Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
876 lines
25 KiB
876 lines
25 KiB
// Protocol Buffers - Google's data interchange format |
|
// Copyright 2023 Google LLC. All rights reserved. |
|
// https://developers.google.com/protocol-buffers/ |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google LLC nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
/* |
|
* upb_table Implementation |
|
* |
|
* Implementation is heavily inspired by Lua's ltable.c. |
|
*/ |
|
|
|
#include <string.h> |
|
|
|
#include "upb/base/internal/log2.h" |
|
#include "upb/hash/int_table.h" |
|
#include "upb/hash/str_table.h" |
|
|
|
// Must be last. |
|
#include "upb/port/def.inc" |
|
|
|
#define UPB_MAXARRSIZE 16 // 2**16 = 64k. |
|
|
|
// From Chromium. |
|
#define ARRAY_SIZE(x) \ |
|
((sizeof(x) / sizeof(0 [x])) / ((size_t)(!(sizeof(x) % sizeof(0 [x]))))) |
|
|
|
static const double MAX_LOAD = 0.85; |
|
|
|
/* The minimum utilization of the array part of a mixed hash/array table. This |
|
* is a speed/memory-usage tradeoff (though it's not straightforward because of |
|
* cache effects). The lower this is, the more memory we'll use. */ |
|
static const double MIN_DENSITY = 0.1; |
|
|
|
static bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; } |
|
|
|
static upb_value _upb_value_val(uint64_t val) { |
|
upb_value ret; |
|
_upb_value_setval(&ret, val); |
|
return ret; |
|
} |
|
|
|
static int log2ceil(uint64_t v) { |
|
int ret = 0; |
|
bool pow2 = is_pow2(v); |
|
while (v >>= 1) ret++; |
|
ret = pow2 ? ret : ret + 1; // Ceiling. |
|
return UPB_MIN(UPB_MAXARRSIZE, ret); |
|
} |
|
|
|
char* upb_strdup2(const char* s, size_t len, upb_Arena* a) { |
|
size_t n; |
|
char* p; |
|
|
|
/* Prevent overflow errors. */ |
|
if (len == SIZE_MAX) return NULL; |
|
/* Always null-terminate, even if binary data; but don't rely on the input to |
|
* have a null-terminating byte since it may be a raw binary buffer. */ |
|
n = len + 1; |
|
p = upb_Arena_Malloc(a, n); |
|
if (p) { |
|
if (len != 0) memcpy(p, s, len); |
|
p[len] = 0; |
|
} |
|
return p; |
|
} |
|
|
|
/* A type to represent the lookup key of either a strtable or an inttable. */ |
|
typedef union { |
|
uintptr_t num; |
|
struct { |
|
const char* str; |
|
size_t len; |
|
} str; |
|
} lookupkey_t; |
|
|
|
static lookupkey_t strkey2(const char* str, size_t len) { |
|
lookupkey_t k; |
|
k.str.str = str; |
|
k.str.len = len; |
|
return k; |
|
} |
|
|
|
static lookupkey_t intkey(uintptr_t key) { |
|
lookupkey_t k; |
|
k.num = key; |
|
return k; |
|
} |
|
|
|
typedef uint32_t hashfunc_t(upb_tabkey key); |
|
typedef bool eqlfunc_t(upb_tabkey k1, lookupkey_t k2); |
|
|
|
/* Base table (shared code) ***************************************************/ |
|
|
|
static uint32_t upb_inthash(uintptr_t key) { return (uint32_t)key; } |
|
|
|
static const upb_tabent* upb_getentry(const upb_table* t, uint32_t hash) { |
|
return t->entries + (hash & t->mask); |
|
} |
|
|
|
static bool upb_arrhas(upb_tabval key) { return key.val != (uint64_t)-1; } |
|
|
|
static bool isfull(upb_table* t) { return t->count == t->max_count; } |
|
|
|
static bool init(upb_table* t, uint8_t size_lg2, upb_Arena* a) { |
|
size_t bytes; |
|
|
|
t->count = 0; |
|
t->size_lg2 = size_lg2; |
|
t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0; |
|
t->max_count = upb_table_size(t) * MAX_LOAD; |
|
bytes = upb_table_size(t) * sizeof(upb_tabent); |
|
if (bytes > 0) { |
|
t->entries = upb_Arena_Malloc(a, bytes); |
|
if (!t->entries) return false; |
|
memset(t->entries, 0, bytes); |
|
} else { |
|
t->entries = NULL; |
|
} |
|
return true; |
|
} |
|
|
|
static upb_tabent* emptyent(upb_table* t, upb_tabent* e) { |
|
upb_tabent* begin = t->entries; |
|
upb_tabent* end = begin + upb_table_size(t); |
|
for (e = e + 1; e < end; e++) { |
|
if (upb_tabent_isempty(e)) return e; |
|
} |
|
for (e = begin; e < end; e++) { |
|
if (upb_tabent_isempty(e)) return e; |
|
} |
|
UPB_ASSERT(false); |
|
return NULL; |
|
} |
|
|
|
static upb_tabent* getentry_mutable(upb_table* t, uint32_t hash) { |
|
return (upb_tabent*)upb_getentry(t, hash); |
|
} |
|
|
|
static const upb_tabent* findentry(const upb_table* t, lookupkey_t key, |
|
uint32_t hash, eqlfunc_t* eql) { |
|
const upb_tabent* e; |
|
|
|
if (t->size_lg2 == 0) return NULL; |
|
e = upb_getentry(t, hash); |
|
if (upb_tabent_isempty(e)) return NULL; |
|
while (1) { |
|
if (eql(e->key, key)) return e; |
|
if ((e = e->next) == NULL) return NULL; |
|
} |
|
} |
|
|
|
static upb_tabent* findentry_mutable(upb_table* t, lookupkey_t key, |
|
uint32_t hash, eqlfunc_t* eql) { |
|
return (upb_tabent*)findentry(t, key, hash, eql); |
|
} |
|
|
|
static bool lookup(const upb_table* t, lookupkey_t key, upb_value* v, |
|
uint32_t hash, eqlfunc_t* eql) { |
|
const upb_tabent* e = findentry(t, key, hash, eql); |
|
if (e) { |
|
if (v) { |
|
_upb_value_setval(v, e->val.val); |
|
} |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
/* The given key must not already exist in the table. */ |
|
static void insert(upb_table* t, lookupkey_t key, upb_tabkey tabkey, |
|
upb_value val, uint32_t hash, hashfunc_t* hashfunc, |
|
eqlfunc_t* eql) { |
|
upb_tabent* mainpos_e; |
|
upb_tabent* our_e; |
|
|
|
UPB_ASSERT(findentry(t, key, hash, eql) == NULL); |
|
|
|
t->count++; |
|
mainpos_e = getentry_mutable(t, hash); |
|
our_e = mainpos_e; |
|
|
|
if (upb_tabent_isempty(mainpos_e)) { |
|
/* Our main position is empty; use it. */ |
|
our_e->next = NULL; |
|
} else { |
|
/* Collision. */ |
|
upb_tabent* new_e = emptyent(t, mainpos_e); |
|
/* Head of collider's chain. */ |
|
upb_tabent* chain = getentry_mutable(t, hashfunc(mainpos_e->key)); |
|
if (chain == mainpos_e) { |
|
/* Existing ent is in its main position (it has the same hash as us, and |
|
* is the head of our chain). Insert to new ent and append to this chain. |
|
*/ |
|
new_e->next = mainpos_e->next; |
|
mainpos_e->next = new_e; |
|
our_e = new_e; |
|
} else { |
|
/* Existing ent is not in its main position (it is a node in some other |
|
* chain). This implies that no existing ent in the table has our hash. |
|
* Evict it (updating its chain) and use its ent for head of our chain. */ |
|
*new_e = *mainpos_e; /* copies next. */ |
|
while (chain->next != mainpos_e) { |
|
chain = (upb_tabent*)chain->next; |
|
UPB_ASSERT(chain); |
|
} |
|
chain->next = new_e; |
|
our_e = mainpos_e; |
|
our_e->next = NULL; |
|
} |
|
} |
|
our_e->key = tabkey; |
|
our_e->val.val = val.val; |
|
UPB_ASSERT(findentry(t, key, hash, eql) == our_e); |
|
} |
|
|
|
static bool rm(upb_table* t, lookupkey_t key, upb_value* val, |
|
upb_tabkey* removed, uint32_t hash, eqlfunc_t* eql) { |
|
upb_tabent* chain = getentry_mutable(t, hash); |
|
if (upb_tabent_isempty(chain)) return false; |
|
if (eql(chain->key, key)) { |
|
/* Element to remove is at the head of its chain. */ |
|
t->count--; |
|
if (val) _upb_value_setval(val, chain->val.val); |
|
if (removed) *removed = chain->key; |
|
if (chain->next) { |
|
upb_tabent* move = (upb_tabent*)chain->next; |
|
*chain = *move; |
|
move->key = 0; /* Make the slot empty. */ |
|
} else { |
|
chain->key = 0; /* Make the slot empty. */ |
|
} |
|
return true; |
|
} else { |
|
/* Element to remove is either in a non-head position or not in the |
|
* table. */ |
|
while (chain->next && !eql(chain->next->key, key)) { |
|
chain = (upb_tabent*)chain->next; |
|
} |
|
if (chain->next) { |
|
/* Found element to remove. */ |
|
upb_tabent* rm = (upb_tabent*)chain->next; |
|
t->count--; |
|
if (val) _upb_value_setval(val, chain->next->val.val); |
|
if (removed) *removed = rm->key; |
|
rm->key = 0; /* Make the slot empty. */ |
|
chain->next = rm->next; |
|
return true; |
|
} else { |
|
/* Element to remove is not in the table. */ |
|
return false; |
|
} |
|
} |
|
} |
|
|
|
static size_t next(const upb_table* t, size_t i) { |
|
do { |
|
if (++i >= upb_table_size(t)) return SIZE_MAX - 1; /* Distinct from -1. */ |
|
} while (upb_tabent_isempty(&t->entries[i])); |
|
|
|
return i; |
|
} |
|
|
|
static size_t begin(const upb_table* t) { return next(t, -1); } |
|
|
|
/* upb_strtable ***************************************************************/ |
|
|
|
/* A simple "subclass" of upb_table that only adds a hash function for strings. |
|
*/ |
|
|
|
static upb_tabkey strcopy(lookupkey_t k2, upb_Arena* a) { |
|
uint32_t len = (uint32_t)k2.str.len; |
|
char* str = upb_Arena_Malloc(a, k2.str.len + sizeof(uint32_t) + 1); |
|
if (str == NULL) return 0; |
|
memcpy(str, &len, sizeof(uint32_t)); |
|
if (k2.str.len) memcpy(str + sizeof(uint32_t), k2.str.str, k2.str.len); |
|
str[sizeof(uint32_t) + k2.str.len] = '\0'; |
|
return (uintptr_t)str; |
|
} |
|
|
|
/* Adapted from ABSL's wyhash. */ |
|
|
|
static uint64_t UnalignedLoad64(const void* p) { |
|
uint64_t val; |
|
memcpy(&val, p, 8); |
|
return val; |
|
} |
|
|
|
static uint32_t UnalignedLoad32(const void* p) { |
|
uint32_t val; |
|
memcpy(&val, p, 4); |
|
return val; |
|
} |
|
|
|
#if defined(_MSC_VER) && defined(_M_X64) |
|
#include <intrin.h> |
|
#endif |
|
|
|
/* Computes a * b, returning the low 64 bits of the result and storing the high |
|
* 64 bits in |*high|. */ |
|
static uint64_t upb_umul128(uint64_t v0, uint64_t v1, uint64_t* out_high) { |
|
#ifdef __SIZEOF_INT128__ |
|
__uint128_t p = v0; |
|
p *= v1; |
|
*out_high = (uint64_t)(p >> 64); |
|
return (uint64_t)p; |
|
#elif defined(_MSC_VER) && defined(_M_X64) |
|
return _umul128(v0, v1, out_high); |
|
#else |
|
uint64_t a32 = v0 >> 32; |
|
uint64_t a00 = v0 & 0xffffffff; |
|
uint64_t b32 = v1 >> 32; |
|
uint64_t b00 = v1 & 0xffffffff; |
|
uint64_t high = a32 * b32; |
|
uint64_t low = a00 * b00; |
|
uint64_t mid1 = a32 * b00; |
|
uint64_t mid2 = a00 * b32; |
|
low += (mid1 << 32) + (mid2 << 32); |
|
// Omit carry bit, for mixing we do not care about exact numerical precision. |
|
high += (mid1 >> 32) + (mid2 >> 32); |
|
*out_high = high; |
|
return low; |
|
#endif |
|
} |
|
|
|
static uint64_t WyhashMix(uint64_t v0, uint64_t v1) { |
|
uint64_t high; |
|
uint64_t low = upb_umul128(v0, v1, &high); |
|
return low ^ high; |
|
} |
|
|
|
static uint64_t Wyhash(const void* data, size_t len, uint64_t seed, |
|
const uint64_t salt[]) { |
|
const uint8_t* ptr = (const uint8_t*)data; |
|
uint64_t starting_length = (uint64_t)len; |
|
uint64_t current_state = seed ^ salt[0]; |
|
|
|
if (len > 64) { |
|
// If we have more than 64 bytes, we're going to handle chunks of 64 |
|
// bytes at a time. We're going to build up two separate hash states |
|
// which we will then hash together. |
|
uint64_t duplicated_state = current_state; |
|
|
|
do { |
|
uint64_t a = UnalignedLoad64(ptr); |
|
uint64_t b = UnalignedLoad64(ptr + 8); |
|
uint64_t c = UnalignedLoad64(ptr + 16); |
|
uint64_t d = UnalignedLoad64(ptr + 24); |
|
uint64_t e = UnalignedLoad64(ptr + 32); |
|
uint64_t f = UnalignedLoad64(ptr + 40); |
|
uint64_t g = UnalignedLoad64(ptr + 48); |
|
uint64_t h = UnalignedLoad64(ptr + 56); |
|
|
|
uint64_t cs0 = WyhashMix(a ^ salt[1], b ^ current_state); |
|
uint64_t cs1 = WyhashMix(c ^ salt[2], d ^ current_state); |
|
current_state = (cs0 ^ cs1); |
|
|
|
uint64_t ds0 = WyhashMix(e ^ salt[3], f ^ duplicated_state); |
|
uint64_t ds1 = WyhashMix(g ^ salt[4], h ^ duplicated_state); |
|
duplicated_state = (ds0 ^ ds1); |
|
|
|
ptr += 64; |
|
len -= 64; |
|
} while (len > 64); |
|
|
|
current_state = current_state ^ duplicated_state; |
|
} |
|
|
|
// We now have a data `ptr` with at most 64 bytes and the current state |
|
// of the hashing state machine stored in current_state. |
|
while (len > 16) { |
|
uint64_t a = UnalignedLoad64(ptr); |
|
uint64_t b = UnalignedLoad64(ptr + 8); |
|
|
|
current_state = WyhashMix(a ^ salt[1], b ^ current_state); |
|
|
|
ptr += 16; |
|
len -= 16; |
|
} |
|
|
|
// We now have a data `ptr` with at most 16 bytes. |
|
uint64_t a = 0; |
|
uint64_t b = 0; |
|
if (len > 8) { |
|
// When we have at least 9 and at most 16 bytes, set A to the first 64 |
|
// bits of the input and B to the last 64 bits of the input. Yes, they will |
|
// overlap in the middle if we are working with less than the full 16 |
|
// bytes. |
|
a = UnalignedLoad64(ptr); |
|
b = UnalignedLoad64(ptr + len - 8); |
|
} else if (len > 3) { |
|
// If we have at least 4 and at most 8 bytes, set A to the first 32 |
|
// bits and B to the last 32 bits. |
|
a = UnalignedLoad32(ptr); |
|
b = UnalignedLoad32(ptr + len - 4); |
|
} else if (len > 0) { |
|
// If we have at least 1 and at most 3 bytes, read all of the provided |
|
// bits into A, with some adjustments. |
|
a = ((ptr[0] << 16) | (ptr[len >> 1] << 8) | ptr[len - 1]); |
|
b = 0; |
|
} else { |
|
a = 0; |
|
b = 0; |
|
} |
|
|
|
uint64_t w = WyhashMix(a ^ salt[1], b ^ current_state); |
|
uint64_t z = salt[1] ^ starting_length; |
|
return WyhashMix(w, z); |
|
} |
|
|
|
const uint64_t kWyhashSalt[5] = { |
|
0x243F6A8885A308D3ULL, 0x13198A2E03707344ULL, 0xA4093822299F31D0ULL, |
|
0x082EFA98EC4E6C89ULL, 0x452821E638D01377ULL, |
|
}; |
|
|
|
uint32_t _upb_Hash(const void* p, size_t n, uint64_t seed) { |
|
return Wyhash(p, n, seed, kWyhashSalt); |
|
} |
|
|
|
static uint32_t _upb_Hash_NoSeed(const char* p, size_t n) { |
|
return _upb_Hash(p, n, 0); |
|
} |
|
|
|
static uint32_t strhash(upb_tabkey key) { |
|
uint32_t len; |
|
char* str = upb_tabstr(key, &len); |
|
return _upb_Hash_NoSeed(str, len); |
|
} |
|
|
|
static bool streql(upb_tabkey k1, lookupkey_t k2) { |
|
uint32_t len; |
|
char* str = upb_tabstr(k1, &len); |
|
return len == k2.str.len && (len == 0 || memcmp(str, k2.str.str, len) == 0); |
|
} |
|
|
|
bool upb_strtable_init(upb_strtable* t, size_t expected_size, upb_Arena* a) { |
|
// Multiply by approximate reciprocal of MAX_LOAD (0.85), with pow2 |
|
// denominator. |
|
size_t need_entries = (expected_size + 1) * 1204 / 1024; |
|
UPB_ASSERT(need_entries >= expected_size * 0.85); |
|
int size_lg2 = upb_Log2Ceiling(need_entries); |
|
return init(&t->t, size_lg2, a); |
|
} |
|
|
|
void upb_strtable_clear(upb_strtable* t) { |
|
size_t bytes = upb_table_size(&t->t) * sizeof(upb_tabent); |
|
t->t.count = 0; |
|
memset((char*)t->t.entries, 0, bytes); |
|
} |
|
|
|
bool upb_strtable_resize(upb_strtable* t, size_t size_lg2, upb_Arena* a) { |
|
upb_strtable new_table; |
|
if (!init(&new_table.t, size_lg2, a)) return false; |
|
|
|
intptr_t iter = UPB_STRTABLE_BEGIN; |
|
upb_StringView key; |
|
upb_value val; |
|
while (upb_strtable_next2(t, &key, &val, &iter)) { |
|
upb_strtable_insert(&new_table, key.data, key.size, val, a); |
|
} |
|
*t = new_table; |
|
return true; |
|
} |
|
|
|
bool upb_strtable_insert(upb_strtable* t, const char* k, size_t len, |
|
upb_value v, upb_Arena* a) { |
|
lookupkey_t key; |
|
upb_tabkey tabkey; |
|
uint32_t hash; |
|
|
|
if (isfull(&t->t)) { |
|
/* Need to resize. New table of double the size, add old elements to it. */ |
|
if (!upb_strtable_resize(t, t->t.size_lg2 + 1, a)) { |
|
return false; |
|
} |
|
} |
|
|
|
key = strkey2(k, len); |
|
tabkey = strcopy(key, a); |
|
if (tabkey == 0) return false; |
|
|
|
hash = _upb_Hash_NoSeed(key.str.str, key.str.len); |
|
insert(&t->t, key, tabkey, v, hash, &strhash, &streql); |
|
return true; |
|
} |
|
|
|
bool upb_strtable_lookup2(const upb_strtable* t, const char* key, size_t len, |
|
upb_value* v) { |
|
uint32_t hash = _upb_Hash_NoSeed(key, len); |
|
return lookup(&t->t, strkey2(key, len), v, hash, &streql); |
|
} |
|
|
|
bool upb_strtable_remove2(upb_strtable* t, const char* key, size_t len, |
|
upb_value* val) { |
|
uint32_t hash = _upb_Hash_NoSeed(key, len); |
|
upb_tabkey tabkey; |
|
return rm(&t->t, strkey2(key, len), val, &tabkey, hash, &streql); |
|
} |
|
|
|
/* Iteration */ |
|
|
|
void upb_strtable_begin(upb_strtable_iter* i, const upb_strtable* t) { |
|
i->t = t; |
|
i->index = begin(&t->t); |
|
} |
|
|
|
void upb_strtable_next(upb_strtable_iter* i) { |
|
i->index = next(&i->t->t, i->index); |
|
} |
|
|
|
bool upb_strtable_done(const upb_strtable_iter* i) { |
|
if (!i->t) return true; |
|
return i->index >= upb_table_size(&i->t->t) || |
|
upb_tabent_isempty(str_tabent(i)); |
|
} |
|
|
|
upb_StringView upb_strtable_iter_key(const upb_strtable_iter* i) { |
|
upb_StringView key; |
|
uint32_t len; |
|
UPB_ASSERT(!upb_strtable_done(i)); |
|
key.data = upb_tabstr(str_tabent(i)->key, &len); |
|
key.size = len; |
|
return key; |
|
} |
|
|
|
upb_value upb_strtable_iter_value(const upb_strtable_iter* i) { |
|
UPB_ASSERT(!upb_strtable_done(i)); |
|
return _upb_value_val(str_tabent(i)->val.val); |
|
} |
|
|
|
void upb_strtable_iter_setdone(upb_strtable_iter* i) { |
|
i->t = NULL; |
|
i->index = SIZE_MAX; |
|
} |
|
|
|
bool upb_strtable_iter_isequal(const upb_strtable_iter* i1, |
|
const upb_strtable_iter* i2) { |
|
if (upb_strtable_done(i1) && upb_strtable_done(i2)) return true; |
|
return i1->t == i2->t && i1->index == i2->index; |
|
} |
|
|
|
/* upb_inttable ***************************************************************/ |
|
|
|
/* For inttables we use a hybrid structure where small keys are kept in an |
|
* array and large keys are put in the hash table. */ |
|
|
|
static uint32_t inthash(upb_tabkey key) { return upb_inthash(key); } |
|
|
|
static bool inteql(upb_tabkey k1, lookupkey_t k2) { return k1 == k2.num; } |
|
|
|
static upb_tabval* mutable_array(upb_inttable* t) { |
|
return (upb_tabval*)t->array; |
|
} |
|
|
|
static upb_tabval* inttable_val(upb_inttable* t, uintptr_t key) { |
|
if (key < t->array_size) { |
|
return upb_arrhas(t->array[key]) ? &(mutable_array(t)[key]) : NULL; |
|
} else { |
|
upb_tabent* e = |
|
findentry_mutable(&t->t, intkey(key), upb_inthash(key), &inteql); |
|
return e ? &e->val : NULL; |
|
} |
|
} |
|
|
|
static const upb_tabval* inttable_val_const(const upb_inttable* t, |
|
uintptr_t key) { |
|
return inttable_val((upb_inttable*)t, key); |
|
} |
|
|
|
size_t upb_inttable_count(const upb_inttable* t) { |
|
return t->t.count + t->array_count; |
|
} |
|
|
|
static void check(upb_inttable* t) { |
|
UPB_UNUSED(t); |
|
#if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG) |
|
{ |
|
// This check is very expensive (makes inserts/deletes O(N)). |
|
size_t count = 0; |
|
intptr_t iter = UPB_INTTABLE_BEGIN; |
|
uintptr_t key; |
|
upb_value val; |
|
while (upb_inttable_next(t, &key, &val, &iter)) { |
|
UPB_ASSERT(upb_inttable_lookup(t, key, NULL)); |
|
} |
|
UPB_ASSERT(count == upb_inttable_count(t)); |
|
} |
|
#endif |
|
} |
|
|
|
bool upb_inttable_sizedinit(upb_inttable* t, size_t asize, int hsize_lg2, |
|
upb_Arena* a) { |
|
size_t array_bytes; |
|
|
|
if (!init(&t->t, hsize_lg2, a)) return false; |
|
/* Always make the array part at least 1 long, so that we know key 0 |
|
* won't be in the hash part, which simplifies things. */ |
|
t->array_size = UPB_MAX(1, asize); |
|
t->array_count = 0; |
|
array_bytes = t->array_size * sizeof(upb_value); |
|
t->array = upb_Arena_Malloc(a, array_bytes); |
|
if (!t->array) { |
|
return false; |
|
} |
|
memset(mutable_array(t), 0xff, array_bytes); |
|
check(t); |
|
return true; |
|
} |
|
|
|
bool upb_inttable_init(upb_inttable* t, upb_Arena* a) { |
|
return upb_inttable_sizedinit(t, 0, 4, a); |
|
} |
|
|
|
bool upb_inttable_insert(upb_inttable* t, uintptr_t key, upb_value val, |
|
upb_Arena* a) { |
|
upb_tabval tabval; |
|
tabval.val = val.val; |
|
UPB_ASSERT( |
|
upb_arrhas(tabval)); /* This will reject (uint64_t)-1. Fix this. */ |
|
|
|
if (key < t->array_size) { |
|
UPB_ASSERT(!upb_arrhas(t->array[key])); |
|
t->array_count++; |
|
mutable_array(t)[key].val = val.val; |
|
} else { |
|
if (isfull(&t->t)) { |
|
/* Need to resize the hash part, but we re-use the array part. */ |
|
size_t i; |
|
upb_table new_table; |
|
|
|
if (!init(&new_table, t->t.size_lg2 + 1, a)) { |
|
return false; |
|
} |
|
|
|
for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) { |
|
const upb_tabent* e = &t->t.entries[i]; |
|
uint32_t hash; |
|
upb_value v; |
|
|
|
_upb_value_setval(&v, e->val.val); |
|
hash = upb_inthash(e->key); |
|
insert(&new_table, intkey(e->key), e->key, v, hash, &inthash, &inteql); |
|
} |
|
|
|
UPB_ASSERT(t->t.count == new_table.count); |
|
|
|
t->t = new_table; |
|
} |
|
insert(&t->t, intkey(key), key, val, upb_inthash(key), &inthash, &inteql); |
|
} |
|
check(t); |
|
return true; |
|
} |
|
|
|
bool upb_inttable_lookup(const upb_inttable* t, uintptr_t key, upb_value* v) { |
|
const upb_tabval* table_v = inttable_val_const(t, key); |
|
if (!table_v) return false; |
|
if (v) _upb_value_setval(v, table_v->val); |
|
return true; |
|
} |
|
|
|
bool upb_inttable_replace(upb_inttable* t, uintptr_t key, upb_value val) { |
|
upb_tabval* table_v = inttable_val(t, key); |
|
if (!table_v) return false; |
|
table_v->val = val.val; |
|
return true; |
|
} |
|
|
|
bool upb_inttable_remove(upb_inttable* t, uintptr_t key, upb_value* val) { |
|
bool success; |
|
if (key < t->array_size) { |
|
if (upb_arrhas(t->array[key])) { |
|
upb_tabval empty = UPB_TABVALUE_EMPTY_INIT; |
|
t->array_count--; |
|
if (val) { |
|
_upb_value_setval(val, t->array[key].val); |
|
} |
|
mutable_array(t)[key] = empty; |
|
success = true; |
|
} else { |
|
success = false; |
|
} |
|
} else { |
|
success = rm(&t->t, intkey(key), val, NULL, upb_inthash(key), &inteql); |
|
} |
|
check(t); |
|
return success; |
|
} |
|
|
|
void upb_inttable_compact(upb_inttable* t, upb_Arena* a) { |
|
/* A power-of-two histogram of the table keys. */ |
|
size_t counts[UPB_MAXARRSIZE + 1] = {0}; |
|
|
|
/* The max key in each bucket. */ |
|
uintptr_t max[UPB_MAXARRSIZE + 1] = {0}; |
|
|
|
{ |
|
intptr_t iter = UPB_INTTABLE_BEGIN; |
|
uintptr_t key; |
|
upb_value val; |
|
while (upb_inttable_next(t, &key, &val, &iter)) { |
|
int bucket = log2ceil(key); |
|
max[bucket] = UPB_MAX(max[bucket], key); |
|
counts[bucket]++; |
|
} |
|
} |
|
|
|
/* Find the largest power of two that satisfies the MIN_DENSITY |
|
* definition (while actually having some keys). */ |
|
size_t arr_count = upb_inttable_count(t); |
|
int size_lg2; |
|
upb_inttable new_t; |
|
|
|
for (size_lg2 = ARRAY_SIZE(counts) - 1; size_lg2 > 0; size_lg2--) { |
|
if (counts[size_lg2] == 0) { |
|
/* We can halve again without losing any entries. */ |
|
continue; |
|
} else if (arr_count >= (1 << size_lg2) * MIN_DENSITY) { |
|
break; |
|
} |
|
|
|
arr_count -= counts[size_lg2]; |
|
} |
|
|
|
UPB_ASSERT(arr_count <= upb_inttable_count(t)); |
|
|
|
{ |
|
/* Insert all elements into new, perfectly-sized table. */ |
|
size_t arr_size = max[size_lg2] + 1; /* +1 so arr[max] will fit. */ |
|
size_t hash_count = upb_inttable_count(t) - arr_count; |
|
size_t hash_size = hash_count ? (hash_count / MAX_LOAD) + 1 : 0; |
|
int hashsize_lg2 = log2ceil(hash_size); |
|
|
|
upb_inttable_sizedinit(&new_t, arr_size, hashsize_lg2, a); |
|
|
|
{ |
|
intptr_t iter = UPB_INTTABLE_BEGIN; |
|
uintptr_t key; |
|
upb_value val; |
|
while (upb_inttable_next(t, &key, &val, &iter)) { |
|
upb_inttable_insert(&new_t, key, val, a); |
|
} |
|
} |
|
|
|
UPB_ASSERT(new_t.array_size == arr_size); |
|
UPB_ASSERT(new_t.t.size_lg2 == hashsize_lg2); |
|
} |
|
*t = new_t; |
|
} |
|
|
|
// Iteration. |
|
|
|
bool upb_inttable_next(const upb_inttable* t, uintptr_t* key, upb_value* val, |
|
intptr_t* iter) { |
|
intptr_t i = *iter; |
|
if ((size_t)(i + 1) <= t->array_size) { |
|
while ((size_t)++i < t->array_size) { |
|
upb_tabval ent = t->array[i]; |
|
if (upb_arrhas(ent)) { |
|
*key = i; |
|
*val = _upb_value_val(ent.val); |
|
*iter = i; |
|
return true; |
|
} |
|
} |
|
i--; // Back up to exactly one position before the start of the table. |
|
} |
|
|
|
size_t tab_idx = next(&t->t, i - t->array_size); |
|
if (tab_idx < upb_table_size(&t->t)) { |
|
upb_tabent* ent = &t->t.entries[tab_idx]; |
|
*key = ent->key; |
|
*val = _upb_value_val(ent->val.val); |
|
*iter = tab_idx + t->array_size; |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
void upb_inttable_removeiter(upb_inttable* t, intptr_t* iter) { |
|
intptr_t i = *iter; |
|
if ((size_t)i < t->array_size) { |
|
t->array_count--; |
|
mutable_array(t)[i].val = -1; |
|
} else { |
|
upb_tabent* ent = &t->t.entries[i - t->array_size]; |
|
upb_tabent* prev = NULL; |
|
|
|
// Linear search, not great. |
|
upb_tabent* end = &t->t.entries[upb_table_size(&t->t)]; |
|
for (upb_tabent* e = t->t.entries; e != end; e++) { |
|
if (e->next == ent) { |
|
prev = e; |
|
break; |
|
} |
|
} |
|
|
|
if (prev) { |
|
prev->next = ent->next; |
|
} |
|
|
|
t->t.count--; |
|
ent->key = 0; |
|
ent->next = NULL; |
|
} |
|
} |
|
|
|
bool upb_strtable_next2(const upb_strtable* t, upb_StringView* key, |
|
upb_value* val, intptr_t* iter) { |
|
size_t tab_idx = next(&t->t, *iter); |
|
if (tab_idx < upb_table_size(&t->t)) { |
|
upb_tabent* ent = &t->t.entries[tab_idx]; |
|
uint32_t len; |
|
key->data = upb_tabstr(ent->key, &len); |
|
key->size = len; |
|
*val = _upb_value_val(ent->val.val); |
|
*iter = tab_idx; |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
void upb_strtable_removeiter(upb_strtable* t, intptr_t* iter) { |
|
intptr_t i = *iter; |
|
upb_tabent* ent = &t->t.entries[i]; |
|
upb_tabent* prev = NULL; |
|
|
|
// Linear search, not great. |
|
upb_tabent* end = &t->t.entries[upb_table_size(&t->t)]; |
|
for (upb_tabent* e = t->t.entries; e != end; e++) { |
|
if (e->next == ent) { |
|
prev = e; |
|
break; |
|
} |
|
} |
|
|
|
if (prev) { |
|
prev->next = ent->next; |
|
} |
|
|
|
t->t.count--; |
|
ent->key = 0; |
|
ent->next = NULL; |
|
} |
|
|
|
void upb_strtable_setentryvalue(upb_strtable* t, intptr_t iter, upb_value v) { |
|
upb_tabent* ent = &t->t.entries[iter]; |
|
ent->val.val = v.val; |
|
}
|
|
|