, &attr); |
|
upb_handlerattr_uninit(&attr); |
|
|
|
switch (upb_fielddef_type(f)) { |
|
|
|
#define SET_HANDLER(utype, ltype) \ |
|
case utype: \ |
|
upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \ |
|
break; |
|
|
|
SET_HANDLER(UPB_TYPE_BOOL, bool); |
|
SET_HANDLER(UPB_TYPE_INT32, int32); |
|
SET_HANDLER(UPB_TYPE_UINT32, uint32); |
|
SET_HANDLER(UPB_TYPE_ENUM, int32); |
|
SET_HANDLER(UPB_TYPE_FLOAT, float); |
|
SET_HANDLER(UPB_TYPE_INT64, int64); |
|
SET_HANDLER(UPB_TYPE_UINT64, uint64); |
|
SET_HANDLER(UPB_TYPE_DOUBLE, double); |
|
|
|
#undef SET_HANDLER |
|
|
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: |
|
// XXX: does't currently handle split buffers. |
|
upb_handlers_setstring(h, f, appendstr_handler, NULL); |
|
break; |
|
case UPB_TYPE_MESSAGE: { |
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
|
upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, f)); |
|
upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr); |
|
upb_handlerattr_uninit(&attr); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
switch (upb_fielddef_type(f)) { |
|
case UPB_TYPE_BOOL: |
|
case UPB_TYPE_INT32: |
|
case UPB_TYPE_UINT32: |
|
case UPB_TYPE_ENUM: |
|
case UPB_TYPE_FLOAT: |
|
case UPB_TYPE_INT64: |
|
case UPB_TYPE_UINT64: |
|
case UPB_TYPE_DOUBLE: |
|
// The shim writes directly at the given offset (instead of using |
|
// DEREF()) so we need to add the msg overhead. |
|
upb_shim_set(h, f, ofs + sizeof(rupb_Message), -1); |
|
break; |
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: { |
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
|
upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, ofs)); |
|
// XXX: does't currently handle split buffers. |
|
upb_handlers_setstring(h, f, str_handler, &attr); |
|
upb_handlerattr_uninit(&attr); |
|
break; |
|
} |
|
case UPB_TYPE_MESSAGE: { |
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
|
upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, ofs, f)); |
|
upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr); |
|
upb_handlerattr_uninit(&attr); |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Creates upb handlers for populating a message. |
|
static const upb_handlers *new_fill_handlers(const rupb_MessageDef *rmd, |
|
const void *owner) { |
|
return upb_handlers_newfrozen(rmd->md, owner, add_handlers_for_message, NULL); |
|
} |
|
|
|
|
|
/* msgvisitor *****************************************************************/ |
|
|
|
// This is code to push the contents of a Ruby message (rupb_Message) to a upb |
|
// sink. |
|
|
|
static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) { |
|
upb_selector_t ret; |
|
bool ok = upb_handlers_getselector(f, type, &ret); |
|
UPB_ASSERT_VAR(ok, ok); |
|
return ret; |
|
} |
|
|
|
static void putstr(VALUE str, const upb_fielddef *f, upb_sink *sink) { |
|
if (str == Qnil) return; |
|
|
|
assert(BUILTIN_TYPE(str) == RUBY_T_STRING); |
|
upb_sink subsink; |
|
|
|
upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str), |
|
&subsink); |
|
upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str), |
|
RSTRING_LEN(str), NULL); |
|
upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR)); |
|
} |
|
|
|
static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink *sink) { |
|
if (submsg == Qnil) return; |
|
|
|
upb_sink subsink; |
|
const rupb_MessageDef *sub_rmd = get_rbmsgdef(upb_fielddef_msgsubdef(f)); |
|
|
|
upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink); |
|
putmsg(msg_get(submsg), sub_rmd, &subsink); |
|
upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG)); |
|
} |
|
|
|
static void putary(VALUE ary, const upb_fielddef *f, upb_sink *sink) { |
|
if (ary == Qnil) return; |
|
|
|
assert(BUILTIN_TYPE(ary) == RUBY_T_ARRAY); |
|
upb_sink subsink; |
|
|
|
upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink); |
|
|
|
upb_fieldtype_t type = upb_fielddef_type(f); |
|
upb_selector_t sel = 0; |
|
if (upb_fielddef_isprimitive(f)) { |
|
sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); |
|
} |
|
|
|
int i; |
|
for (i = 0; i < RARRAY_LEN(ary); i++) { |
|
VALUE val = rb_ary_entry(ary, i); |
|
switch (type) { |
|
|
|
#define T(upbtypeconst, upbtype, ctype) \ |
|
case upbtypeconst: \ |
|
upb_sink_put##upbtype(&subsink, sel, value_to_##upbtype(val)); \ |
|
break; |
|
|
|
T(UPB_TYPE_FLOAT, float, float) |
|
T(UPB_TYPE_DOUBLE, double, double) |
|
T(UPB_TYPE_BOOL, bool, bool) |
|
case UPB_TYPE_ENUM: |
|
T(UPB_TYPE_INT32, int32, int32_t) |
|
T(UPB_TYPE_UINT32, uint32, uint32_t) |
|
T(UPB_TYPE_INT64, int64, int64_t) |
|
T(UPB_TYPE_UINT64, uint64, uint64_t) |
|
|
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: |
|
putstr(val, f, &subsink); |
|
break; |
|
case UPB_TYPE_MESSAGE: |
|
putsubmsg(val, f, &subsink); |
|
break; |
|
|
|
#undef T |
|
|
|
} |
|
} |
|
upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ)); |
|
} |
|
|
|
static void putmsg(rupb_Message *msg, const rupb_MessageDef *rmd, |
|
upb_sink *sink) { |
|
upb_sink_startmsg(sink); |
|
|
|
upb_msg_field_iter i; |
|
for (upb_msg_field_begin(&i, rmd->md); |
|
!upb_msg_field_done(&i); |
|
upb_msg_field_next(&i)) { |
|
upb_fielddef *f = upb_msg_iter_field(&i); |
|
uint32_t ofs = rmd->layout.field_offsets[upb_fielddef_index(f)]; |
|
|
|
if (upb_fielddef_isseq(f)) { |
|
VALUE ary = DEREF(msg, ofs, VALUE); |
|
if (ary != Qnil) { |
|
putary(ary, f, sink); |
|
} |
|
} else if (upb_fielddef_isstring(f)) { |
|
putstr(DEREF(msg, ofs, VALUE), f, sink); |
|
} else if (upb_fielddef_issubmsg(f)) { |
|
putsubmsg(DEREF(msg, ofs, VALUE), f, sink); |
|
} else { |
|
upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); |
|
|
|
#define T(upbtypeconst, upbtype, ctype) \ |
|
case upbtypeconst: \ |
|
upb_sink_put##upbtype(sink, sel, DEREF(msg, ofs, ctype)); \ |
|
break; |
|
|
|
switch (upb_fielddef_type(f)) { |
|
T(UPB_TYPE_FLOAT, float, float) |
|
T(UPB_TYPE_DOUBLE, double, double) |
|
T(UPB_TYPE_BOOL, bool, bool) |
|
case UPB_TYPE_ENUM: |
|
T(UPB_TYPE_INT32, int32, int32_t) |
|
T(UPB_TYPE_UINT32, uint32, uint32_t) |
|
T(UPB_TYPE_INT64, int64, int64_t) |
|
T(UPB_TYPE_UINT64, uint64, uint64_t) |
|
|
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: |
|
case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error."); |
|
} |
|
|
|
#undef T |
|
|
|
} |
|
} |
|
|
|
upb_status status; |
|
upb_sink_endmsg(sink, &status); |
|
} |
|
|
|
|
|
/* top level ******************************************************************/ |
|
|
|
static VALUE get_message_class(VALUE klass, VALUE message) { |
|
rupb_MessageDef *rmd = msgdef_get(message); |
|
return rmd->klass; |
|
} |
|
|
|
void Init_upb() { |
|
VALUE upb = rb_define_module("Upb"); |
|
rb_define_singleton_method(upb, "get_message_class", get_message_class, 1); |
|
rb_gc_register_address(&message_map); |
|
|
|
cSymbolTable = rb_define_class_under(upb, "SymbolTable", rb_cObject); |
|
rb_define_alloc_func(cSymbolTable, symtab_alloc); |
|
rb_define_method(cSymbolTable, "load_descriptor", symtab_load_descriptor, 1); |
|
rb_define_method(cSymbolTable, "lookup", symtab_lookup, 1); |
|
|
|
cMessageDef = rb_define_class_under(upb, "MessageDef", rb_cObject); |
|
|
|
cMessage = rb_define_class_under(upb, "Message", rb_cObject); |
|
rb_define_alloc_func(cMessage, msg_alloc); |
|
rb_define_method(cMessage, "method_missing", msg_accessor, -1); |
|
rb_define_method(cMessage, "to_s", msg_tostring, 0); |
|
rb_define_singleton_method(cMessage, "parse", msg_parse, 1); |
|
rb_define_singleton_method(cMessage, "serialize", msg_serialize, 1); |
|
|
|
objcache_init(); |
|
|
|
// This causes atexit crashes for unknown reasons. :( |
|
// ruby_vm_at_exit(objcache_uninit); |
|
}
|
|
|