Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
8569 lines
320 KiB
8569 lines
320 KiB
// Amalgamated source file |
|
/* |
|
** Defs are upb's internal representation of the constructs that can appear |
|
** in a .proto file: |
|
** |
|
** - upb::MessageDef (upb_msgdef): describes a "message" construct. |
|
** - upb::FieldDef (upb_fielddef): describes a message field. |
|
** - upb::FileDef (upb_filedef): describes a .proto file and its defs. |
|
** - upb::EnumDef (upb_enumdef): describes an enum. |
|
** - upb::OneofDef (upb_oneofdef): describes a oneof. |
|
** - upb::Def (upb_def): base class of all the others. |
|
** |
|
** TODO: definitions of services. |
|
** |
|
** Like upb_refcounted objects, defs are mutable only until frozen, and are |
|
** only thread-safe once frozen. |
|
** |
|
** This is a mixed C/C++ interface that offers a full API to both languages. |
|
** See the top-level README for more information. |
|
*/ |
|
|
|
#ifndef UPB_DEF_H_ |
|
#define UPB_DEF_H_ |
|
|
|
/* |
|
** upb::RefCounted (upb_refcounted) |
|
** |
|
** A refcounting scheme that supports circular refs. It accomplishes this by |
|
** partitioning the set of objects into groups such that no cycle spans groups; |
|
** we can then reference-count the group as a whole and ignore refs within the |
|
** group. When objects are mutable, these groups are computed very |
|
** conservatively; we group any objects that have ever had a link between them. |
|
** When objects are frozen, we compute strongly-connected components which |
|
** allows us to be precise and only group objects that are actually cyclic. |
|
** |
|
** This is a mixed C/C++ interface that offers a full API to both languages. |
|
** See the top-level README for more information. |
|
*/ |
|
|
|
#ifndef UPB_REFCOUNTED_H_ |
|
#define UPB_REFCOUNTED_H_ |
|
|
|
/* |
|
** upb_table |
|
** |
|
** This header is INTERNAL-ONLY! Its interfaces are not public or stable! |
|
** This file defines very fast int->upb_value (inttable) and string->upb_value |
|
** (strtable) hash tables. |
|
** |
|
** The table uses chained scatter with Brent's variation (inspired by the Lua |
|
** implementation of hash tables). The hash function for strings is Austin |
|
** Appleby's "MurmurHash." |
|
** |
|
** The inttable uses uintptr_t as its key, which guarantees it can be used to |
|
** store pointers or integers of at least 32 bits (upb isn't really useful on |
|
** systems where sizeof(void*) < 4). |
|
** |
|
** The table must be homogeneous (all values of the same type). In debug |
|
** mode, we check this on insert and lookup. |
|
*/ |
|
|
|
#ifndef UPB_TABLE_H_ |
|
#define UPB_TABLE_H_ |
|
|
|
#include <assert.h> |
|
#include <stdint.h> |
|
#include <string.h> |
|
/* |
|
** This file contains shared definitions that are widely used across upb. |
|
** |
|
** This is a mixed C/C++ interface that offers a full API to both languages. |
|
** See the top-level README for more information. |
|
*/ |
|
|
|
#ifndef UPB_H_ |
|
#define UPB_H_ |
|
|
|
#include <assert.h> |
|
#include <stdarg.h> |
|
#include <stdbool.h> |
|
#include <stddef.h> |
|
|
|
#ifdef __cplusplus |
|
namespace upb { |
|
class Allocator; |
|
class Arena; |
|
class Environment; |
|
class ErrorSpace; |
|
class Status; |
|
template <int N> class InlinedArena; |
|
template <int N> class InlinedEnvironment; |
|
} |
|
#endif |
|
|
|
/* UPB_INLINE: inline if possible, emit standalone code if required. */ |
|
#ifdef __cplusplus |
|
#define UPB_INLINE inline |
|
#elif defined (__GNUC__) |
|
#define UPB_INLINE static __inline__ |
|
#else |
|
#define UPB_INLINE static |
|
#endif |
|
|
|
/* Define UPB_BIG_ENDIAN manually if you're on big endian and your compiler |
|
* doesn't provide these preprocessor symbols. */ |
|
#if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
|
#define UPB_BIG_ENDIAN |
|
#endif |
|
|
|
/* Macros for function attributes on compilers that support them. */ |
|
#ifdef __GNUC__ |
|
#define UPB_FORCEINLINE __inline__ __attribute__((always_inline)) |
|
#define UPB_NOINLINE __attribute__((noinline)) |
|
#define UPB_NORETURN __attribute__((__noreturn__)) |
|
#else /* !defined(__GNUC__) */ |
|
#define UPB_FORCEINLINE |
|
#define UPB_NOINLINE |
|
#define UPB_NORETURN |
|
#endif |
|
|
|
/* A few hacky workarounds for functions not in C89. |
|
* For internal use only! |
|
* TODO(haberman): fix these by including our own implementations, or finding |
|
* another workaround. |
|
*/ |
|
#ifdef __GNUC__ |
|
#define _upb_snprintf __builtin_snprintf |
|
#define _upb_vsnprintf __builtin_vsnprintf |
|
#define _upb_va_copy(a, b) __va_copy(a, b) |
|
#elif __STDC_VERSION__ >= 199901L |
|
/* C99 versions. */ |
|
#define _upb_snprintf snprintf |
|
#define _upb_vsnprintf vsnprintf |
|
#define _upb_va_copy(a, b) va_copy(a, b) |
|
#else |
|
#error Need implementations of [v]snprintf and va_copy |
|
#endif |
|
|
|
|
|
#if ((defined(__cplusplus) && __cplusplus >= 201103L) || \ |
|
defined(__GXX_EXPERIMENTAL_CXX0X__)) && !defined(UPB_NO_CXX11) |
|
#define UPB_CXX11 |
|
#endif |
|
|
|
/* UPB_DISALLOW_COPY_AND_ASSIGN() |
|
* UPB_DISALLOW_POD_OPS() |
|
* |
|
* Declare these in the "private" section of a C++ class to forbid copy/assign |
|
* or all POD ops (construct, destruct, copy, assign) on that class. */ |
|
#ifdef UPB_CXX11 |
|
#include <type_traits> |
|
#define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \ |
|
class_name(const class_name&) = delete; \ |
|
void operator=(const class_name&) = delete; |
|
#define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \ |
|
class_name() = delete; \ |
|
~class_name() = delete; \ |
|
UPB_DISALLOW_COPY_AND_ASSIGN(class_name) |
|
#define UPB_ASSERT_STDLAYOUT(type) \ |
|
static_assert(std::is_standard_layout<type>::value, \ |
|
#type " must be standard layout"); |
|
#define UPB_FINAL final |
|
#else /* !defined(UPB_CXX11) */ |
|
#define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \ |
|
class_name(const class_name&); \ |
|
void operator=(const class_name&); |
|
#define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \ |
|
class_name(); \ |
|
~class_name(); \ |
|
UPB_DISALLOW_COPY_AND_ASSIGN(class_name) |
|
#define UPB_ASSERT_STDLAYOUT(type) |
|
#define UPB_FINAL |
|
#endif |
|
|
|
/* UPB_DECLARE_TYPE() |
|
* UPB_DECLARE_DERIVED_TYPE() |
|
* UPB_DECLARE_DERIVED_TYPE2() |
|
* |
|
* Macros for declaring C and C++ types both, including inheritance. |
|
* The inheritance doesn't use real C++ inheritance, to stay compatible with C. |
|
* |
|
* These macros also provide upcasts: |
|
* - in C: types-specific functions (ie. upb_foo_upcast(foo)) |
|
* - in C++: upb::upcast(foo) along with implicit conversions |
|
* |
|
* Downcasts are not provided, but upb/def.h defines downcasts for upb::Def. */ |
|
|
|
#define UPB_C_UPCASTS(ty, base) \ |
|
UPB_INLINE base *ty ## _upcast_mutable(ty *p) { return (base*)p; } \ |
|
UPB_INLINE const base *ty ## _upcast(const ty *p) { return (const base*)p; } |
|
|
|
#define UPB_C_UPCASTS2(ty, base, base2) \ |
|
UPB_C_UPCASTS(ty, base) \ |
|
UPB_INLINE base2 *ty ## _upcast2_mutable(ty *p) { return (base2*)p; } \ |
|
UPB_INLINE const base2 *ty ## _upcast2(const ty *p) { return (const base2*)p; } |
|
|
|
#ifdef __cplusplus |
|
|
|
#define UPB_BEGIN_EXTERN_C extern "C" { |
|
#define UPB_END_EXTERN_C } |
|
#define UPB_PRIVATE_FOR_CPP private: |
|
#define UPB_DECLARE_TYPE(cppname, cname) typedef cppname cname; |
|
|
|
#define UPB_DECLARE_DERIVED_TYPE(cppname, cppbase, cname, cbase) \ |
|
UPB_DECLARE_TYPE(cppname, cname) \ |
|
UPB_C_UPCASTS(cname, cbase) \ |
|
namespace upb { \ |
|
template <> \ |
|
class Pointer<cppname> : public PointerBase<cppname, cppbase> { \ |
|
public: \ |
|
explicit Pointer(cppname* ptr) \ |
|
: PointerBase<cppname, cppbase>(ptr) {} \ |
|
}; \ |
|
template <> \ |
|
class Pointer<const cppname> \ |
|
: public PointerBase<const cppname, const cppbase> { \ |
|
public: \ |
|
explicit Pointer(const cppname* ptr) \ |
|
: PointerBase<const cppname, const cppbase>(ptr) {} \ |
|
}; \ |
|
} |
|
|
|
#define UPB_DECLARE_DERIVED_TYPE2(cppname, cppbase, cppbase2, cname, cbase, \ |
|
cbase2) \ |
|
UPB_DECLARE_TYPE(cppname, cname) \ |
|
UPB_C_UPCASTS2(cname, cbase, cbase2) \ |
|
namespace upb { \ |
|
template <> \ |
|
class Pointer<cppname> : public PointerBase2<cppname, cppbase, cppbase2> { \ |
|
public: \ |
|
explicit Pointer(cppname* ptr) \ |
|
: PointerBase2<cppname, cppbase, cppbase2>(ptr) {} \ |
|
}; \ |
|
template <> \ |
|
class Pointer<const cppname> \ |
|
: public PointerBase2<const cppname, const cppbase, const cppbase2> { \ |
|
public: \ |
|
explicit Pointer(const cppname* ptr) \ |
|
: PointerBase2<const cppname, const cppbase, const cppbase2>(ptr) {} \ |
|
}; \ |
|
} |
|
|
|
#else /* !defined(__cplusplus) */ |
|
|
|
#define UPB_BEGIN_EXTERN_C |
|
#define UPB_END_EXTERN_C |
|
#define UPB_PRIVATE_FOR_CPP |
|
#define UPB_DECLARE_TYPE(cppname, cname) \ |
|
struct cname; \ |
|
typedef struct cname cname; |
|
#define UPB_DECLARE_DERIVED_TYPE(cppname, cppbase, cname, cbase) \ |
|
UPB_DECLARE_TYPE(cppname, cname) \ |
|
UPB_C_UPCASTS(cname, cbase) |
|
#define UPB_DECLARE_DERIVED_TYPE2(cppname, cppbase, cppbase2, \ |
|
cname, cbase, cbase2) \ |
|
UPB_DECLARE_TYPE(cppname, cname) \ |
|
UPB_C_UPCASTS2(cname, cbase, cbase2) |
|
|
|
#endif /* defined(__cplusplus) */ |
|
|
|
#define UPB_MAX(x, y) ((x) > (y) ? (x) : (y)) |
|
#define UPB_MIN(x, y) ((x) < (y) ? (x) : (y)) |
|
|
|
#define UPB_UNUSED(var) (void)var |
|
|
|
/* For asserting something about a variable when the variable is not used for |
|
* anything else. This prevents "unused variable" warnings when compiling in |
|
* debug mode. */ |
|
#define UPB_ASSERT_VAR(var, predicate) UPB_UNUSED(var); assert(predicate) |
|
|
|
/* Generic function type. */ |
|
typedef void upb_func(); |
|
|
|
|
|
/* C++ Casts ******************************************************************/ |
|
|
|
#ifdef __cplusplus |
|
|
|
namespace upb { |
|
|
|
template <class T> class Pointer; |
|
|
|
/* Casts to a subclass. The caller must know that cast is correct; an |
|
* incorrect cast will throw an assertion failure in debug mode. |
|
* |
|
* Example: |
|
* upb::Def* def = GetDef(); |
|
* // Assert-fails if this was not actually a MessageDef. |
|
* upb::MessgeDef* md = upb::down_cast<upb::MessageDef>(def); |
|
* |
|
* Note that downcasts are only defined for some types (at the moment you can |
|
* only downcast from a upb::Def to a specific Def type). */ |
|
template<class To, class From> To down_cast(From* f); |
|
|
|
/* Casts to a subclass. If the class does not actually match the given To type, |
|
* returns NULL. |
|
* |
|
* Example: |
|
* upb::Def* def = GetDef(); |
|
* // md will be NULL if this was not actually a MessageDef. |
|
* upb::MessgeDef* md = upb::down_cast<upb::MessageDef>(def); |
|
* |
|
* Note that dynamic casts are only defined for some types (at the moment you |
|
* can only downcast from a upb::Def to a specific Def type).. */ |
|
template<class To, class From> To dyn_cast(From* f); |
|
|
|
/* Casts to any base class, or the type itself (ie. can be a no-op). |
|
* |
|
* Example: |
|
* upb::MessageDef* md = GetDef(); |
|
* // This will fail to compile if this wasn't actually a base class. |
|
* upb::Def* def = upb::upcast(md); |
|
*/ |
|
template <class T> inline Pointer<T> upcast(T *f) { return Pointer<T>(f); } |
|
|
|
/* Attempt upcast to specific base class. |
|
* |
|
* Example: |
|
* upb::MessageDef* md = GetDef(); |
|
* upb::upcast_to<upb::Def>(md)->MethodOnDef(); |
|
*/ |
|
template <class T, class F> inline T* upcast_to(F *f) { |
|
return static_cast<T*>(upcast(f)); |
|
} |
|
|
|
/* PointerBase<T>: implementation detail of upb::upcast(). |
|
* It is implicitly convertable to pointers to the Base class(es). |
|
*/ |
|
template <class T, class Base> |
|
class PointerBase { |
|
public: |
|
explicit PointerBase(T* ptr) : ptr_(ptr) {} |
|
operator T*() { return ptr_; } |
|
operator Base*() { return (Base*)ptr_; } |
|
|
|
private: |
|
T* ptr_; |
|
}; |
|
|
|
template <class T, class Base, class Base2> |
|
class PointerBase2 : public PointerBase<T, Base> { |
|
public: |
|
explicit PointerBase2(T* ptr) : PointerBase<T, Base>(ptr) {} |
|
operator Base2*() { return Pointer<Base>(*this); } |
|
}; |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
/* upb::ErrorSpace ************************************************************/ |
|
|
|
/* A upb::ErrorSpace represents some domain of possible error values. This lets |
|
* upb::Status attach specific error codes to operations, like POSIX/C errno, |
|
* Win32 error codes, etc. Clients who want to know the very specific error |
|
* code can check the error space and then know the type of the integer code. |
|
* |
|
* NOTE: upb::ErrorSpace is currently not used and should be considered |
|
* experimental. It is important primarily in cases where upb is performing |
|
* I/O, but upb doesn't currently have any components that do this. */ |
|
|
|
UPB_DECLARE_TYPE(upb::ErrorSpace, upb_errorspace) |
|
|
|
#ifdef __cplusplus |
|
class upb::ErrorSpace { |
|
#else |
|
struct upb_errorspace { |
|
#endif |
|
const char *name; |
|
}; |
|
|
|
|
|
/* upb::Status ****************************************************************/ |
|
|
|
/* upb::Status represents a success or failure status and error message. |
|
* It owns no resources and allocates no memory, so it should work |
|
* even in OOM situations. */ |
|
UPB_DECLARE_TYPE(upb::Status, upb_status) |
|
|
|
/* The maximum length of an error message before it will get truncated. */ |
|
#define UPB_STATUS_MAX_MESSAGE 128 |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
const char *upb_status_errmsg(const upb_status *status); |
|
bool upb_ok(const upb_status *status); |
|
upb_errorspace *upb_status_errspace(const upb_status *status); |
|
int upb_status_errcode(const upb_status *status); |
|
|
|
/* Any of the functions that write to a status object allow status to be NULL, |
|
* to support use cases where the function's caller does not care about the |
|
* status message. */ |
|
void upb_status_clear(upb_status *status); |
|
void upb_status_seterrmsg(upb_status *status, const char *msg); |
|
void upb_status_seterrf(upb_status *status, const char *fmt, ...); |
|
void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args); |
|
void upb_status_copy(upb_status *to, const upb_status *from); |
|
|
|
UPB_END_EXTERN_C |
|
|
|
#ifdef __cplusplus |
|
|
|
class upb::Status { |
|
public: |
|
Status() { upb_status_clear(this); } |
|
|
|
/* Returns true if there is no error. */ |
|
bool ok() const { return upb_ok(this); } |
|
|
|
/* Optional error space and code, useful if the caller wants to |
|
* programmatically check the specific kind of error. */ |
|
ErrorSpace* error_space() { return upb_status_errspace(this); } |
|
int error_code() const { return upb_status_errcode(this); } |
|
|
|
/* The returned string is invalidated by any other call into the status. */ |
|
const char *error_message() const { return upb_status_errmsg(this); } |
|
|
|
/* The error message will be truncated if it is longer than |
|
* UPB_STATUS_MAX_MESSAGE-4. */ |
|
void SetErrorMessage(const char* msg) { upb_status_seterrmsg(this, msg); } |
|
void SetFormattedErrorMessage(const char* fmt, ...) { |
|
va_list args; |
|
va_start(args, fmt); |
|
upb_status_vseterrf(this, fmt, args); |
|
va_end(args); |
|
} |
|
|
|
/* Resets the status to a successful state with no message. */ |
|
void Clear() { upb_status_clear(this); } |
|
|
|
void CopyFrom(const Status& other) { upb_status_copy(this, &other); } |
|
|
|
private: |
|
UPB_DISALLOW_COPY_AND_ASSIGN(Status) |
|
#else |
|
struct upb_status { |
|
#endif |
|
bool ok_; |
|
|
|
/* Specific status code defined by some error space (optional). */ |
|
int code_; |
|
upb_errorspace *error_space_; |
|
|
|
/* TODO(haberman): add file/line of error? */ |
|
|
|
/* Error message; NULL-terminated. */ |
|
char msg[UPB_STATUS_MAX_MESSAGE]; |
|
}; |
|
|
|
#define UPB_STATUS_INIT {true, 0, NULL, {0}} |
|
|
|
|
|
/** Built-in error spaces. ****************************************************/ |
|
|
|
/* Errors raised by upb that we want to be able to detect programmatically. */ |
|
typedef enum { |
|
UPB_NOMEM /* Can't reuse ENOMEM because it is POSIX, not ISO C. */ |
|
} upb_errcode_t; |
|
|
|
extern upb_errorspace upb_upberr; |
|
|
|
void upb_upberr_setoom(upb_status *s); |
|
|
|
/* Since errno is defined by standard C, we define an error space for it in |
|
* core upb. Other error spaces should be defined in other, platform-specific |
|
* modules. */ |
|
|
|
extern upb_errorspace upb_errnoerr; |
|
|
|
|
|
/** upb::Allocator ************************************************************/ |
|
|
|
/* A upb::Allocator is a possibly-stateful allocator object. |
|
* |
|
* It could either be an arena allocator (which doesn't require individual |
|
* free() calls) or a regular malloc() (which does). The client must therefore |
|
* free memory unless it knows that the allocator is an arena allocator. */ |
|
UPB_DECLARE_TYPE(upb::Allocator, upb_alloc) |
|
|
|
/* A malloc()/free() function. |
|
* If "size" is 0 then the function acts like free(), otherwise it acts like |
|
* realloc(). Only "oldsize" bytes from a previous allocation are preserved. */ |
|
typedef void *upb_alloc_func(upb_alloc *alloc, void *ptr, size_t oldsize, |
|
size_t size); |
|
|
|
#ifdef __cplusplus |
|
|
|
class upb::Allocator UPB_FINAL { |
|
public: |
|
Allocator() {} |
|
|
|
private: |
|
UPB_DISALLOW_COPY_AND_ASSIGN(Allocator) |
|
|
|
public: |
|
#else |
|
struct upb_alloc { |
|
#endif /* __cplusplus */ |
|
upb_alloc_func *func; |
|
}; |
|
|
|
UPB_INLINE void *upb_malloc(upb_alloc *alloc, size_t size) { |
|
assert(size > 0); |
|
return alloc->func(alloc, NULL, 0, size); |
|
} |
|
|
|
UPB_INLINE void *upb_realloc(upb_alloc *alloc, void *ptr, size_t oldsize, |
|
size_t size) { |
|
assert(size > 0); |
|
return alloc->func(alloc, ptr, oldsize, size); |
|
} |
|
|
|
UPB_INLINE void upb_free(upb_alloc *alloc, void *ptr) { |
|
alloc->func(alloc, ptr, 0, 0); |
|
} |
|
|
|
/* The global allocator used by upb. Uses the standard malloc()/free(). */ |
|
|
|
extern upb_alloc upb_alloc_global; |
|
|
|
/* Functions that hard-code the global malloc. |
|
* |
|
* We still get benefit because we can put custom logic into our global |
|
* allocator, like injecting out-of-memory faults in debug/testing builds. */ |
|
|
|
UPB_INLINE void *upb_gmalloc(size_t size) { |
|
return upb_malloc(&upb_alloc_global, size); |
|
} |
|
|
|
UPB_INLINE void *upb_grealloc(void *ptr, size_t oldsize, size_t size) { |
|
return upb_realloc(&upb_alloc_global, ptr, oldsize, size); |
|
} |
|
|
|
UPB_INLINE void upb_gfree(void *ptr) { |
|
upb_free(&upb_alloc_global, ptr); |
|
} |
|
|
|
/* upb::Arena *****************************************************************/ |
|
|
|
/* upb::Arena is a specific allocator implementation that uses arena allocation. |
|
* The user provides an allocator that will be used to allocate the underlying |
|
* arena blocks. Arenas by nature do not require the individual allocations |
|
* to be freed. However the Arena does allow users to register cleanup |
|
* functions that will run when the arena is destroyed. |
|
* |
|
* A upb::Arena is *not* thread-safe. |
|
* |
|
* You could write a thread-safe arena allocator that satisfies the |
|
* upb::Allocator interface, but it would not be as efficient for the |
|
* single-threaded case. */ |
|
UPB_DECLARE_TYPE(upb::Arena, upb_arena) |
|
|
|
typedef void upb_cleanup_func(void *ud); |
|
|
|
#define UPB_ARENA_BLOCK_OVERHEAD (sizeof(size_t)*4) |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
void upb_arena_init(upb_arena *a); |
|
void upb_arena_init2(upb_arena *a, void *mem, size_t n, upb_alloc *alloc); |
|
void upb_arena_uninit(upb_arena *a); |
|
upb_alloc *upb_arena_alloc(upb_arena *a); |
|
bool upb_arena_addcleanup(upb_arena *a, upb_cleanup_func *func, void *ud); |
|
size_t upb_arena_bytesallocated(const upb_arena *a); |
|
void upb_arena_setnextblocksize(upb_arena *a, size_t size); |
|
void upb_arena_setmaxblocksize(upb_arena *a, size_t size); |
|
|
|
UPB_END_EXTERN_C |
|
|
|
#ifdef __cplusplus |
|
|
|
class upb::Arena { |
|
public: |
|
/* A simple arena with no initial memory block and the default allocator. */ |
|
Arena() { upb_arena_init(this); } |
|
|
|
/* Constructs an arena with the given initial block which allocates blocks |
|
* with the given allocator. The given allocator must outlive the Arena. |
|
* |
|
* If you pass NULL for the allocator it will default to the global allocator |
|
* upb_alloc_global, and NULL/0 for the initial block will cause there to be |
|
* no initial block. */ |
|
Arena(void *mem, size_t len, Allocator* a) { |
|
upb_arena_init2(this, mem, len, a); |
|
} |
|
|
|
~Arena() { upb_arena_uninit(this); } |
|
|
|
/* Sets the size of the next block the Arena will request (unless the |
|
* requested allocation is larger). Each block will double in size until the |
|
* max limit is reached. */ |
|
void SetNextBlockSize(size_t size) { upb_arena_setnextblocksize(this, size); } |
|
|
|
/* Sets the maximum block size. No blocks larger than this will be requested |
|
* from the underlying allocator unless individual arena allocations are |
|
* larger. */ |
|
void SetMaxBlockSize(size_t size) { upb_arena_setmaxblocksize(this, size); } |
|
|
|
/* Allows this arena to be used as a generic allocator. |
|
* |
|
* The arena does not need free() calls so when using Arena as an allocator |
|
* it is safe to skip them. However they are no-ops so there is no harm in |
|
* calling free() either. */ |
|
Allocator* allocator() { return upb_arena_alloc(this); } |
|
|
|
/* Add a cleanup function to run when the arena is destroyed. |
|
* Returns false on out-of-memory. */ |
|
bool AddCleanup(upb_cleanup_func* func, void* ud) { |
|
return upb_arena_addcleanup(this, func, ud); |
|
} |
|
|
|
/* Total number of bytes that have been allocated. It is undefined what |
|
* Realloc() does to this counter. */ |
|
size_t BytesAllocated() const { |
|
return upb_arena_bytesallocated(this); |
|
} |
|
|
|
private: |
|
UPB_DISALLOW_COPY_AND_ASSIGN(Arena) |
|
|
|
#else |
|
struct upb_arena { |
|
#endif /* __cplusplus */ |
|
/* We implement the allocator interface. |
|
* This must be the first member of upb_arena! */ |
|
upb_alloc alloc; |
|
|
|
/* Allocator to allocate arena blocks. We are responsible for freeing these |
|
* when we are destroyed. */ |
|
upb_alloc *block_alloc; |
|
|
|
size_t bytes_allocated; |
|
size_t next_block_size; |
|
size_t max_block_size; |
|
|
|
/* Linked list of blocks. Points to an arena_block, defined in env.c */ |
|
void *block_head; |
|
|
|
/* Cleanup entries. Pointer to a cleanup_ent, defined in env.c */ |
|
void *cleanup_head; |
|
|
|
/* For future expansion, since the size of this struct is exposed to users. */ |
|
void *future1; |
|
void *future2; |
|
}; |
|
|
|
|
|
/* upb::Environment ***********************************************************/ |
|
|
|
/* A upb::Environment provides a means for injecting malloc and an |
|
* error-reporting callback into encoders/decoders. This allows them to be |
|
* independent of nearly all assumptions about their actual environment. |
|
* |
|
* It is also a container for allocating the encoders/decoders themselves that |
|
* insulates clients from knowing their actual size. This provides ABI |
|
* compatibility even if the size of the objects change. And this allows the |
|
* structure definitions to be in the .c files instead of the .h files, making |
|
* the .h files smaller and more readable. |
|
* |
|
* We might want to consider renaming this to "Pipeline" if/when the concept of |
|
* a pipeline element becomes more formalized. */ |
|
UPB_DECLARE_TYPE(upb::Environment, upb_env) |
|
|
|
/* A function that receives an error report from an encoder or decoder. The |
|
* callback can return true to request that the error should be recovered, but |
|
* if the error is not recoverable this has no effect. */ |
|
typedef bool upb_error_func(void *ud, const upb_status *status); |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
void upb_env_init(upb_env *e); |
|
void upb_env_init2(upb_env *e, void *mem, size_t n, upb_alloc *alloc); |
|
void upb_env_uninit(upb_env *e); |
|
|
|
void upb_env_initonly(upb_env *e); |
|
|
|
upb_arena *upb_env_arena(upb_env *e); |
|
bool upb_env_ok(const upb_env *e); |
|
void upb_env_seterrorfunc(upb_env *e, upb_error_func *func, void *ud); |
|
|
|
/* Convenience wrappers around the methods of the contained arena. */ |
|
void upb_env_reporterrorsto(upb_env *e, upb_status *s); |
|
bool upb_env_reporterror(upb_env *e, const upb_status *s); |
|
void *upb_env_malloc(upb_env *e, size_t size); |
|
void *upb_env_realloc(upb_env *e, void *ptr, size_t oldsize, size_t size); |
|
void upb_env_free(upb_env *e, void *ptr); |
|
bool upb_env_addcleanup(upb_env *e, upb_cleanup_func *func, void *ud); |
|
size_t upb_env_bytesallocated(const upb_env *e); |
|
|
|
UPB_END_EXTERN_C |
|
|
|
#ifdef __cplusplus |
|
|
|
class upb::Environment { |
|
public: |
|
/* The given Arena must outlive this environment. */ |
|
Environment() { upb_env_initonly(this); } |
|
|
|
Environment(void *mem, size_t len, Allocator *a) : arena_(mem, len, a) { |
|
upb_env_initonly(this); |
|
} |
|
|
|
Arena* arena() { return upb_env_arena(this); } |
|
|
|
/* Set a custom error reporting function. */ |
|
void SetErrorFunction(upb_error_func* func, void* ud) { |
|
upb_env_seterrorfunc(this, func, ud); |
|
} |
|
|
|
/* Set the error reporting function to simply copy the status to the given |
|
* status and abort. */ |
|
void ReportErrorsTo(Status* status) { upb_env_reporterrorsto(this, status); } |
|
|
|
/* Returns true if all allocations and AddCleanup() calls have succeeded, |
|
* and no errors were reported with ReportError() (except ones that recovered |
|
* successfully). */ |
|
bool ok() const { return upb_env_ok(this); } |
|
|
|
/* Reports an error to this environment's callback, returning true if |
|
* the caller should try to recover. */ |
|
bool ReportError(const Status* status) { |
|
return upb_env_reporterror(this, status); |
|
} |
|
|
|
private: |
|
UPB_DISALLOW_COPY_AND_ASSIGN(Environment) |
|
|
|
#else |
|
struct upb_env { |
|
#endif /* __cplusplus */ |
|
upb_arena arena_; |
|
upb_error_func *error_func_; |
|
void *error_ud_; |
|
bool ok_; |
|
}; |
|
|
|
|
|
/* upb::InlinedArena **********************************************************/ |
|
/* upb::InlinedEnvironment ****************************************************/ |
|
|
|
/* upb::InlinedArena and upb::InlinedEnvironment seed their arenas with a |
|
* predefined amount of memory. No heap memory will be allocated until the |
|
* initial block is exceeded. |
|
* |
|
* These types only exist in C++ */ |
|
|
|
#ifdef __cplusplus |
|
|
|
template <int N> class upb::InlinedArena : public upb::Arena { |
|
public: |
|
InlinedArena() : Arena(initial_block_, N, NULL) {} |
|
explicit InlinedArena(Allocator* a) : Arena(initial_block_, N, a) {} |
|
|
|
private: |
|
UPB_DISALLOW_COPY_AND_ASSIGN(InlinedArena) |
|
|
|
char initial_block_[N + UPB_ARENA_BLOCK_OVERHEAD]; |
|
}; |
|
|
|
template <int N> class upb::InlinedEnvironment : public upb::Environment { |
|
public: |
|
InlinedEnvironment() : Environment(initial_block_, N, NULL) {} |
|
explicit InlinedEnvironment(Allocator *a) |
|
: Environment(initial_block_, N, a) {} |
|
|
|
private: |
|
UPB_DISALLOW_COPY_AND_ASSIGN(InlinedEnvironment) |
|
|
|
char initial_block_[N + UPB_ARENA_BLOCK_OVERHEAD]; |
|
}; |
|
|
|
#endif /* __cplusplus */ |
|
|
|
|
|
|
|
#endif /* UPB_H_ */ |
|
|
|
#ifdef __cplusplus |
|
extern "C" { |
|
#endif |
|
|
|
|
|
/* upb_value ******************************************************************/ |
|
|
|
/* A tagged union (stored untagged inside the table) so that we can check that |
|
* clients calling table accessors are correctly typed without having to have |
|
* an explosion of accessors. */ |
|
typedef enum { |
|
UPB_CTYPE_INT32 = 1, |
|
UPB_CTYPE_INT64 = 2, |
|
UPB_CTYPE_UINT32 = 3, |
|
UPB_CTYPE_UINT64 = 4, |
|
UPB_CTYPE_BOOL = 5, |
|
UPB_CTYPE_CSTR = 6, |
|
UPB_CTYPE_PTR = 7, |
|
UPB_CTYPE_CONSTPTR = 8, |
|
UPB_CTYPE_FPTR = 9 |
|
} upb_ctype_t; |
|
|
|
typedef struct { |
|
uint64_t val; |
|
#ifndef NDEBUG |
|
/* In debug mode we carry the value type around also so we can check accesses |
|
* to be sure the right member is being read. */ |
|
upb_ctype_t ctype; |
|
#endif |
|
} upb_value; |
|
|
|
#ifdef NDEBUG |
|
#define SET_TYPE(dest, val) UPB_UNUSED(val) |
|
#else |
|
#define SET_TYPE(dest, val) dest = val |
|
#endif |
|
|
|
/* Like strdup(), which isn't always available since it's not ANSI C. */ |
|
char *upb_strdup(const char *s, upb_alloc *a); |
|
/* Variant that works with a length-delimited rather than NULL-delimited string, |
|
* as supported by strtable. */ |
|
char *upb_strdup2(const char *s, size_t len, upb_alloc *a); |
|
|
|
UPB_INLINE char *upb_gstrdup(const char *s) { |
|
return upb_strdup(s, &upb_alloc_global); |
|
} |
|
|
|
UPB_INLINE void _upb_value_setval(upb_value *v, uint64_t val, |
|
upb_ctype_t ctype) { |
|
v->val = val; |
|
SET_TYPE(v->ctype, ctype); |
|
} |
|
|
|
UPB_INLINE upb_value _upb_value_val(uint64_t val, upb_ctype_t ctype) { |
|
upb_value ret; |
|
_upb_value_setval(&ret, val, ctype); |
|
return ret; |
|
} |
|
|
|
/* For each value ctype, define the following set of functions: |
|
* |
|
* // Get/set an int32 from a upb_value. |
|
* int32_t upb_value_getint32(upb_value val); |
|
* void upb_value_setint32(upb_value *val, int32_t cval); |
|
* |
|
* // Construct a new upb_value from an int32. |
|
* upb_value upb_value_int32(int32_t val); */ |
|
#define FUNCS(name, membername, type_t, converter, proto_type) \ |
|
UPB_INLINE void upb_value_set ## name(upb_value *val, type_t cval) { \ |
|
val->val = (converter)cval; \ |
|
SET_TYPE(val->ctype, proto_type); \ |
|
} \ |
|
UPB_INLINE upb_value upb_value_ ## name(type_t val) { \ |
|
upb_value ret; \ |
|
upb_value_set ## name(&ret, val); \ |
|
return ret; \ |
|
} \ |
|
UPB_INLINE type_t upb_value_get ## name(upb_value val) { \ |
|
assert(val.ctype == proto_type); \ |
|
return (type_t)(converter)val.val; \ |
|
} |
|
|
|
FUNCS(int32, int32, int32_t, int32_t, UPB_CTYPE_INT32) |
|
FUNCS(int64, int64, int64_t, int64_t, UPB_CTYPE_INT64) |
|
FUNCS(uint32, uint32, uint32_t, uint32_t, UPB_CTYPE_UINT32) |
|
FUNCS(uint64, uint64, uint64_t, uint64_t, UPB_CTYPE_UINT64) |
|
FUNCS(bool, _bool, bool, bool, UPB_CTYPE_BOOL) |
|
FUNCS(cstr, cstr, char*, uintptr_t, UPB_CTYPE_CSTR) |
|
FUNCS(ptr, ptr, void*, uintptr_t, UPB_CTYPE_PTR) |
|
FUNCS(constptr, constptr, const void*, uintptr_t, UPB_CTYPE_CONSTPTR) |
|
FUNCS(fptr, fptr, upb_func*, uintptr_t, UPB_CTYPE_FPTR) |
|
|
|
#undef FUNCS |
|
#undef SET_TYPE |
|
|
|
|
|
/* upb_tabkey *****************************************************************/ |
|
|
|
/* Either: |
|
* 1. an actual integer key, or |
|
* 2. a pointer to a string prefixed by its uint32_t length, owned by us. |
|
* |
|
* ...depending on whether this is a string table or an int table. We would |
|
* make this a union of those two types, but C89 doesn't support statically |
|
* initializing a non-first union member. */ |
|
typedef uintptr_t upb_tabkey; |
|
|
|
#define UPB_TABKEY_NUM(n) n |
|
#define UPB_TABKEY_NONE 0 |
|
/* The preprocessor isn't quite powerful enough to turn the compile-time string |
|
* length into a byte-wise string representation, so code generation needs to |
|
* help it along. |
|
* |
|
* "len1" is the low byte and len4 is the high byte. */ |
|
#ifdef UPB_BIG_ENDIAN |
|
#define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \ |
|
(uintptr_t)(len4 len3 len2 len1 strval) |
|
#else |
|
#define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \ |
|
(uintptr_t)(len1 len2 len3 len4 strval) |
|
#endif |
|
|
|
UPB_INLINE char *upb_tabstr(upb_tabkey key, uint32_t *len) { |
|
char* mem = (char*)key; |
|
if (len) memcpy(len, mem, sizeof(*len)); |
|
return mem + sizeof(*len); |
|
} |
|
|
|
|
|
/* upb_tabval *****************************************************************/ |
|
|
|
#ifdef __cplusplus |
|
|
|
/* Status initialization not supported. |
|
* |
|
* This separate definition is necessary because in C++, UINTPTR_MAX isn't |
|
* reliably available. */ |
|
typedef struct { |
|
uint64_t val; |
|
} upb_tabval; |
|
|
|
#else |
|
|
|
/* C -- supports static initialization, but to support static initialization of |
|
* both integers and points for both 32 and 64 bit targets, it takes a little |
|
* bit of doing. */ |
|
|
|
#if UINTPTR_MAX == 0xffffffffffffffffULL |
|
#define UPB_PTR_IS_64BITS |
|
#elif UINTPTR_MAX != 0xffffffff |
|
#error Could not determine how many bits pointers are. |
|
#endif |
|
|
|
typedef union { |
|
/* For static initialization. |
|
* |
|
* Unfortunately this ugliness is necessary -- it is the only way that we can, |
|
* with -std=c89 -pedantic, statically initialize this to either a pointer or |
|
* an integer on 32-bit platforms. */ |
|
struct { |
|
#ifdef UPB_PTR_IS_64BITS |
|
uintptr_t val; |
|
#else |
|
uintptr_t val1; |
|
uintptr_t val2; |
|
#endif |
|
} staticinit; |
|
|
|
/* The normal accessor that we use for everything at runtime. */ |
|
uint64_t val; |
|
} upb_tabval; |
|
|
|
#ifdef UPB_PTR_IS_64BITS |
|
#define UPB_TABVALUE_INT_INIT(v) {{v}} |
|
#define UPB_TABVALUE_EMPTY_INIT {{-1}} |
|
#else |
|
|
|
/* 32-bit pointers */ |
|
|
|
#ifdef UPB_BIG_ENDIAN |
|
#define UPB_TABVALUE_INT_INIT(v) {{0, v}} |
|
#define UPB_TABVALUE_EMPTY_INIT {{-1, -1}} |
|
#else |
|
#define UPB_TABVALUE_INT_INIT(v) {{v, 0}} |
|
#define UPB_TABVALUE_EMPTY_INIT {{-1, -1}} |
|
#endif |
|
|
|
#endif |
|
|
|
#define UPB_TABVALUE_PTR_INIT(v) UPB_TABVALUE_INT_INIT((uintptr_t)v) |
|
|
|
#undef UPB_PTR_IS_64BITS |
|
|
|
#endif /* __cplusplus */ |
|
|
|
|
|
/* upb_table ******************************************************************/ |
|
|
|
typedef struct _upb_tabent { |
|
upb_tabkey key; |
|
upb_tabval val; |
|
|
|
/* Internal chaining. This is const so we can create static initializers for |
|
* tables. We cast away const sometimes, but *only* when the containing |
|
* upb_table is known to be non-const. This requires a bit of care, but |
|
* the subtlety is confined to table.c. */ |
|
const struct _upb_tabent *next; |
|
} upb_tabent; |
|
|
|
typedef struct { |
|
size_t count; /* Number of entries in the hash part. */ |
|
size_t mask; /* Mask to turn hash value -> bucket. */ |
|
upb_ctype_t ctype; /* Type of all values. */ |
|
uint8_t size_lg2; /* Size of the hashtable part is 2^size_lg2 entries. */ |
|
|
|
/* Hash table entries. |
|
* Making this const isn't entirely accurate; what we really want is for it to |
|
* have the same const-ness as the table it's inside. But there's no way to |
|
* declare that in C. So we have to make it const so that we can statically |
|
* initialize const hash tables. Then we cast away const when we have to. |
|
*/ |
|
const upb_tabent *entries; |
|
|
|
#ifndef NDEBUG |
|
/* This table's allocator. We make the user pass it in to every relevant |
|
* function and only use this to check it in debug mode. We do this solely |
|
* to keep upb_table as small as possible. This might seem slightly paranoid |
|
* but the plan is to use upb_table for all map fields and extension sets in |
|
* a forthcoming message representation, so there could be a lot of these. |
|
* If this turns out to be too annoying later, we can change it (since this |
|
* is an internal-only header file). */ |
|
upb_alloc *alloc; |
|
#endif |
|
} upb_table; |
|
|
|
#ifdef NDEBUG |
|
# define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \ |
|
{count, mask, ctype, size_lg2, entries} |
|
#else |
|
# ifdef UPB_DEBUG_REFS |
|
/* At the moment the only mutable tables we statically initialize are debug |
|
* ref tables. */ |
|
# define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \ |
|
{count, mask, ctype, size_lg2, entries, &upb_alloc_debugrefs} |
|
# else |
|
# define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \ |
|
{count, mask, ctype, size_lg2, entries, NULL} |
|
# endif |
|
#endif |
|
|
|
typedef struct { |
|
upb_table t; |
|
} upb_strtable; |
|
|
|
#define UPB_STRTABLE_INIT(count, mask, ctype, size_lg2, entries) \ |
|
{UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries)} |
|
|
|
#define UPB_EMPTY_STRTABLE_INIT(ctype) \ |
|
UPB_STRTABLE_INIT(0, 0, ctype, 0, NULL) |
|
|
|
typedef struct { |
|
upb_table t; /* For entries that don't fit in the array part. */ |
|
const upb_tabval *array; /* Array part of the table. See const note above. */ |
|
size_t array_size; /* Array part size. */ |
|
size_t array_count; /* Array part number of elements. */ |
|
} upb_inttable; |
|
|
|
#define UPB_INTTABLE_INIT(count, mask, ctype, size_lg2, ent, a, asize, acount) \ |
|
{UPB_TABLE_INIT(count, mask, ctype, size_lg2, ent), a, asize, acount} |
|
|
|
#define UPB_EMPTY_INTTABLE_INIT(ctype) \ |
|
UPB_INTTABLE_INIT(0, 0, ctype, 0, NULL, NULL, 0, 0) |
|
|
|
#define UPB_ARRAY_EMPTYENT -1 |
|
|
|
UPB_INLINE size_t upb_table_size(const upb_table *t) { |
|
if (t->size_lg2 == 0) |
|
return 0; |
|
else |
|
return 1 << t->size_lg2; |
|
} |
|
|
|
/* Internal-only functions, in .h file only out of necessity. */ |
|
UPB_INLINE bool upb_tabent_isempty(const upb_tabent *e) { |
|
return e->key == 0; |
|
} |
|
|
|
/* Used by some of the unit tests for generic hashing functionality. */ |
|
uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed); |
|
|
|
UPB_INLINE uintptr_t upb_intkey(uintptr_t key) { |
|
return key; |
|
} |
|
|
|
UPB_INLINE uint32_t upb_inthash(uintptr_t key) { |
|
return (uint32_t)key; |
|
} |
|
|
|
static const upb_tabent *upb_getentry(const upb_table *t, uint32_t hash) { |
|
return t->entries + (hash & t->mask); |
|
} |
|
|
|
UPB_INLINE bool upb_arrhas(upb_tabval key) { |
|
return key.val != (uint64_t)-1; |
|
} |
|
|
|
/* Initialize and uninitialize a table, respectively. If memory allocation |
|
* failed, false is returned that the table is uninitialized. */ |
|
bool upb_inttable_init2(upb_inttable *table, upb_ctype_t ctype, upb_alloc *a); |
|
bool upb_strtable_init2(upb_strtable *table, upb_ctype_t ctype, upb_alloc *a); |
|
void upb_inttable_uninit2(upb_inttable *table, upb_alloc *a); |
|
void upb_strtable_uninit2(upb_strtable *table, upb_alloc *a); |
|
|
|
UPB_INLINE bool upb_inttable_init(upb_inttable *table, upb_ctype_t ctype) { |
|
return upb_inttable_init2(table, ctype, &upb_alloc_global); |
|
} |
|
|
|
UPB_INLINE bool upb_strtable_init(upb_strtable *table, upb_ctype_t ctype) { |
|
return upb_strtable_init2(table, ctype, &upb_alloc_global); |
|
} |
|
|
|
UPB_INLINE void upb_inttable_uninit(upb_inttable *table) { |
|
upb_inttable_uninit2(table, &upb_alloc_global); |
|
} |
|
|
|
UPB_INLINE void upb_strtable_uninit(upb_strtable *table) { |
|
upb_strtable_uninit2(table, &upb_alloc_global); |
|
} |
|
|
|
/* Returns the number of values in the table. */ |
|
size_t upb_inttable_count(const upb_inttable *t); |
|
UPB_INLINE size_t upb_strtable_count(const upb_strtable *t) { |
|
return t->t.count; |
|
} |
|
|
|
/* Inserts the given key into the hashtable with the given value. The key must |
|
* not already exist in the hash table. For string tables, the key must be |
|
* NULL-terminated, and the table will make an internal copy of the key. |
|
* Inttables must not insert a value of UINTPTR_MAX. |
|
* |
|
* If a table resize was required but memory allocation failed, false is |
|
* returned and the table is unchanged. */ |
|
bool upb_inttable_insert2(upb_inttable *t, uintptr_t key, upb_value val, |
|
upb_alloc *a); |
|
bool upb_strtable_insert3(upb_strtable *t, const char *key, size_t len, |
|
upb_value val, upb_alloc *a); |
|
|
|
UPB_INLINE bool upb_inttable_insert(upb_inttable *t, uintptr_t key, |
|
upb_value val) { |
|
return upb_inttable_insert2(t, key, val, &upb_alloc_global); |
|
} |
|
|
|
UPB_INLINE bool upb_strtable_insert2(upb_strtable *t, const char *key, |
|
size_t len, upb_value val) { |
|
return upb_strtable_insert3(t, key, len, val, &upb_alloc_global); |
|
} |
|
|
|
/* For NULL-terminated strings. */ |
|
UPB_INLINE bool upb_strtable_insert(upb_strtable *t, const char *key, |
|
upb_value val) { |
|
return upb_strtable_insert2(t, key, strlen(key), val); |
|
} |
|
|
|
/* Looks up key in this table, returning "true" if the key was found. |
|
* If v is non-NULL, copies the value for this key into *v. */ |
|
bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v); |
|
bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len, |
|
upb_value *v); |
|
|
|
/* For NULL-terminated strings. */ |
|
UPB_INLINE bool upb_strtable_lookup(const upb_strtable *t, const char *key, |
|
upb_value *v) { |
|
return upb_strtable_lookup2(t, key, strlen(key), v); |
|
} |
|
|
|
/* Removes an item from the table. Returns true if the remove was successful, |
|
* and stores the removed item in *val if non-NULL. */ |
|
bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val); |
|
bool upb_strtable_remove3(upb_strtable *t, const char *key, size_t len, |
|
upb_value *val, upb_alloc *alloc); |
|
|
|
UPB_INLINE bool upb_strtable_remove2(upb_strtable *t, const char *key, |
|
size_t len, upb_value *val) { |
|
return upb_strtable_remove3(t, key, len, val, &upb_alloc_global); |
|
} |
|
|
|
/* For NULL-terminated strings. */ |
|
UPB_INLINE bool upb_strtable_remove(upb_strtable *t, const char *key, |
|
upb_value *v) { |
|
return upb_strtable_remove2(t, key, strlen(key), v); |
|
} |
|
|
|
/* Updates an existing entry in an inttable. If the entry does not exist, |
|
* returns false and does nothing. Unlike insert/remove, this does not |
|
* invalidate iterators. */ |
|
bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val); |
|
|
|
/* Handy routines for treating an inttable like a stack. May not be mixed with |
|
* other insert/remove calls. */ |
|
bool upb_inttable_push2(upb_inttable *t, upb_value val, upb_alloc *a); |
|
upb_value upb_inttable_pop(upb_inttable *t); |
|
|
|
UPB_INLINE bool upb_inttable_push(upb_inttable *t, upb_value val) { |
|
return upb_inttable_push2(t, val, &upb_alloc_global); |
|
} |
|
|
|
/* Convenience routines for inttables with pointer keys. */ |
|
bool upb_inttable_insertptr2(upb_inttable *t, const void *key, upb_value val, |
|
upb_alloc *a); |
|
bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val); |
|
bool upb_inttable_lookupptr( |
|
const upb_inttable *t, const void *key, upb_value *val); |
|
|
|
UPB_INLINE bool upb_inttable_insertptr(upb_inttable *t, const void *key, |
|
upb_value val) { |
|
return upb_inttable_insertptr2(t, key, val, &upb_alloc_global); |
|
} |
|
|
|
/* Optimizes the table for the current set of entries, for both memory use and |
|
* lookup time. Client should call this after all entries have been inserted; |
|
* inserting more entries is legal, but will likely require a table resize. */ |
|
void upb_inttable_compact2(upb_inttable *t, upb_alloc *a); |
|
|
|
UPB_INLINE void upb_inttable_compact(upb_inttable *t) { |
|
upb_inttable_compact2(t, &upb_alloc_global); |
|
} |
|
|
|
/* A special-case inlinable version of the lookup routine for 32-bit |
|
* integers. */ |
|
UPB_INLINE bool upb_inttable_lookup32(const upb_inttable *t, uint32_t key, |
|
upb_value *v) { |
|
*v = upb_value_int32(0); /* Silence compiler warnings. */ |
|
if (key < t->array_size) { |
|
upb_tabval arrval = t->array[key]; |
|
if (upb_arrhas(arrval)) { |
|
_upb_value_setval(v, arrval.val, t->t.ctype); |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} else { |
|
const upb_tabent *e; |
|
if (t->t.entries == NULL) return false; |
|
for (e = upb_getentry(&t->t, upb_inthash(key)); true; e = e->next) { |
|
if ((uint32_t)e->key == key) { |
|
_upb_value_setval(v, e->val.val, t->t.ctype); |
|
return true; |
|
} |
|
if (e->next == NULL) return false; |
|
} |
|
} |
|
} |
|
|
|
/* Exposed for testing only. */ |
|
bool upb_strtable_resize(upb_strtable *t, size_t size_lg2, upb_alloc *a); |
|
|
|
/* Iterators ******************************************************************/ |
|
|
|
/* Iterators for int and string tables. We are subject to some kind of unusual |
|
* design constraints: |
|
* |
|
* For high-level languages: |
|
* - we must be able to guarantee that we don't crash or corrupt memory even if |
|
* the program accesses an invalidated iterator. |
|
* |
|
* For C++11 range-based for: |
|
* - iterators must be copyable |
|
* - iterators must be comparable |
|
* - it must be possible to construct an "end" value. |
|
* |
|
* Iteration order is undefined. |
|
* |
|
* Modifying the table invalidates iterators. upb_{str,int}table_done() is |
|
* guaranteed to work even on an invalidated iterator, as long as the table it |
|
* is iterating over has not been freed. Calling next() or accessing data from |
|
* an invalidated iterator yields unspecified elements from the table, but it is |
|
* guaranteed not to crash and to return real table elements (except when done() |
|
* is true). */ |
|
|
|
|
|
/* upb_strtable_iter **********************************************************/ |
|
|
|
/* upb_strtable_iter i; |
|
* upb_strtable_begin(&i, t); |
|
* for(; !upb_strtable_done(&i); upb_strtable_next(&i)) { |
|
* const char *key = upb_strtable_iter_key(&i); |
|
* const upb_value val = upb_strtable_iter_value(&i); |
|
* // ... |
|
* } |
|
*/ |
|
|
|
typedef struct { |
|
const upb_strtable *t; |
|
size_t index; |
|
} upb_strtable_iter; |
|
|
|
void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t); |
|
void upb_strtable_next(upb_strtable_iter *i); |
|
bool upb_strtable_done(const upb_strtable_iter *i); |
|
const char *upb_strtable_iter_key(const upb_strtable_iter *i); |
|
size_t upb_strtable_iter_keylength(const upb_strtable_iter *i); |
|
upb_value upb_strtable_iter_value(const upb_strtable_iter *i); |
|
void upb_strtable_iter_setdone(upb_strtable_iter *i); |
|
bool upb_strtable_iter_isequal(const upb_strtable_iter *i1, |
|
const upb_strtable_iter *i2); |
|
|
|
|
|
/* upb_inttable_iter **********************************************************/ |
|
|
|
/* upb_inttable_iter i; |
|
* upb_inttable_begin(&i, t); |
|
* for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
* uintptr_t key = upb_inttable_iter_key(&i); |
|
* upb_value val = upb_inttable_iter_value(&i); |
|
* // ... |
|
* } |
|
*/ |
|
|
|
typedef struct { |
|
const upb_inttable *t; |
|
size_t index; |
|
bool array_part; |
|
} upb_inttable_iter; |
|
|
|
void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t); |
|
void upb_inttable_next(upb_inttable_iter *i); |
|
bool upb_inttable_done(const upb_inttable_iter *i); |
|
uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i); |
|
upb_value upb_inttable_iter_value(const upb_inttable_iter *i); |
|
void upb_inttable_iter_setdone(upb_inttable_iter *i); |
|
bool upb_inttable_iter_isequal(const upb_inttable_iter *i1, |
|
const upb_inttable_iter *i2); |
|
|
|
|
|
#ifdef __cplusplus |
|
} /* extern "C" */ |
|
#endif |
|
|
|
#endif /* UPB_TABLE_H_ */ |
|
|
|
/* Reference tracking will check ref()/unref() operations to make sure the |
|
* ref ownership is correct. Where possible it will also make tools like |
|
* Valgrind attribute ref leaks to the code that took the leaked ref, not |
|
* the code that originally created the object. |
|
* |
|
* Enabling this requires the application to define upb_lock()/upb_unlock() |
|
* functions that acquire/release a global mutex (or #define UPB_THREAD_UNSAFE). |
|
* For this reason we don't enable it by default, even in debug builds. |
|
*/ |
|
|
|
/* #define UPB_DEBUG_REFS */ |
|
|
|
#ifdef __cplusplus |
|
namespace upb { |
|
class RefCounted; |
|
template <class T> class reffed_ptr; |
|
} |
|
#endif |
|
|
|
UPB_DECLARE_TYPE(upb::RefCounted, upb_refcounted) |
|
|
|
struct upb_refcounted_vtbl; |
|
|
|
#ifdef __cplusplus |
|
|
|
class upb::RefCounted { |
|
public: |
|
/* Returns true if the given object is frozen. */ |
|
bool IsFrozen() const; |
|
|
|
/* Increases the ref count, the new ref is owned by "owner" which must not |
|
* already own a ref (and should not itself be a refcounted object if the ref |
|
* could possibly be circular; see below). |
|
* Thread-safe iff "this" is frozen. */ |
|
void Ref(const void *owner) const; |
|
|
|
/* Release a ref that was acquired from upb_refcounted_ref() and collects any |
|
* objects it can. */ |
|
void Unref(const void *owner) const; |
|
|
|
/* Moves an existing ref from "from" to "to", without changing the overall |
|
* ref count. DonateRef(foo, NULL, owner) is the same as Ref(foo, owner), |
|
* but "to" may not be NULL. */ |
|
void DonateRef(const void *from, const void *to) const; |
|
|
|
/* Verifies that a ref to the given object is currently held by the given |
|
* owner. Only effective in UPB_DEBUG_REFS builds. */ |
|
void CheckRef(const void *owner) const; |
|
|
|
private: |
|
UPB_DISALLOW_POD_OPS(RefCounted, upb::RefCounted) |
|
#else |
|
struct upb_refcounted { |
|
#endif |
|
/* TODO(haberman): move the actual structure definition to structdefs.int.h. |
|
* The only reason they are here is because inline functions need to see the |
|
* definition of upb_handlers, which needs to see this definition. But we |
|
* can change the upb_handlers inline functions to deal in raw offsets |
|
* instead. |
|
*/ |
|
|
|
/* A single reference count shared by all objects in the group. */ |
|
uint32_t *group; |
|
|
|
/* A singly-linked list of all objects in the group. */ |
|
upb_refcounted *next; |
|
|
|
/* Table of function pointers for this type. */ |
|
const struct upb_refcounted_vtbl *vtbl; |
|
|
|
/* Maintained only when mutable, this tracks the number of refs (but not |
|
* ref2's) to this object. *group should be the sum of all individual_count |
|
* in the group. */ |
|
uint32_t individual_count; |
|
|
|
bool is_frozen; |
|
|
|
#ifdef UPB_DEBUG_REFS |
|
upb_inttable *refs; /* Maps owner -> trackedref for incoming refs. */ |
|
upb_inttable *ref2s; /* Set of targets for outgoing ref2s. */ |
|
#endif |
|
}; |
|
|
|
#ifdef UPB_DEBUG_REFS |
|
extern upb_alloc upb_alloc_debugrefs; |
|
#define UPB_REFCOUNT_INIT(vtbl, refs, ref2s) \ |
|
{&static_refcount, NULL, vtbl, 0, true, refs, ref2s} |
|
#else |
|
#define UPB_REFCOUNT_INIT(vtbl, refs, ref2s) \ |
|
{&static_refcount, NULL, vtbl, 0, true} |
|
#endif |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
/* It is better to use tracked refs when possible, for the extra debugging |
|
* capability. But if this is not possible (because you don't have easy access |
|
* to a stable pointer value that is associated with the ref), you can pass |
|
* UPB_UNTRACKED_REF instead. */ |
|
extern const void *UPB_UNTRACKED_REF; |
|
|
|
/* Native C API. */ |
|
bool upb_refcounted_isfrozen(const upb_refcounted *r); |
|
void upb_refcounted_ref(const upb_refcounted *r, const void *owner); |
|
void upb_refcounted_unref(const upb_refcounted *r, const void *owner); |
|
void upb_refcounted_donateref( |
|
const upb_refcounted *r, const void *from, const void *to); |
|
void upb_refcounted_checkref(const upb_refcounted *r, const void *owner); |
|
|
|
#define UPB_REFCOUNTED_CMETHODS(type, upcastfunc) \ |
|
UPB_INLINE bool type ## _isfrozen(const type *v) { \ |
|
return upb_refcounted_isfrozen(upcastfunc(v)); \ |
|
} \ |
|
UPB_INLINE void type ## _ref(const type *v, const void *owner) { \ |
|
upb_refcounted_ref(upcastfunc(v), owner); \ |
|
} \ |
|
UPB_INLINE void type ## _unref(const type *v, const void *owner) { \ |
|
upb_refcounted_unref(upcastfunc(v), owner); \ |
|
} \ |
|
UPB_INLINE void type ## _donateref(const type *v, const void *from, const void *to) { \ |
|
upb_refcounted_donateref(upcastfunc(v), from, to); \ |
|
} \ |
|
UPB_INLINE void type ## _checkref(const type *v, const void *owner) { \ |
|
upb_refcounted_checkref(upcastfunc(v), owner); \ |
|
} |
|
|
|
#define UPB_REFCOUNTED_CPPMETHODS \ |
|
bool IsFrozen() const { \ |
|
return upb::upcast_to<const upb::RefCounted>(this)->IsFrozen(); \ |
|
} \ |
|
void Ref(const void *owner) const { \ |
|
return upb::upcast_to<const upb::RefCounted>(this)->Ref(owner); \ |
|
} \ |
|
void Unref(const void *owner) const { \ |
|
return upb::upcast_to<const upb::RefCounted>(this)->Unref(owner); \ |
|
} \ |
|
void DonateRef(const void *from, const void *to) const { \ |
|
return upb::upcast_to<const upb::RefCounted>(this)->DonateRef(from, to); \ |
|
} \ |
|
void CheckRef(const void *owner) const { \ |
|
return upb::upcast_to<const upb::RefCounted>(this)->CheckRef(owner); \ |
|
} |
|
|
|
/* Internal-to-upb Interface **************************************************/ |
|
|
|
typedef void upb_refcounted_visit(const upb_refcounted *r, |
|
const upb_refcounted *subobj, |
|
void *closure); |
|
|
|
struct upb_refcounted_vtbl { |
|
/* Must visit all subobjects that are currently ref'd via upb_refcounted_ref2. |
|
* Must be longjmp()-safe. */ |
|
void (*visit)(const upb_refcounted *r, upb_refcounted_visit *visit, void *c); |
|
|
|
/* Must free the object and release all references to other objects. */ |
|
void (*free)(upb_refcounted *r); |
|
}; |
|
|
|
/* Initializes the refcounted with a single ref for the given owner. Returns |
|
* false if memory could not be allocated. */ |
|
bool upb_refcounted_init(upb_refcounted *r, |
|
const struct upb_refcounted_vtbl *vtbl, |
|
const void *owner); |
|
|
|
/* Adds a ref from one refcounted object to another ("from" must not already |
|
* own a ref). These refs may be circular; cycles will be collected correctly |
|
* (if conservatively). These refs do not need to be freed in from's free() |
|
* function. */ |
|
void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from); |
|
|
|
/* Removes a ref that was acquired from upb_refcounted_ref2(), and collects any |
|
* object it can. This is only necessary when "from" no longer points to "r", |
|
* and not from from's "free" function. */ |
|
void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from); |
|
|
|
#define upb_ref2(r, from) \ |
|
upb_refcounted_ref2((const upb_refcounted*)r, (upb_refcounted*)from) |
|
#define upb_unref2(r, from) \ |
|
upb_refcounted_unref2((const upb_refcounted*)r, (upb_refcounted*)from) |
|
|
|
/* Freezes all mutable object reachable by ref2() refs from the given roots. |
|
* This will split refcounting groups into precise SCC groups, so that |
|
* refcounting of frozen objects can be more aggressive. If memory allocation |
|
* fails, or if more than 2**31 mutable objects are reachable from "roots", or |
|
* if the maximum depth of the graph exceeds "maxdepth", false is returned and |
|
* the objects are unchanged. |
|
* |
|
* After this operation succeeds, the objects are frozen/const, and may not be |
|
* used through non-const pointers. In particular, they may not be passed as |
|
* the second parameter of upb_refcounted_{ref,unref}2(). On the upside, all |
|
* operations on frozen refcounteds are threadsafe, and objects will be freed |
|
* at the precise moment that they become unreachable. |
|
* |
|
* Caller must own refs on each object in the "roots" list. */ |
|
bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s, |
|
int maxdepth); |
|
|
|
/* Shared by all compiled-in refcounted objects. */ |
|
extern uint32_t static_refcount; |
|
|
|
UPB_END_EXTERN_C |
|
|
|
#ifdef __cplusplus |
|
/* C++ Wrappers. */ |
|
namespace upb { |
|
inline bool RefCounted::IsFrozen() const { |
|
return upb_refcounted_isfrozen(this); |
|
} |
|
inline void RefCounted::Ref(const void *owner) const { |
|
upb_refcounted_ref(this, owner); |
|
} |
|
inline void RefCounted::Unref(const void *owner) const { |
|
upb_refcounted_unref(this, owner); |
|
} |
|
inline void RefCounted::DonateRef(const void *from, const void *to) const { |
|
upb_refcounted_donateref(this, from, to); |
|
} |
|
inline void RefCounted::CheckRef(const void *owner) const { |
|
upb_refcounted_checkref(this, owner); |
|
} |
|
} /* namespace upb */ |
|
#endif |
|
|
|
|
|
/* upb::reffed_ptr ************************************************************/ |
|
|
|
#ifdef __cplusplus |
|
|
|
#include <algorithm> /* For std::swap(). */ |
|
|
|
/* Provides RAII semantics for upb refcounted objects. Each reffed_ptr owns a |
|
* ref on whatever object it points to (if any). */ |
|
template <class T> class upb::reffed_ptr { |
|
public: |
|
reffed_ptr() : ptr_(NULL) {} |
|
|
|
/* If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. */ |
|
template <class U> |
|
reffed_ptr(U* val, const void* ref_donor = NULL) |
|
: ptr_(upb::upcast(val)) { |
|
if (ref_donor) { |
|
assert(ptr_); |
|
ptr_->DonateRef(ref_donor, this); |
|
} else if (ptr_) { |
|
ptr_->Ref(this); |
|
} |
|
} |
|
|
|
template <class U> |
|
reffed_ptr(const reffed_ptr<U>& other) |
|
: ptr_(upb::upcast(other.get())) { |
|
if (ptr_) ptr_->Ref(this); |
|
} |
|
|
|
reffed_ptr(const reffed_ptr& other) |
|
: ptr_(upb::upcast(other.get())) { |
|
if (ptr_) ptr_->Ref(this); |
|
} |
|
|
|
~reffed_ptr() { if (ptr_) ptr_->Unref(this); } |
|
|
|
template <class U> |
|
reffed_ptr& operator=(const reffed_ptr<U>& other) { |
|
reset(other.get()); |
|
return *this; |
|
} |
|
|
|
reffed_ptr& operator=(const reffed_ptr& other) { |
|
reset(other.get()); |
|
return *this; |
|
} |
|
|
|
/* TODO(haberman): add C++11 move construction/assignment for greater |
|
* efficiency. */ |
|
|
|
void swap(reffed_ptr& other) { |
|
if (ptr_ == other.ptr_) { |
|
return; |
|
} |
|
|
|
if (ptr_) ptr_->DonateRef(this, &other); |
|
if (other.ptr_) other.ptr_->DonateRef(&other, this); |
|
std::swap(ptr_, other.ptr_); |
|
} |
|
|
|
T& operator*() const { |
|
assert(ptr_); |
|
return *ptr_; |
|
} |
|
|
|
T* operator->() const { |
|
assert(ptr_); |
|
return ptr_; |
|
} |
|
|
|
T* get() const { return ptr_; } |
|
|
|
/* If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. */ |
|
template <class U> |
|
void reset(U* ptr = NULL, const void* ref_donor = NULL) { |
|
reffed_ptr(ptr, ref_donor).swap(*this); |
|
} |
|
|
|
template <class U> |
|
reffed_ptr<U> down_cast() { |
|
return reffed_ptr<U>(upb::down_cast<U*>(get())); |
|
} |
|
|
|
template <class U> |
|
reffed_ptr<U> dyn_cast() { |
|
return reffed_ptr<U>(upb::dyn_cast<U*>(get())); |
|
} |
|
|
|
/* Plain release() is unsafe; if we were the only owner, it would leak the |
|
* object. Instead we provide this: */ |
|
T* ReleaseTo(const void* new_owner) { |
|
T* ret = NULL; |
|
ptr_->DonateRef(this, new_owner); |
|
std::swap(ret, ptr_); |
|
return ret; |
|
} |
|
|
|
private: |
|
T* ptr_; |
|
}; |
|
|
|
#endif /* __cplusplus */ |
|
|
|
#endif /* UPB_REFCOUNT_H_ */ |
|
|
|
#ifdef __cplusplus |
|
#include <cstring> |
|
#include <string> |
|
#include <vector> |
|
|
|
namespace upb { |
|
class Def; |
|
class EnumDef; |
|
class FieldDef; |
|
class FileDef; |
|
class MessageDef; |
|
class OneofDef; |
|
} |
|
#endif |
|
|
|
UPB_DECLARE_DERIVED_TYPE(upb::Def, upb::RefCounted, upb_def, upb_refcounted) |
|
UPB_DECLARE_DERIVED_TYPE(upb::OneofDef, upb::RefCounted, upb_oneofdef, |
|
upb_refcounted) |
|
UPB_DECLARE_DERIVED_TYPE(upb::FileDef, upb::RefCounted, upb_filedef, |
|
upb_refcounted) |
|
|
|
/* The maximum message depth that the type graph can have. This is a resource |
|
* limit for the C stack since we sometimes need to recursively traverse the |
|
* graph. Cycles are ok; the traversal will stop when it detects a cycle, but |
|
* we must hit the cycle before the maximum depth is reached. |
|
* |
|
* If having a single static limit is too inflexible, we can add another variant |
|
* of Def::Freeze that allows specifying this as a parameter. */ |
|
#define UPB_MAX_MESSAGE_DEPTH 64 |
|
|
|
|
|
/* upb::Def: base class for top-level defs ***********************************/ |
|
|
|
/* All the different kind of defs that can be defined at the top-level and put |
|
* in a SymbolTable or appear in a FileDef::defs() list. This excludes some |
|
* defs (like oneofs and files). It only includes fields because they can be |
|
* defined as extensions. */ |
|
typedef enum { |
|
UPB_DEF_MSG, |
|
UPB_DEF_FIELD, |
|
UPB_DEF_ENUM, |
|
UPB_DEF_SERVICE, /* Not yet implemented. */ |
|
UPB_DEF_ANY = -1 /* Wildcard for upb_symtab_get*() */ |
|
} upb_deftype_t; |
|
|
|
#ifdef __cplusplus |
|
|
|
/* The base class of all defs. Its base is upb::RefCounted (use upb::upcast() |
|
* to convert). */ |
|
class upb::Def { |
|
public: |
|
typedef upb_deftype_t Type; |
|
|
|
Def* Dup(const void *owner) const; |
|
|
|
/* upb::RefCounted methods like Ref()/Unref(). */ |
|
UPB_REFCOUNTED_CPPMETHODS |
|
|
|
Type def_type() const; |
|
|
|
/* "fullname" is the def's fully-qualified name (eg. foo.bar.Message). */ |
|
const char *full_name() const; |
|
|
|
/* The final part of a def's name (eg. Message). */ |
|
const char *name() const; |
|
|
|
/* The def must be mutable. Caller retains ownership of fullname. Defs are |
|
* not required to have a name; if a def has no name when it is frozen, it |
|
* will remain an anonymous def. On failure, returns false and details in "s" |
|
* if non-NULL. */ |
|
bool set_full_name(const char* fullname, upb::Status* s); |
|
bool set_full_name(const std::string &fullname, upb::Status* s); |
|
|
|
/* The file in which this def appears. It is not necessary to add a def to a |
|
* file (and consequently the accessor may return NULL). Set this by calling |
|
* file->Add(def). */ |
|
FileDef* file() const; |
|
|
|
/* Freezes the given defs; this validates all constraints and marks the defs |
|
* as frozen (read-only). "defs" may not contain any fielddefs, but fields |
|
* of any msgdefs will be frozen. |
|
* |
|
* Symbolic references to sub-types and enum defaults must have already been |
|
* resolved. Any mutable defs reachable from any of "defs" must also be in |
|
* the list; more formally, "defs" must be a transitive closure of mutable |
|
* defs. |
|
* |
|
* After this operation succeeds, the finalized defs must only be accessed |
|
* through a const pointer! */ |
|
static bool Freeze(Def* const* defs, size_t n, Status* status); |
|
static bool Freeze(const std::vector<Def*>& defs, Status* status); |
|
|
|
private: |
|
UPB_DISALLOW_POD_OPS(Def, upb::Def) |
|
}; |
|
|
|
#endif /* __cplusplus */ |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
/* Native C API. */ |
|
upb_def *upb_def_dup(const upb_def *def, const void *owner); |
|
|
|
/* Include upb_refcounted methods like upb_def_ref()/upb_def_unref(). */ |
|
UPB_REFCOUNTED_CMETHODS(upb_def, upb_def_upcast) |
|
|
|
upb_deftype_t upb_def_type(const upb_def *d); |
|
const char *upb_def_fullname(const upb_def *d); |
|
const char *upb_def_name(const upb_def *d); |
|
const upb_filedef *upb_def_file(const upb_def *d); |
|
bool upb_def_setfullname(upb_def *def, const char *fullname, upb_status *s); |
|
bool upb_def_freeze(upb_def *const *defs, size_t n, upb_status *s); |
|
|
|
/* Temporary API: for internal use only. */ |
|
bool _upb_def_validate(upb_def *const*defs, size_t n, upb_status *s); |
|
|
|
UPB_END_EXTERN_C |
|
|
|
|
|
/* upb::Def casts *************************************************************/ |
|
|
|
#ifdef __cplusplus |
|
#define UPB_CPP_CASTS(cname, cpptype) \ |
|
namespace upb { \ |
|
template <> \ |
|
inline cpptype *down_cast<cpptype *, Def>(Def * def) { \ |
|
return upb_downcast_##cname##_mutable(def); \ |
|
} \ |
|
template <> \ |
|
inline cpptype *dyn_cast<cpptype *, Def>(Def * def) { \ |
|
return upb_dyncast_##cname##_mutable(def); \ |
|
} \ |
|
template <> \ |
|
inline const cpptype *down_cast<const cpptype *, const Def>( \ |
|
const Def *def) { \ |
|
return upb_downcast_##cname(def); \ |
|
} \ |
|
template <> \ |
|
inline const cpptype *dyn_cast<const cpptype *, const Def>(const Def *def) { \ |
|
return upb_dyncast_##cname(def); \ |
|
} \ |
|
template <> \ |
|
inline const cpptype *down_cast<const cpptype *, Def>(Def * def) { \ |
|
return upb_downcast_##cname(def); \ |
|
} \ |
|
template <> \ |
|
inline const cpptype *dyn_cast<const cpptype *, Def>(Def * def) { \ |
|
return upb_dyncast_##cname(def); \ |
|
} \ |
|
} /* namespace upb */ |
|
#else |
|
#define UPB_CPP_CASTS(cname, cpptype) |
|
#endif /* __cplusplus */ |
|
|
|
/* Dynamic casts, for determining if a def is of a particular type at runtime. |
|
* Downcasts, for when some wants to assert that a def is of a particular type. |
|
* These are only checked if we are building debug. */ |
|
#define UPB_DEF_CASTS(lower, upper, cpptype) \ |
|
UPB_INLINE const upb_##lower *upb_dyncast_##lower(const upb_def *def) { \ |
|
if (upb_def_type(def) != UPB_DEF_##upper) return NULL; \ |
|
return (upb_##lower *)def; \ |
|
} \ |
|
UPB_INLINE const upb_##lower *upb_downcast_##lower(const upb_def *def) { \ |
|
assert(upb_def_type(def) == UPB_DEF_##upper); \ |
|
return (const upb_##lower *)def; \ |
|
} \ |
|
UPB_INLINE upb_##lower *upb_dyncast_##lower##_mutable(upb_def *def) { \ |
|
return (upb_##lower *)upb_dyncast_##lower(def); \ |
|
} \ |
|
UPB_INLINE upb_##lower *upb_downcast_##lower##_mutable(upb_def *def) { \ |
|
return (upb_##lower *)upb_downcast_##lower(def); \ |
|
} \ |
|
UPB_CPP_CASTS(lower, cpptype) |
|
|
|
#define UPB_DEFINE_DEF(cppname, lower, upper, cppmethods, members) \ |
|
UPB_DEFINE_CLASS2(cppname, upb::Def, upb::RefCounted, cppmethods, \ |
|
members) \ |
|
UPB_DEF_CASTS(lower, upper, cppname) |
|
|
|
#define UPB_DECLARE_DEF_TYPE(cppname, lower, upper) \ |
|
UPB_DECLARE_DERIVED_TYPE2(cppname, upb::Def, upb::RefCounted, \ |
|
upb_ ## lower, upb_def, upb_refcounted) \ |
|
UPB_DEF_CASTS(lower, upper, cppname) |
|
|
|
UPB_DECLARE_DEF_TYPE(upb::FieldDef, fielddef, FIELD) |
|
UPB_DECLARE_DEF_TYPE(upb::MessageDef, msgdef, MSG) |
|
UPB_DECLARE_DEF_TYPE(upb::EnumDef, enumdef, ENUM) |
|
|
|
#undef UPB_DECLARE_DEF_TYPE |
|
#undef UPB_DEF_CASTS |
|
#undef UPB_CPP_CASTS |
|
|
|
|
|
/* upb::FieldDef **************************************************************/ |
|
|
|
/* The types a field can have. Note that this list is not identical to the |
|
* types defined in descriptor.proto, which gives INT32 and SINT32 separate |
|
* types (we distinguish the two with the "integer encoding" enum below). */ |
|
typedef enum { |
|
UPB_TYPE_FLOAT = 1, |
|
UPB_TYPE_DOUBLE = 2, |
|
UPB_TYPE_BOOL = 3, |
|
UPB_TYPE_STRING = 4, |
|
UPB_TYPE_BYTES = 5, |
|
UPB_TYPE_MESSAGE = 6, |
|
UPB_TYPE_ENUM = 7, /* Enum values are int32. */ |
|
UPB_TYPE_INT32 = 8, |
|
UPB_TYPE_UINT32 = 9, |
|
UPB_TYPE_INT64 = 10, |
|
UPB_TYPE_UINT64 = 11 |
|
} upb_fieldtype_t; |
|
|
|
/* The repeated-ness of each field; this matches descriptor.proto. */ |
|
typedef enum { |
|
UPB_LABEL_OPTIONAL = 1, |
|
UPB_LABEL_REQUIRED = 2, |
|
UPB_LABEL_REPEATED = 3 |
|
} upb_label_t; |
|
|
|
/* How integers should be encoded in serializations that offer multiple |
|
* integer encoding methods. */ |
|
typedef enum { |
|
UPB_INTFMT_VARIABLE = 1, |
|
UPB_INTFMT_FIXED = 2, |
|
UPB_INTFMT_ZIGZAG = 3 /* Only for signed types (INT32/INT64). */ |
|
} upb_intfmt_t; |
|
|
|
/* Descriptor types, as defined in descriptor.proto. */ |
|
typedef enum { |
|
UPB_DESCRIPTOR_TYPE_DOUBLE = 1, |
|
UPB_DESCRIPTOR_TYPE_FLOAT = 2, |
|
UPB_DESCRIPTOR_TYPE_INT64 = 3, |
|
UPB_DESCRIPTOR_TYPE_UINT64 = 4, |
|
UPB_DESCRIPTOR_TYPE_INT32 = 5, |
|
UPB_DESCRIPTOR_TYPE_FIXED64 = 6, |
|
UPB_DESCRIPTOR_TYPE_FIXED32 = 7, |
|
UPB_DESCRIPTOR_TYPE_BOOL = 8, |
|
UPB_DESCRIPTOR_TYPE_STRING = 9, |
|
UPB_DESCRIPTOR_TYPE_GROUP = 10, |
|
UPB_DESCRIPTOR_TYPE_MESSAGE = 11, |
|
UPB_DESCRIPTOR_TYPE_BYTES = 12, |
|
UPB_DESCRIPTOR_TYPE_UINT32 = 13, |
|
UPB_DESCRIPTOR_TYPE_ENUM = 14, |
|
UPB_DESCRIPTOR_TYPE_SFIXED32 = 15, |
|
UPB_DESCRIPTOR_TYPE_SFIXED64 = 16, |
|
UPB_DESCRIPTOR_TYPE_SINT32 = 17, |
|
UPB_DESCRIPTOR_TYPE_SINT64 = 18 |
|
} upb_descriptortype_t; |
|
|
|
typedef enum { |
|
UPB_SYNTAX_PROTO2 = 2, |
|
UPB_SYNTAX_PROTO3 = 3 |
|
} upb_syntax_t; |
|
|
|
/* Maximum field number allowed for FieldDefs. This is an inherent limit of the |
|
* protobuf wire format. */ |
|
#define UPB_MAX_FIELDNUMBER ((1 << 29) - 1) |
|
|
|
#ifdef __cplusplus |
|
|
|
/* A upb_fielddef describes a single field in a message. It is most often |
|
* found as a part of a upb_msgdef, but can also stand alone to represent |
|
* an extension. |
|
* |
|
* Its base class is upb::Def (use upb::upcast() to convert). */ |
|
class upb::FieldDef { |
|
public: |
|
typedef upb_fieldtype_t Type; |
|
typedef upb_label_t Label; |
|
typedef upb_intfmt_t IntegerFormat; |
|
typedef upb_descriptortype_t DescriptorType; |
|
|
|
/* These return true if the given value is a valid member of the enumeration. */ |
|
static bool CheckType(int32_t val); |
|
static bool CheckLabel(int32_t val); |
|
static bool CheckDescriptorType(int32_t val); |
|
static bool CheckIntegerFormat(int32_t val); |
|
|
|
/* These convert to the given enumeration; they require that the value is |
|
* valid. */ |
|
static Type ConvertType(int32_t val); |
|
static Label ConvertLabel(int32_t val); |
|
static DescriptorType ConvertDescriptorType(int32_t val); |
|
static IntegerFormat ConvertIntegerFormat(int32_t val); |
|
|
|
/* Returns NULL if memory allocation failed. */ |
|
static reffed_ptr<FieldDef> New(); |
|
|
|
/* Duplicates the given field, returning NULL if memory allocation failed. |
|
* When a fielddef is duplicated, the subdef (if any) is made symbolic if it |
|
* wasn't already. If the subdef is set but has no name (which is possible |
|
* since msgdefs are not required to have a name) the new fielddef's subdef |
|
* will be unset. */ |
|
FieldDef* Dup(const void* owner) const; |
|
|
|
/* upb::RefCounted methods like Ref()/Unref(). */ |
|
UPB_REFCOUNTED_CPPMETHODS |
|
|
|
/* Functionality from upb::Def. */ |
|
const char* full_name() const; |
|
|
|
bool type_is_set() const; /* set_[descriptor_]type() has been called? */ |
|
Type type() const; /* Requires that type_is_set() == true. */ |
|
Label label() const; /* Defaults to UPB_LABEL_OPTIONAL. */ |
|
const char* name() const; /* NULL if uninitialized. */ |
|
uint32_t number() const; /* Returns 0 if uninitialized. */ |
|
bool is_extension() const; |
|
|
|
/* Copies the JSON name for this field into the given buffer. Returns the |
|
* actual size of the JSON name, including the NULL terminator. If the |
|
* return value is 0, the JSON name is unset. If the return value is |
|
* greater than len, the JSON name was truncated. The buffer is always |
|
* NULL-terminated if len > 0. |
|
* |
|
* The JSON name always defaults to a camelCased version of the regular |
|
* name. However if the regular name is unset, the JSON name will be unset |
|
* also. |
|
*/ |
|
size_t GetJsonName(char* buf, size_t len) const; |
|
|
|
/* Convenience version of the above function which copies the JSON name |
|
* into the given string, returning false if the name is not set. */ |
|
template <class T> |
|
bool GetJsonName(T* str) { |
|
str->resize(GetJsonName(NULL, 0)); |
|
GetJsonName(&(*str)[0], str->size()); |
|
return str->size() > 0; |
|
} |
|
|
|
/* For UPB_TYPE_MESSAGE fields only where is_tag_delimited() == false, |
|
* indicates whether this field should have lazy parsing handlers that yield |
|
* the unparsed string for the submessage. |
|
* |
|
* TODO(haberman): I think we want to move this into a FieldOptions container |
|
* when we add support for custom options (the FieldOptions struct will |
|
* contain both regular FieldOptions like "lazy" *and* custom options). */ |
|
bool lazy() const; |
|
|
|
/* For non-string, non-submessage fields, this indicates whether binary |
|
* protobufs are encoded in packed or non-packed format. |
|
* |
|
* TODO(haberman): see note above about putting options like this into a |
|
* FieldOptions container. */ |
|
bool packed() const; |
|
|
|
/* An integer that can be used as an index into an array of fields for |
|
* whatever message this field belongs to. Guaranteed to be less than |
|
* f->containing_type()->field_count(). May only be accessed once the def has |
|
* been finalized. */ |
|
uint32_t index() const; |
|
|
|
/* The MessageDef to which this field belongs. |
|
* |
|
* If this field has been added to a MessageDef, that message can be retrieved |
|
* directly (this is always the case for frozen FieldDefs). |
|
* |
|
* If the field has not yet been added to a MessageDef, you can set the name |
|
* of the containing type symbolically instead. This is mostly useful for |
|
* extensions, where the extension is declared separately from the message. */ |
|
const MessageDef* containing_type() const; |
|
const char* containing_type_name(); |
|
|
|
/* The OneofDef to which this field belongs, or NULL if this field is not part |
|
* of a oneof. */ |
|
const OneofDef* containing_oneof() const; |
|
|
|
/* The field's type according to the enum in descriptor.proto. This is not |
|
* the same as UPB_TYPE_*, because it distinguishes between (for example) |
|
* INT32 and SINT32, whereas our "type" enum does not. This return of |
|
* descriptor_type() is a function of type(), integer_format(), and |
|
* is_tag_delimited(). Likewise set_descriptor_type() sets all three |
|
* appropriately. */ |
|
DescriptorType descriptor_type() const; |
|
|
|
/* Convenient field type tests. */ |
|
bool IsSubMessage() const; |
|
bool IsString() const; |
|
bool IsSequence() const; |
|
bool IsPrimitive() const; |
|
bool IsMap() const; |
|
|
|
/* Whether this field must be able to explicitly represent presence: |
|
* |
|
* * This is always false for repeated fields (an empty repeated field is |
|
* equivalent to a repeated field with zero entries). |
|
* |
|
* * This is always true for submessages. |
|
* |
|
* * For other fields, it depends on the message (see |
|
* MessageDef::SetPrimitivesHavePresence()) |
|
*/ |
|
bool HasPresence() const; |
|
|
|
/* How integers are encoded. Only meaningful for integer types. |
|
* Defaults to UPB_INTFMT_VARIABLE, and is reset when "type" changes. */ |
|
IntegerFormat integer_format() const; |
|
|
|
/* Whether a submessage field is tag-delimited or not (if false, then |
|
* length-delimited). May only be set when type() == UPB_TYPE_MESSAGE. */ |
|
bool is_tag_delimited() const; |
|
|
|
/* Returns the non-string default value for this fielddef, which may either |
|
* be something the client set explicitly or the "default default" (0 for |
|
* numbers, empty for strings). The field's type indicates the type of the |
|
* returned value, except for enum fields that are still mutable. |
|
* |
|
* Requires that the given function matches the field's current type. */ |
|
int64_t default_int64() const; |
|
int32_t default_int32() const; |
|
uint64_t default_uint64() const; |
|
uint32_t default_uint32() const; |
|
bool default_bool() const; |
|
float default_float() const; |
|
double default_double() const; |
|
|
|
/* The resulting string is always NULL-terminated. If non-NULL, the length |
|
* will be stored in *len. */ |
|
const char *default_string(size_t* len) const; |
|
|
|
/* For frozen UPB_TYPE_ENUM fields, enum defaults can always be read as either |
|
* string or int32, and both of these methods will always return true. |
|
* |
|
* For mutable UPB_TYPE_ENUM fields, the story is a bit more complicated. |
|
* Enum defaults are unusual. They can be specified either as string or int32, |
|
* but to be valid the enum must have that value as a member. And if no |
|
* default is specified, the "default default" comes from the EnumDef. |
|
* |
|
* We allow reading the default as either an int32 or a string, but only if |
|
* we have a meaningful value to report. We have a meaningful value if it was |
|
* set explicitly, or if we could get the "default default" from the EnumDef. |
|
* Also if you explicitly set the name and we find the number in the EnumDef */ |
|
bool EnumHasStringDefault() const; |
|
bool EnumHasInt32Default() const; |
|
|
|
/* Submessage and enum fields must reference a "subdef", which is the |
|
* upb::MessageDef or upb::EnumDef that defines their type. Note that when |
|
* the FieldDef is mutable it may not have a subdef *yet*, but this function |
|
* still returns true to indicate that the field's type requires a subdef. */ |
|
bool HasSubDef() const; |
|
|
|
/* Returns the enum or submessage def for this field, if any. The field's |
|
* type must match (ie. you may only call enum_subdef() for fields where |
|
* type() == UPB_TYPE_ENUM). Returns NULL if the subdef has not been set or |
|
* is currently set symbolically. */ |
|
const EnumDef* enum_subdef() const; |
|
const MessageDef* message_subdef() const; |
|
|
|
/* Returns the generic subdef for this field. Requires that HasSubDef() (ie. |
|
* only works for UPB_TYPE_ENUM and UPB_TYPE_MESSAGE fields). */ |
|
const Def* subdef() const; |
|
|
|
/* Returns the symbolic name of the subdef. If the subdef is currently set |
|
* unresolved (ie. set symbolically) returns the symbolic name. If it has |
|
* been resolved to a specific subdef, returns the name from that subdef. */ |
|
const char* subdef_name() const; |
|
|
|
/* Setters (non-const methods), only valid for mutable FieldDefs! ***********/ |
|
|
|
bool set_full_name(const char* fullname, upb::Status* s); |
|
bool set_full_name(const std::string& fullname, upb::Status* s); |
|
|
|
/* This may only be called if containing_type() == NULL (ie. the field has not |
|
* been added to a message yet). */ |
|
bool set_containing_type_name(const char *name, Status* status); |
|
bool set_containing_type_name(const std::string& name, Status* status); |
|
|
|
/* Defaults to false. When we freeze, we ensure that this can only be true |
|
* for length-delimited message fields. Prior to freezing this can be true or |
|
* false with no restrictions. */ |
|
void set_lazy(bool lazy); |
|
|
|
/* Defaults to true. Sets whether this field is encoded in packed format. */ |
|
void set_packed(bool packed); |
|
|
|
/* "type" or "descriptor_type" MUST be set explicitly before the fielddef is |
|
* finalized. These setters require that the enum value is valid; if the |
|
* value did not come directly from an enum constant, the caller should |
|
* validate it first with the functions above (CheckFieldType(), etc). */ |
|
void set_type(Type type); |
|
void set_label(Label label); |
|
void set_descriptor_type(DescriptorType type); |
|
void set_is_extension(bool is_extension); |
|
|
|
/* "number" and "name" must be set before the FieldDef is added to a |
|
* MessageDef, and may not be set after that. |
|
* |
|
* "name" is the same as full_name()/set_full_name(), but since fielddefs |
|
* most often use simple, non-qualified names, we provide this accessor |
|
* also. Generally only extensions will want to think of this name as |
|
* fully-qualified. */ |
|
bool set_number(uint32_t number, upb::Status* s); |
|
bool set_name(const char* name, upb::Status* s); |
|
bool set_name(const std::string& name, upb::Status* s); |
|
|
|
/* Sets the JSON name to the given string. */ |
|
/* TODO(haberman): implement. Right now only default json_name (camelCase) |
|
* is supported. */ |
|
bool set_json_name(const char* json_name, upb::Status* s); |
|
bool set_json_name(const std::string& name, upb::Status* s); |
|
|
|
/* Clears the JSON name. This will make it revert to its default, which is |
|
* a camelCased version of the regular field name. */ |
|
void clear_json_name(); |
|
|
|
void set_integer_format(IntegerFormat format); |
|
bool set_tag_delimited(bool tag_delimited, upb::Status* s); |
|
|
|
/* Sets default value for the field. The call must exactly match the type |
|
* of the field. Enum fields may use either setint32 or setstring to set |
|
* the default numerically or symbolically, respectively, but symbolic |
|
* defaults must be resolved before finalizing (see ResolveEnumDefault()). |
|
* |
|
* Changing the type of a field will reset its default. */ |
|
void set_default_int64(int64_t val); |
|
void set_default_int32(int32_t val); |
|
void set_default_uint64(uint64_t val); |
|
void set_default_uint32(uint32_t val); |
|
void set_default_bool(bool val); |
|
void set_default_float(float val); |
|
void set_default_double(double val); |
|
bool set_default_string(const void *str, size_t len, Status *s); |
|
bool set_default_string(const std::string &str, Status *s); |
|
void set_default_cstr(const char *str, Status *s); |
|
|
|
/* Before a fielddef is frozen, its subdef may be set either directly (with a |
|
* upb::Def*) or symbolically. Symbolic refs must be resolved before the |
|
* containing msgdef can be frozen (see upb_resolve() above). upb always |
|
* guarantees that any def reachable from a live def will also be kept alive. |
|
* |
|
* Both methods require that upb_hassubdef(f) (so the type must be set prior |
|
* to calling these methods). Returns false if this is not the case, or if |
|
* the given subdef is not of the correct type. The subdef is reset if the |
|
* field's type is changed. The subdef can be set to NULL to clear it. */ |
|
bool set_subdef(const Def* subdef, Status* s); |
|
bool set_enum_subdef(const EnumDef* subdef, Status* s); |
|
bool set_message_subdef(const MessageDef* subdef, Status* s); |
|
bool set_subdef_name(const char* name, Status* s); |
|
bool set_subdef_name(const std::string &name, Status* s); |
|
|
|
private: |
|
UPB_DISALLOW_POD_OPS(FieldDef, upb::FieldDef) |
|
}; |
|
|
|
# endif /* defined(__cplusplus) */ |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
/* Native C API. */ |
|
upb_fielddef *upb_fielddef_new(const void *owner); |
|
upb_fielddef *upb_fielddef_dup(const upb_fielddef *f, const void *owner); |
|
|
|
/* Include upb_refcounted methods like upb_fielddef_ref(). */ |
|
UPB_REFCOUNTED_CMETHODS(upb_fielddef, upb_fielddef_upcast2) |
|
|
|
/* Methods from upb_def. */ |
|
const char *upb_fielddef_fullname(const upb_fielddef *f); |
|
bool upb_fielddef_setfullname(upb_fielddef *f, const char *fullname, |
|
upb_status *s); |
|
|
|
bool upb_fielddef_typeisset(const upb_fielddef *f); |
|
upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f); |
|
upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f); |
|
upb_label_t upb_fielddef_label(const upb_fielddef *f); |
|
uint32_t upb_fielddef_number(const upb_fielddef *f); |
|
const char *upb_fielddef_name(const upb_fielddef *f); |
|
bool upb_fielddef_isextension(const upb_fielddef *f); |
|
bool upb_fielddef_lazy(const upb_fielddef *f); |
|
bool upb_fielddef_packed(const upb_fielddef *f); |
|
size_t upb_fielddef_getjsonname(const upb_fielddef *f, char *buf, size_t len); |
|
const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f); |
|
const upb_oneofdef *upb_fielddef_containingoneof(const upb_fielddef *f); |
|
upb_msgdef *upb_fielddef_containingtype_mutable(upb_fielddef *f); |
|
const char *upb_fielddef_containingtypename(upb_fielddef *f); |
|
upb_intfmt_t upb_fielddef_intfmt(const upb_fielddef *f); |
|
uint32_t upb_fielddef_index(const upb_fielddef *f); |
|
bool upb_fielddef_istagdelim(const upb_fielddef *f); |
|
bool upb_fielddef_issubmsg(const upb_fielddef *f); |
|
bool upb_fielddef_isstring(const upb_fielddef *f); |
|
bool upb_fielddef_isseq(const upb_fielddef *f); |
|
bool upb_fielddef_isprimitive(const upb_fielddef *f); |
|
bool upb_fielddef_ismap(const upb_fielddef *f); |
|
bool upb_fielddef_haspresence(const upb_fielddef *f); |
|
int64_t upb_fielddef_defaultint64(const upb_fielddef *f); |
|
int32_t upb_fielddef_defaultint32(const upb_fielddef *f); |
|
uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f); |
|
uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f); |
|
bool upb_fielddef_defaultbool(const upb_fielddef *f); |
|
float upb_fielddef_defaultfloat(const upb_fielddef *f); |
|
double upb_fielddef_defaultdouble(const upb_fielddef *f); |
|
const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len); |
|
bool upb_fielddef_enumhasdefaultint32(const upb_fielddef *f); |
|
bool upb_fielddef_enumhasdefaultstr(const upb_fielddef *f); |
|
bool upb_fielddef_hassubdef(const upb_fielddef *f); |
|
const upb_def *upb_fielddef_subdef(const upb_fielddef *f); |
|
const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f); |
|
const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f); |
|
const char *upb_fielddef_subdefname(const upb_fielddef *f); |
|
|
|
void upb_fielddef_settype(upb_fielddef *f, upb_fieldtype_t type); |
|
void upb_fielddef_setdescriptortype(upb_fielddef *f, int type); |
|
void upb_fielddef_setlabel(upb_fielddef *f, upb_label_t label); |
|
bool upb_fielddef_setnumber(upb_fielddef *f, uint32_t number, upb_status *s); |
|
bool upb_fielddef_setname(upb_fielddef *f, const char *name, upb_status *s); |
|
bool upb_fielddef_setjsonname(upb_fielddef *f, const char *name, upb_status *s); |
|
bool upb_fielddef_clearjsonname(upb_fielddef *f); |
|
bool upb_fielddef_setcontainingtypename(upb_fielddef *f, const char *name, |
|
upb_status *s); |
|
void upb_fielddef_setisextension(upb_fielddef *f, bool is_extension); |
|
void upb_fielddef_setlazy(upb_fielddef *f, bool lazy); |
|
void upb_fielddef_setpacked(upb_fielddef *f, bool packed); |
|
void upb_fielddef_setintfmt(upb_fielddef *f, upb_intfmt_t fmt); |
|
void upb_fielddef_settagdelim(upb_fielddef *f, bool tag_delim); |
|
void upb_fielddef_setdefaultint64(upb_fielddef *f, int64_t val); |
|
void upb_fielddef_setdefaultint32(upb_fielddef *f, int32_t val); |
|
void upb_fielddef_setdefaultuint64(upb_fielddef *f, uint64_t val); |
|
void upb_fielddef_setdefaultuint32(upb_fielddef *f, uint32_t val); |
|
void upb_fielddef_setdefaultbool(upb_fielddef *f, bool val); |
|
void upb_fielddef_setdefaultfloat(upb_fielddef *f, float val); |
|
void upb_fielddef_setdefaultdouble(upb_fielddef *f, double val); |
|
bool upb_fielddef_setdefaultstr(upb_fielddef *f, const void *str, size_t len, |
|
upb_status *s); |
|
void upb_fielddef_setdefaultcstr(upb_fielddef *f, const char *str, |
|
upb_status *s); |
|
bool upb_fielddef_setsubdef(upb_fielddef *f, const upb_def *subdef, |
|
upb_status *s); |
|
bool upb_fielddef_setmsgsubdef(upb_fielddef *f, const upb_msgdef *subdef, |
|
upb_status *s); |
|
bool upb_fielddef_setenumsubdef(upb_fielddef *f, const upb_enumdef *subdef, |
|
upb_status *s); |
|
bool upb_fielddef_setsubdefname(upb_fielddef *f, const char *name, |
|
upb_status *s); |
|
|
|
bool upb_fielddef_checklabel(int32_t label); |
|
bool upb_fielddef_checktype(int32_t type); |
|
bool upb_fielddef_checkdescriptortype(int32_t type); |
|
bool upb_fielddef_checkintfmt(int32_t fmt); |
|
|
|
UPB_END_EXTERN_C |
|
|
|
|
|
/* upb::MessageDef ************************************************************/ |
|
|
|
typedef upb_inttable_iter upb_msg_field_iter; |
|
typedef upb_strtable_iter upb_msg_oneof_iter; |
|
|
|
/* Well-known field tag numbers for map-entry messages. */ |
|
#define UPB_MAPENTRY_KEY 1 |
|
#define UPB_MAPENTRY_VALUE 2 |
|
|
|
#ifdef __cplusplus |
|
|
|
/* Structure that describes a single .proto message type. |
|
* |
|
* Its base class is upb::Def (use upb::upcast() to convert). */ |
|
class upb::MessageDef { |
|
public: |
|
/* Returns NULL if memory allocation failed. */ |
|
static reffed_ptr<MessageDef> New(); |
|
|
|
/* upb::RefCounted methods like Ref()/Unref(). */ |
|
UPB_REFCOUNTED_CPPMETHODS |
|
|
|
/* Functionality from upb::Def. */ |
|
const char* full_name() const; |
|
const char* name() const; |
|
bool set_full_name(const char* fullname, Status* s); |
|
bool set_full_name(const std::string& fullname, Status* s); |
|
|
|
/* Call to freeze this MessageDef. |
|
* WARNING: this will fail if this message has any unfrozen submessages! |
|
* Messages with cycles must be frozen as a batch using upb::Def::Freeze(). */ |
|
bool Freeze(Status* s); |
|
|
|
/* The number of fields that belong to the MessageDef. */ |
|
int field_count() const; |
|
|
|
/* The number of oneofs that belong to the MessageDef. */ |
|
int oneof_count() const; |
|
|
|
/* Adds a field (upb_fielddef object) to a msgdef. Requires that the msgdef |
|
* and the fielddefs are mutable. The fielddef's name and number must be |
|
* set, and the message may not already contain any field with this name or |
|
* number, and this fielddef may not be part of another message. In error |
|
* cases false is returned and the msgdef is unchanged. |
|
* |
|
* If the given field is part of a oneof, this call succeeds if and only if |
|
* that oneof is already part of this msgdef. (Note that adding a oneof to a |
|
* msgdef automatically adds all of its fields to the msgdef at the time that |
|
* the oneof is added, so it is usually more idiomatic to add the oneof's |
|
* fields first then add the oneof to the msgdef. This case is supported for |
|
* convenience.) |
|
* |
|
* If |f| is already part of this MessageDef, this method performs no action |
|
* and returns true (success). Thus, this method is idempotent. */ |
|
bool AddField(FieldDef* f, Status* s); |
|
bool AddField(const reffed_ptr<FieldDef>& f, Status* s); |
|
|
|
/* Adds a oneof (upb_oneofdef object) to a msgdef. Requires that the msgdef, |
|
* oneof, and any fielddefs are mutable, that the fielddefs contained in the |
|
* oneof do not have any name or number conflicts with existing fields in the |
|
* msgdef, and that the oneof's name is unique among all oneofs in the msgdef. |
|
* If the oneof is added successfully, all of its fields will be added |
|
* directly to the msgdef as well. In error cases, false is returned and the |
|
* msgdef is unchanged. */ |
|
bool AddOneof(OneofDef* o, Status* s); |
|
bool AddOneof(const reffed_ptr<OneofDef>& o, Status* s); |
|
|
|
upb_syntax_t syntax() const; |
|
|
|
/* Returns false if we don't support this syntax value. */ |
|
bool set_syntax(upb_syntax_t syntax); |
|
|
|
/* Set this to false to indicate that primitive fields should not have |
|
* explicit presence information associated with them. This will affect all |
|
* fields added to this message. Defaults to true. */ |
|
void SetPrimitivesHavePresence(bool have_presence); |
|
|
|
/* These return NULL if the field is not found. */ |
|
FieldDef* FindFieldByNumber(uint32_t number); |
|
FieldDef* FindFieldByName(const char *name, size_t len); |
|
const FieldDef* FindFieldByNumber(uint32_t number) const; |
|
const FieldDef* FindFieldByName(const char* name, size_t len) const; |
|
|
|
|
|
FieldDef* FindFieldByName(const char *name) { |
|
return FindFieldByName(name, strlen(name)); |
|
} |
|
const FieldDef* FindFieldByName(const char *name) const { |
|
return FindFieldByName(name, strlen(name)); |
|
} |
|
|
|
template <class T> |
|
FieldDef* FindFieldByName(const T& str) { |
|
return FindFieldByName(str.c_str(), str.size()); |
|
} |
|
template <class T> |
|
const FieldDef* FindFieldByName(const T& str) const { |
|
return FindFieldByName(str.c_str(), str.size()); |
|
} |
|
|
|
OneofDef* FindOneofByName(const char* name, size_t len); |
|
const OneofDef* FindOneofByName(const char* name, size_t len) const; |
|
|
|
OneofDef* FindOneofByName(const char* name) { |
|
return FindOneofByName(name, strlen(name)); |
|
} |
|
const OneofDef* FindOneofByName(const char* name) const { |
|
return FindOneofByName(name, strlen(name)); |
|
} |
|
|
|
template<class T> |
|
OneofDef* FindOneofByName(const T& str) { |
|
return FindOneofByName(str.c_str(), str.size()); |
|
} |
|
template<class T> |
|
const OneofDef* FindOneofByName(const T& str) const { |
|
return FindOneofByName(str.c_str(), str.size()); |
|
} |
|
|
|
/* Returns a new msgdef that is a copy of the given msgdef (and a copy of all |
|
* the fields) but with any references to submessages broken and replaced |
|
* with just the name of the submessage. Returns NULL if memory allocation |
|
* failed. |
|
* |
|
* TODO(haberman): which is more useful, keeping fields resolved or |
|
* unresolving them? If there's no obvious answer, Should this functionality |
|
* just be moved into symtab.c? */ |
|
MessageDef* Dup(const void* owner) const; |
|
|
|
/* Is this message a map entry? */ |
|
void setmapentry(bool map_entry); |
|
bool mapentry() const; |
|
|
|
/* Iteration over fields. The order is undefined. */ |
|
class field_iterator |
|
: public std::iterator<std::forward_iterator_tag, FieldDef*> { |
|
public: |
|
explicit field_iterator(MessageDef* md); |
|
static field_iterator end(MessageDef* md); |
|
|
|
void operator++(); |
|
FieldDef* operator*() const; |
|
bool operator!=(const field_iterator& other) const; |
|
bool operator==(const field_iterator& other) const; |
|
|
|
private: |
|
upb_msg_field_iter iter_; |
|
}; |
|
|
|
class const_field_iterator |
|
: public std::iterator<std::forward_iterator_tag, const FieldDef*> { |
|
public: |
|
explicit const_field_iterator(const MessageDef* md); |
|
static const_field_iterator end(const MessageDef* md); |
|
|
|
void operator++(); |
|
const FieldDef* operator*() const; |
|
bool operator!=(const const_field_iterator& other) const; |
|
bool operator==(const const_field_iterator& other) const; |
|
|
|
private: |
|
upb_msg_field_iter iter_; |
|
}; |
|
|
|
/* Iteration over oneofs. The order is undefined. */ |
|
class oneof_iterator |
|
: public std::iterator<std::forward_iterator_tag, FieldDef*> { |
|
public: |
|
explicit oneof_iterator(MessageDef* md); |
|
static oneof_iterator end(MessageDef* md); |
|
|
|
void operator++(); |
|
OneofDef* operator*() const; |
|
bool operator!=(const oneof_iterator& other) const; |
|
bool operator==(const oneof_iterator& other) const; |
|
|
|
private: |
|
upb_msg_oneof_iter iter_; |
|
}; |
|
|
|
class const_oneof_iterator |
|
: public std::iterator<std::forward_iterator_tag, const FieldDef*> { |
|
public: |
|
explicit const_oneof_iterator(const MessageDef* md); |
|
static const_oneof_iterator end(const MessageDef* md); |
|
|
|
void operator++(); |
|
const OneofDef* operator*() const; |
|
bool operator!=(const const_oneof_iterator& other) const; |
|
bool operator==(const const_oneof_iterator& other) const; |
|
|
|
private: |
|
upb_msg_oneof_iter iter_; |
|
}; |
|
|
|
class FieldAccessor { |
|
public: |
|
explicit FieldAccessor(MessageDef* msg) : msg_(msg) {} |
|
field_iterator begin() { return msg_->field_begin(); } |
|
field_iterator end() { return msg_->field_end(); } |
|
private: |
|
MessageDef* msg_; |
|
}; |
|
|
|
class ConstFieldAccessor { |
|
public: |
|
explicit ConstFieldAccessor(const MessageDef* msg) : msg_(msg) {} |
|
const_field_iterator begin() { return msg_->field_begin(); } |
|
const_field_iterator end() { return msg_->field_end(); } |
|
private: |
|
const MessageDef* msg_; |
|
}; |
|
|
|
class OneofAccessor { |
|
public: |
|
explicit OneofAccessor(MessageDef* msg) : msg_(msg) {} |
|
oneof_iterator begin() { return msg_->oneof_begin(); } |
|
oneof_iterator end() { return msg_->oneof_end(); } |
|
private: |
|
MessageDef* msg_; |
|
}; |
|
|
|
class ConstOneofAccessor { |
|
public: |
|
explicit ConstOneofAccessor(const MessageDef* msg) : msg_(msg) {} |
|
const_oneof_iterator begin() { return msg_->oneof_begin(); } |
|
const_oneof_iterator end() { return msg_->oneof_end(); } |
|
private: |
|
const MessageDef* msg_; |
|
}; |
|
|
|
field_iterator field_begin(); |
|
field_iterator field_end(); |
|
const_field_iterator field_begin() const; |
|
const_field_iterator field_end() const; |
|
|
|
oneof_iterator oneof_begin(); |
|
oneof_iterator oneof_end(); |
|
const_oneof_iterator oneof_begin() const; |
|
const_oneof_iterator oneof_end() const; |
|
|
|
FieldAccessor fields() { return FieldAccessor(this); } |
|
ConstFieldAccessor fields() const { return ConstFieldAccessor(this); } |
|
OneofAccessor oneofs() { return OneofAccessor(this); } |
|
ConstOneofAccessor oneofs() const { return ConstOneofAccessor(this); } |
|
|
|
private: |
|
UPB_DISALLOW_POD_OPS(MessageDef, upb::MessageDef) |
|
}; |
|
|
|
#endif /* __cplusplus */ |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
/* Returns NULL if memory allocation failed. */ |
|
upb_msgdef *upb_msgdef_new(const void *owner); |
|
|
|
/* Include upb_refcounted methods like upb_msgdef_ref(). */ |
|
UPB_REFCOUNTED_CMETHODS(upb_msgdef, upb_msgdef_upcast2) |
|
|
|
bool upb_msgdef_freeze(upb_msgdef *m, upb_status *status); |
|
|
|
upb_msgdef *upb_msgdef_dup(const upb_msgdef *m, const void *owner); |
|
const char *upb_msgdef_fullname(const upb_msgdef *m); |
|
const char *upb_msgdef_name(const upb_msgdef *m); |
|
int upb_msgdef_numoneofs(const upb_msgdef *m); |
|
upb_syntax_t upb_msgdef_syntax(const upb_msgdef *m); |
|
|
|
bool upb_msgdef_addfield(upb_msgdef *m, upb_fielddef *f, const void *ref_donor, |
|
upb_status *s); |
|
bool upb_msgdef_addoneof(upb_msgdef *m, upb_oneofdef *o, const void *ref_donor, |
|
upb_status *s); |
|
bool upb_msgdef_setfullname(upb_msgdef *m, const char *fullname, upb_status *s); |
|
void upb_msgdef_setmapentry(upb_msgdef *m, bool map_entry); |
|
bool upb_msgdef_mapentry(const upb_msgdef *m); |
|
bool upb_msgdef_setsyntax(upb_msgdef *m, upb_syntax_t syntax); |
|
|
|
/* Field lookup in a couple of different variations: |
|
* - itof = int to field |
|
* - ntof = name to field |
|
* - ntofz = name to field, null-terminated string. */ |
|
const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i); |
|
const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name, |
|
size_t len); |
|
int upb_msgdef_numfields(const upb_msgdef *m); |
|
|
|
UPB_INLINE const upb_fielddef *upb_msgdef_ntofz(const upb_msgdef *m, |
|
const char *name) { |
|
return upb_msgdef_ntof(m, name, strlen(name)); |
|
} |
|
|
|
UPB_INLINE upb_fielddef *upb_msgdef_itof_mutable(upb_msgdef *m, uint32_t i) { |
|
return (upb_fielddef*)upb_msgdef_itof(m, i); |
|
} |
|
|
|
UPB_INLINE upb_fielddef *upb_msgdef_ntof_mutable(upb_msgdef *m, |
|
const char *name, size_t len) { |
|
return (upb_fielddef *)upb_msgdef_ntof(m, name, len); |
|
} |
|
|
|
/* Oneof lookup: |
|
* - ntoo = name to oneof |
|
* - ntooz = name to oneof, null-terminated string. */ |
|
const upb_oneofdef *upb_msgdef_ntoo(const upb_msgdef *m, const char *name, |
|
size_t len); |
|
int upb_msgdef_numoneofs(const upb_msgdef *m); |
|
|
|
UPB_INLINE const upb_oneofdef *upb_msgdef_ntooz(const upb_msgdef *m, |
|
const char *name) { |
|
return upb_msgdef_ntoo(m, name, strlen(name)); |
|
} |
|
|
|
UPB_INLINE upb_oneofdef *upb_msgdef_ntoo_mutable(upb_msgdef *m, |
|
const char *name, size_t len) { |
|
return (upb_oneofdef *)upb_msgdef_ntoo(m, name, len); |
|
} |
|
|
|
/* Lookup of either field or oneof by name. Returns whether either was found. |
|
* If the return is true, then the found def will be set, and the non-found |
|
* one set to NULL. */ |
|
bool upb_msgdef_lookupname(const upb_msgdef *m, const char *name, size_t len, |
|
const upb_fielddef **f, const upb_oneofdef **o); |
|
|
|
UPB_INLINE bool upb_msgdef_lookupnamez(const upb_msgdef *m, const char *name, |
|
const upb_fielddef **f, |
|
const upb_oneofdef **o) { |
|
return upb_msgdef_lookupname(m, name, strlen(name), f, o); |
|
} |
|
|
|
/* Iteration over fields and oneofs. For example: |
|
* |
|
* upb_msg_field_iter i; |
|
* for(upb_msg_field_begin(&i, m); |
|
* !upb_msg_field_done(&i); |
|
* upb_msg_field_next(&i)) { |
|
* upb_fielddef *f = upb_msg_iter_field(&i); |
|
* // ... |
|
* } |
|
* |
|
* For C we don't have separate iterators for const and non-const. |
|
* It is the caller's responsibility to cast the upb_fielddef* to |
|
* const if the upb_msgdef* is const. */ |
|
void upb_msg_field_begin(upb_msg_field_iter *iter, const upb_msgdef *m); |
|
void upb_msg_field_next(upb_msg_field_iter *iter); |
|
bool upb_msg_field_done(const upb_msg_field_iter *iter); |
|
upb_fielddef *upb_msg_iter_field(const upb_msg_field_iter *iter); |
|
void upb_msg_field_iter_setdone(upb_msg_field_iter *iter); |
|
|
|
/* Similar to above, we also support iterating through the oneofs in a |
|
* msgdef. */ |
|
void upb_msg_oneof_begin(upb_msg_oneof_iter *iter, const upb_msgdef *m); |
|
void upb_msg_oneof_next(upb_msg_oneof_iter *iter); |
|
bool upb_msg_oneof_done(const upb_msg_oneof_iter *iter); |
|
upb_oneofdef *upb_msg_iter_oneof(const upb_msg_oneof_iter *iter); |
|
void upb_msg_oneof_iter_setdone(upb_msg_oneof_iter *iter); |
|
|
|
UPB_END_EXTERN_C |
|
|
|
|
|
/* upb::EnumDef ***************************************************************/ |
|
|
|
typedef upb_strtable_iter upb_enum_iter; |
|
|
|
#ifdef __cplusplus |
|
|
|
/* Class that represents an enum. Its base class is upb::Def (convert with |
|
* upb::upcast()). */ |
|
class upb::EnumDef { |
|
public: |
|
/* Returns NULL if memory allocation failed. */ |
|
static reffed_ptr<EnumDef> New(); |
|
|
|
/* upb::RefCounted methods like Ref()/Unref(). */ |
|
UPB_REFCOUNTED_CPPMETHODS |
|
|
|
/* Functionality from upb::Def. */ |
|
const char* full_name() const; |
|
const char* name() const; |
|
bool set_full_name(const char* fullname, Status* s); |
|
bool set_full_name(const std::string& fullname, Status* s); |
|
|
|
/* Call to freeze this EnumDef. */ |
|
bool Freeze(Status* s); |
|
|
|
/* The value that is used as the default when no field default is specified. |
|
* If not set explicitly, the first value that was added will be used. |
|
* The default value must be a member of the enum. |
|
* Requires that value_count() > 0. */ |
|
int32_t default_value() const; |
|
|
|
/* Sets the default value. If this value is not valid, returns false and an |
|
* error message in status. */ |
|
bool set_default_value(int32_t val, Status* status); |
|
|
|
/* Returns the number of values currently defined in the enum. Note that |
|
* multiple names can refer to the same number, so this may be greater than |
|
* the total number of unique numbers. */ |
|
int value_count() const; |
|
|
|
/* Adds a single name/number pair to the enum. Fails if this name has |
|
* already been used by another value. */ |
|
bool AddValue(const char* name, int32_t num, Status* status); |
|
bool AddValue(const std::string& name, int32_t num, Status* status); |
|
|
|
/* Lookups from name to integer, returning true if found. */ |
|
bool FindValueByName(const char* name, int32_t* num) const; |
|
|
|
/* Finds the name corresponding to the given number, or NULL if none was |
|
* found. If more than one name corresponds to this number, returns the |
|
* first one that was added. */ |
|
const char* FindValueByNumber(int32_t num) const; |
|
|
|
/* Returns a new EnumDef with all the same values. The new EnumDef will be |
|
* owned by the given owner. */ |
|
EnumDef* Dup(const void* owner) const; |
|
|
|
/* Iteration over name/value pairs. The order is undefined. |
|
* Adding an enum val invalidates any iterators. |
|
* |
|
* TODO: make compatible with range-for, with elements as pairs? */ |
|
class Iterator { |
|
public: |
|
explicit Iterator(const EnumDef*); |
|
|
|
int32_t number(); |
|
const char *name(); |
|
bool Done(); |
|
void Next(); |
|
|
|
private: |
|
upb_enum_iter iter_; |
|
}; |
|
|
|
private: |
|
UPB_DISALLOW_POD_OPS(EnumDef, upb::EnumDef) |
|
}; |
|
|
|
#endif /* __cplusplus */ |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
/* Native C API. */ |
|
upb_enumdef *upb_enumdef_new(const void *owner); |
|
upb_enumdef *upb_enumdef_dup(const upb_enumdef *e, const void *owner); |
|
|
|
/* Include upb_refcounted methods like upb_enumdef_ref(). */ |
|
UPB_REFCOUNTED_CMETHODS(upb_enumdef, upb_enumdef_upcast2) |
|
|
|
bool upb_enumdef_freeze(upb_enumdef *e, upb_status *status); |
|
|
|
/* From upb_def. */ |
|
const char *upb_enumdef_fullname(const upb_enumdef *e); |
|
const char *upb_enumdef_name(const upb_enumdef *e); |
|
bool upb_enumdef_setfullname(upb_enumdef *e, const char *fullname, |
|
upb_status *s); |
|
|
|
int32_t upb_enumdef_default(const upb_enumdef *e); |
|
bool upb_enumdef_setdefault(upb_enumdef *e, int32_t val, upb_status *s); |
|
int upb_enumdef_numvals(const upb_enumdef *e); |
|
bool upb_enumdef_addval(upb_enumdef *e, const char *name, int32_t num, |
|
upb_status *status); |
|
|
|
/* Enum lookups: |
|
* - ntoi: look up a name with specified length. |
|
* - ntoiz: look up a name provided as a null-terminated string. |
|
* - iton: look up an integer, returning the name as a null-terminated |
|
* string. */ |
|
bool upb_enumdef_ntoi(const upb_enumdef *e, const char *name, size_t len, |
|
int32_t *num); |
|
UPB_INLINE bool upb_enumdef_ntoiz(const upb_enumdef *e, |
|
const char *name, int32_t *num) { |
|
return upb_enumdef_ntoi(e, name, strlen(name), num); |
|
} |
|
const char *upb_enumdef_iton(const upb_enumdef *e, int32_t num); |
|
|
|
/* upb_enum_iter i; |
|
* for(upb_enum_begin(&i, e); !upb_enum_done(&i); upb_enum_next(&i)) { |
|
* // ... |
|
* } |
|
*/ |
|
void upb_enum_begin(upb_enum_iter *iter, const upb_enumdef *e); |
|
void upb_enum_next(upb_enum_iter *iter); |
|
bool upb_enum_done(upb_enum_iter *iter); |
|
const char *upb_enum_iter_name(upb_enum_iter *iter); |
|
int32_t upb_enum_iter_number(upb_enum_iter *iter); |
|
|
|
UPB_END_EXTERN_C |
|
|
|
/* upb::OneofDef **************************************************************/ |
|
|
|
typedef upb_inttable_iter upb_oneof_iter; |
|
|
|
#ifdef __cplusplus |
|
|
|
/* Class that represents a oneof. */ |
|
class upb::OneofDef { |
|
public: |
|
/* Returns NULL if memory allocation failed. */ |
|
static reffed_ptr<OneofDef> New(); |
|
|
|
/* upb::RefCounted methods like Ref()/Unref(). */ |
|
UPB_REFCOUNTED_CPPMETHODS |
|
|
|
/* Returns the MessageDef that owns this OneofDef. */ |
|
const MessageDef* containing_type() const; |
|
|
|
/* Returns the name of this oneof. This is the name used to look up the oneof |
|
* by name once added to a message def. */ |
|
const char* name() const; |
|
bool set_name(const char* name, Status* s); |
|
bool set_name(const std::string& name, Status* s); |
|
|
|
/* Returns the number of fields currently defined in the oneof. */ |
|
int field_count() const; |
|
|
|
/* Adds a field to the oneof. The field must not have been added to any other |
|
* oneof or msgdef. If the oneof is not yet part of a msgdef, then when the |
|
* oneof is eventually added to a msgdef, all fields added to the oneof will |
|
* also be added to the msgdef at that time. If the oneof is already part of a |
|
* msgdef, the field must either be a part of that msgdef already, or must not |
|
* be a part of any msgdef; in the latter case, the field is added to the |
|
* msgdef as a part of this operation. |
|
* |
|
* The field may only have an OPTIONAL label, never REQUIRED or REPEATED. |
|
* |
|
* If |f| is already part of this MessageDef, this method performs no action |
|
* and returns true (success). Thus, this method is idempotent. */ |
|
bool AddField(FieldDef* field, Status* s); |
|
bool AddField(const reffed_ptr<FieldDef>& field, Status* s); |
|
|
|
/* Looks up by name. */ |
|
const FieldDef* FindFieldByName(const char* name, size_t len) const; |
|
FieldDef* FindFieldByName(const char* name, size_t len); |
|
const FieldDef* FindFieldByName(const char* name) const { |
|
return FindFieldByName(name, strlen(name)); |
|
} |
|
FieldDef* FindFieldByName(const char* name) { |
|
return FindFieldByName(name, strlen(name)); |
|
} |
|
|
|
template <class T> |
|
FieldDef* FindFieldByName(const T& str) { |
|
return FindFieldByName(str.c_str(), str.size()); |
|
} |
|
template <class T> |
|
const FieldDef* FindFieldByName(const T& str) const { |
|
return FindFieldByName(str.c_str(), str.size()); |
|
} |
|
|
|
/* Looks up by tag number. */ |
|
const FieldDef* FindFieldByNumber(uint32_t num) const; |
|
|
|
/* Returns a new OneofDef with all the same fields. The OneofDef will be owned |
|
* by the given owner. */ |
|
OneofDef* Dup(const void* owner) const; |
|
|
|
/* Iteration over fields. The order is undefined. */ |
|
class iterator : public std::iterator<std::forward_iterator_tag, FieldDef*> { |
|
public: |
|
explicit iterator(OneofDef* md); |
|
static iterator end(OneofDef* md); |
|
|
|
void operator++(); |
|
FieldDef* operator*() const; |
|
bool operator!=(const iterator& other) const; |
|
bool operator==(const iterator& other) const; |
|
|
|
private: |
|
upb_oneof_iter iter_; |
|
}; |
|
|
|
class const_iterator |
|
: public std::iterator<std::forward_iterator_tag, const FieldDef*> { |
|
public: |
|
explicit const_iterator(const OneofDef* md); |
|
static const_iterator end(const OneofDef* md); |
|
|
|
void operator++(); |
|
const FieldDef* operator*() const; |
|
bool operator!=(const const_iterator& other) const; |
|
bool operator==(const const_iterator& other) const; |
|
|
|
private: |
|
upb_oneof_iter iter_; |
|
}; |
|
|
|
iterator begin(); |
|
iterator end(); |
|
const_iterator begin() const; |
|
const_iterator end() const; |
|
|
|
private: |
|
UPB_DISALLOW_POD_OPS(OneofDef, upb::OneofDef) |
|
}; |
|
|
|
#endif /* __cplusplus */ |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
/* Native C API. */ |
|
upb_oneofdef *upb_oneofdef_new(const void *owner); |
|
upb_oneofdef *upb_oneofdef_dup(const upb_oneofdef *o, const void *owner); |
|
|
|
/* Include upb_refcounted methods like upb_oneofdef_ref(). */ |
|
UPB_REFCOUNTED_CMETHODS(upb_oneofdef, upb_oneofdef_upcast) |
|
|
|
const char *upb_oneofdef_name(const upb_oneofdef *o); |
|
bool upb_oneofdef_setname(upb_oneofdef *o, const char *name, upb_status *s); |
|
|
|
const upb_msgdef *upb_oneofdef_containingtype(const upb_oneofdef *o); |
|
int upb_oneofdef_numfields(const upb_oneofdef *o); |
|
bool upb_oneofdef_addfield(upb_oneofdef *o, upb_fielddef *f, |
|
const void *ref_donor, |
|
upb_status *s); |
|
|
|
/* Oneof lookups: |
|
* - ntof: look up a field by name. |
|
* - ntofz: look up a field by name (as a null-terminated string). |
|
* - itof: look up a field by number. */ |
|
const upb_fielddef *upb_oneofdef_ntof(const upb_oneofdef *o, |
|
const char *name, size_t length); |
|
UPB_INLINE const upb_fielddef *upb_oneofdef_ntofz(const upb_oneofdef *o, |
|
const char *name) { |
|
return upb_oneofdef_ntof(o, name, strlen(name)); |
|
} |
|
const upb_fielddef *upb_oneofdef_itof(const upb_oneofdef *o, uint32_t num); |
|
|
|
/* upb_oneof_iter i; |
|
* for(upb_oneof_begin(&i, e); !upb_oneof_done(&i); upb_oneof_next(&i)) { |
|
* // ... |
|
* } |
|
*/ |
|
void upb_oneof_begin(upb_oneof_iter *iter, const upb_oneofdef *o); |
|
void upb_oneof_next(upb_oneof_iter *iter); |
|
bool upb_oneof_done(upb_oneof_iter *iter); |
|
upb_fielddef *upb_oneof_iter_field(const upb_oneof_iter *iter); |
|
void upb_oneof_iter_setdone(upb_oneof_iter *iter); |
|
|
|
UPB_END_EXTERN_C |
|
|
|
|
|
/* upb::FileDef ***************************************************************/ |
|
|
|
#ifdef __cplusplus |
|
|
|
/* Class that represents a .proto file with some things defined in it. |
|
* |
|
* Many users won't care about FileDefs, but they are necessary if you want to |
|
* read the values of file-level options. */ |
|
class upb::FileDef { |
|
public: |
|
/* Returns NULL if memory allocation failed. */ |
|
static reffed_ptr<FileDef> New(); |
|
|
|
/* upb::RefCounted methods like Ref()/Unref(). */ |
|
UPB_REFCOUNTED_CPPMETHODS |
|
|
|
/* Get/set name of the file (eg. "foo/bar.proto"). */ |
|
const char* name() const; |
|
bool set_name(const char* name, Status* s); |
|
bool set_name(const std::string& name, Status* s); |
|
|
|
/* Package name for definitions inside the file (eg. "foo.bar"). */ |
|
const char* package() const; |
|
bool set_package(const char* package, Status* s); |
|
|
|
/* Syntax for the file. Defaults to proto2. */ |
|
upb_syntax_t syntax() const; |
|
void set_syntax(upb_syntax_t syntax); |
|
|
|
/* Get the list of defs from the file. These are returned in the order that |
|
* they were added to the FileDef. */ |
|
int def_count() const; |
|
const Def* def(int index) const; |
|
Def* def(int index); |
|
|
|
/* Get the list of dependencies from the file. These are returned in the |
|
* order that they were added to the FileDef. */ |
|
int dependency_count() const; |
|
const FileDef* dependency(int index) const; |
|
|
|
/* Adds defs to this file. The def must not already belong to another |
|
* file. |
|
* |
|
* Note: this does *not* ensure that this def's name is unique in this file! |
|
* Use a SymbolTable if you want to check this property. Especially since |
|
* properly checking uniqueness would require a check across *all* files |
|
* (including dependencies). */ |
|
bool AddDef(Def* def, Status* s); |
|
bool AddMessage(MessageDef* m, Status* s); |
|
bool AddEnum(EnumDef* e, Status* s); |
|
bool AddExtension(FieldDef* f, Status* s); |
|
|
|
/* Adds a dependency of this file. */ |
|
bool AddDependency(const FileDef* file); |
|
|
|
/* Freezes this FileDef and all messages/enums under it. All subdefs must be |
|
* resolved and all messages/enums must validate. Returns true if this |
|
* succeeded. |
|
* |
|
* TODO(haberman): should we care whether the file's dependencies are frozen |
|
* already? */ |
|
bool Freeze(Status* s); |
|
|
|
private: |
|
UPB_DISALLOW_POD_OPS(FileDef, upb::FileDef) |
|
}; |
|
|
|
#endif |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
upb_filedef *upb_filedef_new(const void *owner); |
|
|
|
/* Include upb_refcounted methods like upb_msgdef_ref(). */ |
|
UPB_REFCOUNTED_CMETHODS(upb_filedef, upb_filedef_upcast) |
|
|
|
const char *upb_filedef_name(const upb_filedef *f); |
|
const char *upb_filedef_package(const upb_filedef *f); |
|
upb_syntax_t upb_filedef_syntax(const upb_filedef *f); |
|
size_t upb_filedef_defcount(const upb_filedef *f); |
|
size_t upb_filedef_depcount(const upb_filedef *f); |
|
const upb_def *upb_filedef_def(const upb_filedef *f, size_t i); |
|
const upb_filedef *upb_filedef_dep(const upb_filedef *f, size_t i); |
|
|
|
bool upb_filedef_freeze(upb_filedef *f, upb_status *s); |
|
bool upb_filedef_setname(upb_filedef *f, const char *name, upb_status *s); |
|
bool upb_filedef_setpackage(upb_filedef *f, const char *package, upb_status *s); |
|
bool upb_filedef_setsyntax(upb_filedef *f, upb_syntax_t syntax, upb_status *s); |
|
|
|
bool upb_filedef_adddef(upb_filedef *f, upb_def *def, const void *ref_donor, |
|
upb_status *s); |
|
bool upb_filedef_adddep(upb_filedef *f, const upb_filedef *dep); |
|
|
|
UPB_INLINE bool upb_filedef_addmsg(upb_filedef *f, upb_msgdef *m, |
|
const void *ref_donor, upb_status *s) { |
|
return upb_filedef_adddef(f, upb_msgdef_upcast_mutable(m), ref_donor, s); |
|
} |
|
|
|
UPB_INLINE bool upb_filedef_addenum(upb_filedef *f, upb_enumdef *e, |
|
const void *ref_donor, upb_status *s) { |
|
return upb_filedef_adddef(f, upb_enumdef_upcast_mutable(e), ref_donor, s); |
|
} |
|
|
|
UPB_INLINE bool upb_filedef_addext(upb_filedef *file, upb_fielddef *f, |
|
const void *ref_donor, upb_status *s) { |
|
return upb_filedef_adddef(file, upb_fielddef_upcast_mutable(f), ref_donor, s); |
|
} |
|
UPB_INLINE upb_def *upb_filedef_mutabledef(upb_filedef *f, int i) { |
|
return (upb_def*)upb_filedef_def(f, i); |
|
} |
|
|
|
UPB_END_EXTERN_C |
|
|
|
#ifdef __cplusplus |
|
|
|
UPB_INLINE const char* upb_safecstr(const std::string& str) { |
|
assert(str.size() == std::strlen(str.c_str())); |
|
return str.c_str(); |
|
} |
|
|
|
/* Inline C++ wrappers. */ |
|
namespace upb { |
|
|
|
inline Def* Def::Dup(const void* owner) const { |
|
return upb_def_dup(this, owner); |
|
} |
|
inline Def::Type Def::def_type() const { return upb_def_type(this); } |
|
inline const char* Def::full_name() const { return upb_def_fullname(this); } |
|
inline const char* Def::name() const { return upb_def_name(this); } |
|
inline bool Def::set_full_name(const char* fullname, Status* s) { |
|
return upb_def_setfullname(this, fullname, s); |
|
} |
|
inline bool Def::set_full_name(const std::string& fullname, Status* s) { |
|
return upb_def_setfullname(this, upb_safecstr(fullname), s); |
|
} |
|
inline bool Def::Freeze(Def* const* defs, size_t n, Status* status) { |
|
return upb_def_freeze(defs, n, status); |
|
} |
|
inline bool Def::Freeze(const std::vector<Def*>& defs, Status* status) { |
|
return upb_def_freeze((Def* const*)&defs[0], defs.size(), status); |
|
} |
|
|
|
inline bool FieldDef::CheckType(int32_t val) { |
|
return upb_fielddef_checktype(val); |
|
} |
|
inline bool FieldDef::CheckLabel(int32_t val) { |
|
return upb_fielddef_checklabel(val); |
|
} |
|
inline bool FieldDef::CheckDescriptorType(int32_t val) { |
|
return upb_fielddef_checkdescriptortype(val); |
|
} |
|
inline bool FieldDef::CheckIntegerFormat(int32_t val) { |
|
return upb_fielddef_checkintfmt(val); |
|
} |
|
inline FieldDef::Type FieldDef::ConvertType(int32_t val) { |
|
assert(CheckType(val)); |
|
return static_cast<FieldDef::Type>(val); |
|
} |
|
inline FieldDef::Label FieldDef::ConvertLabel(int32_t val) { |
|
assert(CheckLabel(val)); |
|
return static_cast<FieldDef::Label>(val); |
|
} |
|
inline FieldDef::DescriptorType FieldDef::ConvertDescriptorType(int32_t val) { |
|
assert(CheckDescriptorType(val)); |
|
return static_cast<FieldDef::DescriptorType>(val); |
|
} |
|
inline FieldDef::IntegerFormat FieldDef::ConvertIntegerFormat(int32_t val) { |
|
assert(CheckIntegerFormat(val)); |
|
return static_cast<FieldDef::IntegerFormat>(val); |
|
} |
|
|
|
inline reffed_ptr<FieldDef> FieldDef::New() { |
|
upb_fielddef *f = upb_fielddef_new(&f); |
|
return reffed_ptr<FieldDef>(f, &f); |
|
} |
|
inline FieldDef* FieldDef::Dup(const void* owner) const { |
|
return upb_fielddef_dup(this, owner); |
|
} |
|
inline const char* FieldDef::full_name() const { |
|
return upb_fielddef_fullname(this); |
|
} |
|
inline bool FieldDef::set_full_name(const char* fullname, Status* s) { |
|
return upb_fielddef_setfullname(this, fullname, s); |
|
} |
|
inline bool FieldDef::set_full_name(const std::string& fullname, Status* s) { |
|
return upb_fielddef_setfullname(this, upb_safecstr(fullname), s); |
|
} |
|
inline bool FieldDef::type_is_set() const { |
|
return upb_fielddef_typeisset(this); |
|
} |
|
inline FieldDef::Type FieldDef::type() const { return upb_fielddef_type(this); } |
|
inline FieldDef::DescriptorType FieldDef::descriptor_type() const { |
|
return upb_fielddef_descriptortype(this); |
|
} |
|
inline FieldDef::Label FieldDef::label() const { |
|
return upb_fielddef_label(this); |
|
} |
|
inline uint32_t FieldDef::number() const { return upb_fielddef_number(this); } |
|
inline const char* FieldDef::name() const { return upb_fielddef_name(this); } |
|
inline bool FieldDef::is_extension() const { |
|
return upb_fielddef_isextension(this); |
|
} |
|
inline size_t FieldDef::GetJsonName(char* buf, size_t len) const { |
|
return upb_fielddef_getjsonname(this, buf, len); |
|
} |
|
inline bool FieldDef::lazy() const { |
|
return upb_fielddef_lazy(this); |
|
} |
|
inline void FieldDef::set_lazy(bool lazy) { |
|
upb_fielddef_setlazy(this, lazy); |
|
} |
|
inline bool FieldDef::packed() const { |
|
return upb_fielddef_packed(this); |
|
} |
|
inline uint32_t FieldDef::index() const { |
|
return upb_fielddef_index(this); |
|
} |
|
inline void FieldDef::set_packed(bool packed) { |
|
upb_fielddef_setpacked(this, packed); |
|
} |
|
inline const MessageDef* FieldDef::containing_type() const { |
|
return upb_fielddef_containingtype(this); |
|
} |
|
inline const OneofDef* FieldDef::containing_oneof() const { |
|
return upb_fielddef_containingoneof(this); |
|
} |
|
inline const char* FieldDef::containing_type_name() { |
|
return upb_fielddef_containingtypename(this); |
|
} |
|
inline bool FieldDef::set_number(uint32_t number, Status* s) { |
|
return upb_fielddef_setnumber(this, number, s); |
|
} |
|
inline bool FieldDef::set_name(const char *name, Status* s) { |
|
return upb_fielddef_setname(this, name, s); |
|
} |
|
inline bool FieldDef::set_name(const std::string& name, Status* s) { |
|
return upb_fielddef_setname(this, upb_safecstr(name), s); |
|
} |
|
inline bool FieldDef::set_json_name(const char *name, Status* s) { |
|
return upb_fielddef_setjsonname(this, name, s); |
|
} |
|
inline bool FieldDef::set_json_name(const std::string& name, Status* s) { |
|
return upb_fielddef_setjsonname(this, upb_safecstr(name), s); |
|
} |
|
inline void FieldDef::clear_json_name() { |
|
upb_fielddef_clearjsonname(this); |
|
} |
|
inline bool FieldDef::set_containing_type_name(const char *name, Status* s) { |
|
return upb_fielddef_setcontainingtypename(this, name, s); |
|
} |
|
inline bool FieldDef::set_containing_type_name(const std::string &name, |
|
Status *s) { |
|
return upb_fielddef_setcontainingtypename(this, upb_safecstr(name), s); |
|
} |
|
inline void FieldDef::set_type(upb_fieldtype_t type) { |
|
upb_fielddef_settype(this, type); |
|
} |
|
inline void FieldDef::set_is_extension(bool is_extension) { |
|
upb_fielddef_setisextension(this, is_extension); |
|
} |
|
inline void FieldDef::set_descriptor_type(FieldDef::DescriptorType type) { |
|
upb_fielddef_setdescriptortype(this, type); |
|
} |
|
inline void FieldDef::set_label(upb_label_t label) { |
|
upb_fielddef_setlabel(this, label); |
|
} |
|
inline bool FieldDef::IsSubMessage() const { |
|
return upb_fielddef_issubmsg(this); |
|
} |
|
inline bool FieldDef::IsString() const { return upb_fielddef_isstring(this); } |
|
inline bool FieldDef::IsSequence() const { return upb_fielddef_isseq(this); } |
|
inline bool FieldDef::IsMap() const { return upb_fielddef_ismap(this); } |
|
inline int64_t FieldDef::default_int64() const { |
|
return upb_fielddef_defaultint64(this); |
|
} |
|
inline int32_t FieldDef::default_int32() const { |
|
return upb_fielddef_defaultint32(this); |
|
} |
|
inline uint64_t FieldDef::default_uint64() const { |
|
return upb_fielddef_defaultuint64(this); |
|
} |
|
inline uint32_t FieldDef::default_uint32() const { |
|
return upb_fielddef_defaultuint32(this); |
|
} |
|
inline bool FieldDef::default_bool() const { |
|
return upb_fielddef_defaultbool(this); |
|
} |
|
inline float FieldDef::default_float() const { |
|
return upb_fielddef_defaultfloat(this); |
|
} |
|
inline double FieldDef::default_double() const { |
|
return upb_fielddef_defaultdouble(this); |
|
} |
|
inline const char* FieldDef::default_string(size_t* len) const { |
|
return upb_fielddef_defaultstr(this, len); |
|
} |
|
inline void FieldDef::set_default_int64(int64_t value) { |
|
upb_fielddef_setdefaultint64(this, value); |
|
} |
|
inline void FieldDef::set_default_int32(int32_t value) { |
|
upb_fielddef_setdefaultint32(this, value); |
|
} |
|
inline void FieldDef::set_default_uint64(uint64_t value) { |
|
upb_fielddef_setdefaultuint64(this, value); |
|
} |
|
inline void FieldDef::set_default_uint32(uint32_t value) { |
|
upb_fielddef_setdefaultuint32(this, value); |
|
} |
|
inline void FieldDef::set_default_bool(bool value) { |
|
upb_fielddef_setdefaultbool(this, value); |
|
} |
|
inline void FieldDef::set_default_float(float value) { |
|
upb_fielddef_setdefaultfloat(this, value); |
|
} |
|
inline void FieldDef::set_default_double(double value) { |
|
upb_fielddef_setdefaultdouble(this, value); |
|
} |
|
inline bool FieldDef::set_default_string(const void *str, size_t len, |
|
Status *s) { |
|
return upb_fielddef_setdefaultstr(this, str, len, s); |
|
} |
|
inline bool FieldDef::set_default_string(const std::string& str, Status* s) { |
|
return upb_fielddef_setdefaultstr(this, str.c_str(), str.size(), s); |
|
} |
|
inline void FieldDef::set_default_cstr(const char* str, Status* s) { |
|
return upb_fielddef_setdefaultcstr(this, str, s); |
|
} |
|
inline bool FieldDef::HasSubDef() const { return upb_fielddef_hassubdef(this); } |
|
inline const Def* FieldDef::subdef() const { return upb_fielddef_subdef(this); } |
|
inline const MessageDef *FieldDef::message_subdef() const { |
|
return upb_fielddef_msgsubdef(this); |
|
} |
|
inline const EnumDef *FieldDef::enum_subdef() const { |
|
return upb_fielddef_enumsubdef(this); |
|
} |
|
inline const char* FieldDef::subdef_name() const { |
|
return upb_fielddef_subdefname(this); |
|
} |
|
inline bool FieldDef::set_subdef(const Def* subdef, Status* s) { |
|
return upb_fielddef_setsubdef(this, subdef, s); |
|
} |
|
inline bool FieldDef::set_enum_subdef(const EnumDef* subdef, Status* s) { |
|
return upb_fielddef_setenumsubdef(this, subdef, s); |
|
} |
|
inline bool FieldDef::set_message_subdef(const MessageDef* subdef, Status* s) { |
|
return upb_fielddef_setmsgsubdef(this, subdef, s); |
|
} |
|
inline bool FieldDef::set_subdef_name(const char* name, Status* s) { |
|
return upb_fielddef_setsubdefname(this, name, s); |
|
} |
|
inline bool FieldDef::set_subdef_name(const std::string& name, Status* s) { |
|
return upb_fielddef_setsubdefname(this, upb_safecstr(name), s); |
|
} |
|
|
|
inline reffed_ptr<MessageDef> MessageDef::New() { |
|
upb_msgdef *m = upb_msgdef_new(&m); |
|
return reffed_ptr<MessageDef>(m, &m); |
|
} |
|
inline const char *MessageDef::full_name() const { |
|
return upb_msgdef_fullname(this); |
|
} |
|
inline const char *MessageDef::name() const { |
|
return upb_msgdef_name(this); |
|
} |
|
inline upb_syntax_t MessageDef::syntax() const { |
|
return upb_msgdef_syntax(this); |
|
} |
|
inline bool MessageDef::set_full_name(const char* fullname, Status* s) { |
|
return upb_msgdef_setfullname(this, fullname, s); |
|
} |
|
inline bool MessageDef::set_full_name(const std::string& fullname, Status* s) { |
|
return upb_msgdef_setfullname(this, upb_safecstr(fullname), s); |
|
} |
|
inline bool MessageDef::set_syntax(upb_syntax_t syntax) { |
|
return upb_msgdef_setsyntax(this, syntax); |
|
} |
|
inline bool MessageDef::Freeze(Status* status) { |
|
return upb_msgdef_freeze(this, status); |
|
} |
|
inline int MessageDef::field_count() const { |
|
return upb_msgdef_numfields(this); |
|
} |
|
inline int MessageDef::oneof_count() const { |
|
return upb_msgdef_numoneofs(this); |
|
} |
|
inline bool MessageDef::AddField(upb_fielddef* f, Status* s) { |
|
return upb_msgdef_addfield(this, f, NULL, s); |
|
} |
|
inline bool MessageDef::AddField(const reffed_ptr<FieldDef>& f, Status* s) { |
|
return upb_msgdef_addfield(this, f.get(), NULL, s); |
|
} |
|
inline bool MessageDef::AddOneof(upb_oneofdef* o, Status* s) { |
|
return upb_msgdef_addoneof(this, o, NULL, s); |
|
} |
|
inline bool MessageDef::AddOneof(const reffed_ptr<OneofDef>& o, Status* s) { |
|
return upb_msgdef_addoneof(this, o.get(), NULL, s); |
|
} |
|
inline FieldDef* MessageDef::FindFieldByNumber(uint32_t number) { |
|
return upb_msgdef_itof_mutable(this, number); |
|
} |
|
inline FieldDef* MessageDef::FindFieldByName(const char* name, size_t len) { |
|
return upb_msgdef_ntof_mutable(this, name, len); |
|
} |
|
inline const FieldDef* MessageDef::FindFieldByNumber(uint32_t number) const { |
|
return upb_msgdef_itof(this, number); |
|
} |
|
inline const FieldDef *MessageDef::FindFieldByName(const char *name, |
|
size_t len) const { |
|
return upb_msgdef_ntof(this, name, len); |
|
} |
|
inline OneofDef* MessageDef::FindOneofByName(const char* name, size_t len) { |
|
return upb_msgdef_ntoo_mutable(this, name, len); |
|
} |
|
inline const OneofDef* MessageDef::FindOneofByName(const char* name, |
|
size_t len) const { |
|
return upb_msgdef_ntoo(this, name, len); |
|
} |
|
inline MessageDef* MessageDef::Dup(const void *owner) const { |
|
return upb_msgdef_dup(this, owner); |
|
} |
|
inline void MessageDef::setmapentry(bool map_entry) { |
|
upb_msgdef_setmapentry(this, map_entry); |
|
} |
|
inline bool MessageDef::mapentry() const { |
|
return upb_msgdef_mapentry(this); |
|
} |
|
inline MessageDef::field_iterator MessageDef::field_begin() { |
|
return field_iterator(this); |
|
} |
|
inline MessageDef::field_iterator MessageDef::field_end() { |
|
return field_iterator::end(this); |
|
} |
|
inline MessageDef::const_field_iterator MessageDef::field_begin() const { |
|
return const_field_iterator(this); |
|
} |
|
inline MessageDef::const_field_iterator MessageDef::field_end() const { |
|
return const_field_iterator::end(this); |
|
} |
|
|
|
inline MessageDef::oneof_iterator MessageDef::oneof_begin() { |
|
return oneof_iterator(this); |
|
} |
|
inline MessageDef::oneof_iterator MessageDef::oneof_end() { |
|
return oneof_iterator::end(this); |
|
} |
|
inline MessageDef::const_oneof_iterator MessageDef::oneof_begin() const { |
|
return const_oneof_iterator(this); |
|
} |
|
inline MessageDef::const_oneof_iterator MessageDef::oneof_end() const { |
|
return const_oneof_iterator::end(this); |
|
} |
|
|
|
inline MessageDef::field_iterator::field_iterator(MessageDef* md) { |
|
upb_msg_field_begin(&iter_, md); |
|
} |
|
inline MessageDef::field_iterator MessageDef::field_iterator::end( |
|
MessageDef* md) { |
|
MessageDef::field_iterator iter(md); |
|
upb_msg_field_iter_setdone(&iter.iter_); |
|
return iter; |
|
} |
|
inline FieldDef* MessageDef::field_iterator::operator*() const { |
|
return upb_msg_iter_field(&iter_); |
|
} |
|
inline void MessageDef::field_iterator::operator++() { |
|
return upb_msg_field_next(&iter_); |
|
} |
|
inline bool MessageDef::field_iterator::operator==( |
|
const field_iterator &other) const { |
|
return upb_inttable_iter_isequal(&iter_, &other.iter_); |
|
} |
|
inline bool MessageDef::field_iterator::operator!=( |
|
const field_iterator &other) const { |
|
return !(*this == other); |
|
} |
|
|
|
inline MessageDef::const_field_iterator::const_field_iterator( |
|
const MessageDef* md) { |
|
upb_msg_field_begin(&iter_, md); |
|
} |
|
inline MessageDef::const_field_iterator MessageDef::const_field_iterator::end( |
|
const MessageDef *md) { |
|
MessageDef::const_field_iterator iter(md); |
|
upb_msg_field_iter_setdone(&iter.iter_); |
|
return iter; |
|
} |
|
inline const FieldDef* MessageDef::const_field_iterator::operator*() const { |
|
return upb_msg_iter_field(&iter_); |
|
} |
|
inline void MessageDef::const_field_iterator::operator++() { |
|
return upb_msg_field_next(&iter_); |
|
} |
|
inline bool MessageDef::const_field_iterator::operator==( |
|
const const_field_iterator &other) const { |
|
return upb_inttable_iter_isequal(&iter_, &other.iter_); |
|
} |
|
inline bool MessageDef::const_field_iterator::operator!=( |
|
const const_field_iterator &other) const { |
|
return !(*this == other); |
|
} |
|
|
|
inline MessageDef::oneof_iterator::oneof_iterator(MessageDef* md) { |
|
upb_msg_oneof_begin(&iter_, md); |
|
} |
|
inline MessageDef::oneof_iterator MessageDef::oneof_iterator::end( |
|
MessageDef* md) { |
|
MessageDef::oneof_iterator iter(md); |
|
upb_msg_oneof_iter_setdone(&iter.iter_); |
|
return iter; |
|
} |
|
inline OneofDef* MessageDef::oneof_iterator::operator*() const { |
|
return upb_msg_iter_oneof(&iter_); |
|
} |
|
inline void MessageDef::oneof_iterator::operator++() { |
|
return upb_msg_oneof_next(&iter_); |
|
} |
|
inline bool MessageDef::oneof_iterator::operator==( |
|
const oneof_iterator &other) const { |
|
return upb_strtable_iter_isequal(&iter_, &other.iter_); |
|
} |
|
inline bool MessageDef::oneof_iterator::operator!=( |
|
const oneof_iterator &other) const { |
|
return !(*this == other); |
|
} |
|
|
|
inline MessageDef::const_oneof_iterator::const_oneof_iterator( |
|
const MessageDef* md) { |
|
upb_msg_oneof_begin(&iter_, md); |
|
} |
|
inline MessageDef::const_oneof_iterator MessageDef::const_oneof_iterator::end( |
|
const MessageDef *md) { |
|
MessageDef::const_oneof_iterator iter(md); |
|
upb_msg_oneof_iter_setdone(&iter.iter_); |
|
return iter; |
|
} |
|
inline const OneofDef* MessageDef::const_oneof_iterator::operator*() const { |
|
return upb_msg_iter_oneof(&iter_); |
|
} |
|
inline void MessageDef::const_oneof_iterator::operator++() { |
|
return upb_msg_oneof_next(&iter_); |
|
} |
|
inline bool MessageDef::const_oneof_iterator::operator==( |
|
const const_oneof_iterator &other) const { |
|
return upb_strtable_iter_isequal(&iter_, &other.iter_); |
|
} |
|
inline bool MessageDef::const_oneof_iterator::operator!=( |
|
const const_oneof_iterator &other) const { |
|
return !(*this == other); |
|
} |
|
|
|
inline reffed_ptr<EnumDef> EnumDef::New() { |
|
upb_enumdef *e = upb_enumdef_new(&e); |
|
return reffed_ptr<EnumDef>(e, &e); |
|
} |
|
inline const char* EnumDef::full_name() const { |
|
return upb_enumdef_fullname(this); |
|
} |
|
inline const char* EnumDef::name() const { |
|
return upb_enumdef_name(this); |
|
} |
|
inline bool EnumDef::set_full_name(const char* fullname, Status* s) { |
|
return upb_enumdef_setfullname(this, fullname, s); |
|
} |
|
inline bool EnumDef::set_full_name(const std::string& fullname, Status* s) { |
|
return upb_enumdef_setfullname(this, upb_safecstr(fullname), s); |
|
} |
|
inline bool EnumDef::Freeze(Status* status) { |
|
return upb_enumdef_freeze(this, status); |
|
} |
|
inline int32_t EnumDef::default_value() const { |
|
return upb_enumdef_default(this); |
|
} |
|
inline bool EnumDef::set_default_value(int32_t val, Status* status) { |
|
return upb_enumdef_setdefault(this, val, status); |
|
} |
|
inline int EnumDef::value_count() const { return upb_enumdef_numvals(this); } |
|
inline bool EnumDef::AddValue(const char* name, int32_t num, Status* status) { |
|
return upb_enumdef_addval(this, name, num, status); |
|
} |
|
inline bool EnumDef::AddValue(const std::string& name, int32_t num, |
|
Status* status) { |
|
return upb_enumdef_addval(this, upb_safecstr(name), num, status); |
|
} |
|
inline bool EnumDef::FindValueByName(const char* name, int32_t *num) const { |
|
return upb_enumdef_ntoiz(this, name, num); |
|
} |
|
inline const char* EnumDef::FindValueByNumber(int32_t num) const { |
|
return upb_enumdef_iton(this, num); |
|
} |
|
inline EnumDef* EnumDef::Dup(const void* owner) const { |
|
return upb_enumdef_dup(this, owner); |
|
} |
|
|
|
inline EnumDef::Iterator::Iterator(const EnumDef* e) { |
|
upb_enum_begin(&iter_, e); |
|
} |
|
inline int32_t EnumDef::Iterator::number() { |
|
return upb_enum_iter_number(&iter_); |
|
} |
|
inline const char* EnumDef::Iterator::name() { |
|
return upb_enum_iter_name(&iter_); |
|
} |
|
inline bool EnumDef::Iterator::Done() { return upb_enum_done(&iter_); } |
|
inline void EnumDef::Iterator::Next() { return upb_enum_next(&iter_); } |
|
|
|
inline reffed_ptr<OneofDef> OneofDef::New() { |
|
upb_oneofdef *o = upb_oneofdef_new(&o); |
|
return reffed_ptr<OneofDef>(o, &o); |
|
} |
|
|
|
inline const MessageDef* OneofDef::containing_type() const { |
|
return upb_oneofdef_containingtype(this); |
|
} |
|
inline const char* OneofDef::name() const { |
|
return upb_oneofdef_name(this); |
|
} |
|
inline bool OneofDef::set_name(const char* name, Status* s) { |
|
return upb_oneofdef_setname(this, name, s); |
|
} |
|
inline bool OneofDef::set_name(const std::string& name, Status* s) { |
|
return upb_oneofdef_setname(this, upb_safecstr(name), s); |
|
} |
|
inline int OneofDef::field_count() const { |
|
return upb_oneofdef_numfields(this); |
|
} |
|
inline bool OneofDef::AddField(FieldDef* field, Status* s) { |
|
return upb_oneofdef_addfield(this, field, NULL, s); |
|
} |
|
inline bool OneofDef::AddField(const reffed_ptr<FieldDef>& field, Status* s) { |
|
return upb_oneofdef_addfield(this, field.get(), NULL, s); |
|
} |
|
inline const FieldDef* OneofDef::FindFieldByName(const char* name, |
|
size_t len) const { |
|
return upb_oneofdef_ntof(this, name, len); |
|
} |
|
inline const FieldDef* OneofDef::FindFieldByNumber(uint32_t num) const { |
|
return upb_oneofdef_itof(this, num); |
|
} |
|
inline OneofDef::iterator OneofDef::begin() { return iterator(this); } |
|
inline OneofDef::iterator OneofDef::end() { return iterator::end(this); } |
|
inline OneofDef::const_iterator OneofDef::begin() const { |
|
return const_iterator(this); |
|
} |
|
inline OneofDef::const_iterator OneofDef::end() const { |
|
return const_iterator::end(this); |
|
} |
|
|
|
inline OneofDef::iterator::iterator(OneofDef* o) { |
|
upb_oneof_begin(&iter_, o); |
|
} |
|
inline OneofDef::iterator OneofDef::iterator::end(OneofDef* o) { |
|
OneofDef::iterator iter(o); |
|
upb_oneof_iter_setdone(&iter.iter_); |
|
return iter; |
|
} |
|
inline FieldDef* OneofDef::iterator::operator*() const { |
|
return upb_oneof_iter_field(&iter_); |
|
} |
|
inline void OneofDef::iterator::operator++() { return upb_oneof_next(&iter_); } |
|
inline bool OneofDef::iterator::operator==(const iterator &other) const { |
|
return upb_inttable_iter_isequal(&iter_, &other.iter_); |
|
} |
|
inline bool OneofDef::iterator::operator!=(const iterator &other) const { |
|
return !(*this == other); |
|
} |
|
|
|
inline OneofDef::const_iterator::const_iterator(const OneofDef* md) { |
|
upb_oneof_begin(&iter_, md); |
|
} |
|
inline OneofDef::const_iterator OneofDef::const_iterator::end( |
|
const OneofDef *md) { |
|
OneofDef::const_iterator iter(md); |
|
upb_oneof_iter_setdone(&iter.iter_); |
|
return iter; |
|
} |
|
inline const FieldDef* OneofDef::const_iterator::operator*() const { |
|
return upb_msg_iter_field(&iter_); |
|
} |
|
inline void OneofDef::const_iterator::operator++() { |
|
return upb_oneof_next(&iter_); |
|
} |
|
inline bool OneofDef::const_iterator::operator==( |
|
const const_iterator &other) const { |
|
return upb_inttable_iter_isequal(&iter_, &other.iter_); |
|
} |
|
inline bool OneofDef::const_iterator::operator!=( |
|
const const_iterator &other) const { |
|
return !(*this == other); |
|
} |
|
|
|
inline reffed_ptr<FileDef> FileDef::New() { |
|
upb_filedef *f = upb_filedef_new(&f); |
|
return reffed_ptr<FileDef>(f, &f); |
|
} |
|
|
|
inline const char* FileDef::name() const { |
|
return upb_filedef_name(this); |
|
} |
|
inline bool FileDef::set_name(const char* name, Status* s) { |
|
return upb_filedef_setname(this, name, s); |
|
} |
|
inline bool FileDef::set_name(const std::string& name, Status* s) { |
|
return upb_filedef_setname(this, upb_safecstr(name), s); |
|
} |
|
inline const char* FileDef::package() const { |
|
return upb_filedef_package(this); |
|
} |
|
inline bool FileDef::set_package(const char* package, Status* s) { |
|
return upb_filedef_setpackage(this, package, s); |
|
} |
|
inline int FileDef::def_count() const { |
|
return upb_filedef_defcount(this); |
|
} |
|
inline const Def* FileDef::def(int index) const { |
|
return upb_filedef_def(this, index); |
|
} |
|
inline Def* FileDef::def(int index) { |
|
return const_cast<Def*>(upb_filedef_def(this, index)); |
|
} |
|
inline int FileDef::dependency_count() const { |
|
return upb_filedef_depcount(this); |
|
} |
|
inline const FileDef* FileDef::dependency(int index) const { |
|
return upb_filedef_dep(this, index); |
|
} |
|
inline bool FileDef::AddDef(Def* def, Status* s) { |
|
return upb_filedef_adddef(this, def, NULL, s); |
|
} |
|
inline bool FileDef::AddMessage(MessageDef* m, Status* s) { |
|
return upb_filedef_addmsg(this, m, NULL, s); |
|
} |
|
inline bool FileDef::AddEnum(EnumDef* e, Status* s) { |
|
return upb_filedef_addenum(this, e, NULL, s); |
|
} |
|
inline bool FileDef::AddExtension(FieldDef* f, Status* s) { |
|
return upb_filedef_addext(this, f, NULL, s); |
|
} |
|
inline bool FileDef::AddDependency(const FileDef* file) { |
|
return upb_filedef_adddep(this, file); |
|
} |
|
|
|
} /* namespace upb */ |
|
#endif |
|
|
|
#endif /* UPB_DEF_H_ */ |
|
/* |
|
** This file contains definitions of structs that should be considered private |
|
** and NOT stable across versions of upb. |
|
** |
|
** The only reason they are declared here and not in .c files is to allow upb |
|
** and the application (if desired) to embed statically-initialized instances |
|
** of structures like defs. |
|
** |
|
** If you include this file, all guarantees of ABI compatibility go out the |
|
** window! Any code that includes this file needs to recompile against the |
|
** exact same version of upb that they are linking against. |
|
** |
|
** You also need to recompile if you change the value of the UPB_DEBUG_REFS |
|
** flag. |
|
*/ |
|
|
|
|
|
#ifndef UPB_STATICINIT_H_ |
|
#define UPB_STATICINIT_H_ |
|
|
|
#ifdef __cplusplus |
|
/* Because of how we do our typedefs, this header can't be included from C++. */ |
|
#error This file cannot be included from C++ |
|
#endif |
|
|
|
/* upb_refcounted *************************************************************/ |
|
|
|
|
|
/* upb_def ********************************************************************/ |
|
|
|
struct upb_def { |
|
upb_refcounted base; |
|
|
|
const char *fullname; |
|
const upb_filedef* file; |
|
char type; /* A upb_deftype_t (char to save space) */ |
|
|
|
/* Used as a flag during the def's mutable stage. Must be false unless |
|
* it is currently being used by a function on the stack. This allows |
|
* us to easily determine which defs were passed into the function's |
|
* current invocation. */ |
|
bool came_from_user; |
|
}; |
|
|
|
#define UPB_DEF_INIT(name, type, vtbl, refs, ref2s) \ |
|
{ UPB_REFCOUNT_INIT(vtbl, refs, ref2s), name, NULL, type, false } |
|
|
|
|
|
/* upb_fielddef ***************************************************************/ |
|
|
|
struct upb_fielddef { |
|
upb_def base; |
|
|
|
union { |
|
int64_t sint; |
|
uint64_t uint; |
|
double dbl; |
|
float flt; |
|
void *bytes; |
|
} defaultval; |
|
union { |
|
const upb_msgdef *def; /* If !msg_is_symbolic. */ |
|
char *name; /* If msg_is_symbolic. */ |
|
} msg; |
|
union { |
|
const upb_def *def; /* If !subdef_is_symbolic. */ |
|
char *name; /* If subdef_is_symbolic. */ |
|
} sub; /* The msgdef or enumdef for this field, if upb_hassubdef(f). */ |
|
bool subdef_is_symbolic; |
|
bool msg_is_symbolic; |
|
const upb_oneofdef *oneof; |
|
bool default_is_string; |
|
bool type_is_set_; /* False until type is explicitly set. */ |
|
bool is_extension_; |
|
bool lazy_; |
|
bool packed_; |
|
upb_intfmt_t intfmt; |
|
bool tagdelim; |
|
upb_fieldtype_t type_; |
|
upb_label_t label_; |
|
uint32_t number_; |
|
uint32_t selector_base; /* Used to index into a upb::Handlers table. */ |
|
uint32_t index_; |
|
}; |
|
|
|
extern const struct upb_refcounted_vtbl upb_fielddef_vtbl; |
|
|
|
#define UPB_FIELDDEF_INIT(label, type, intfmt, tagdelim, is_extension, lazy, \ |
|
packed, name, num, msgdef, subdef, selector_base, \ |
|
index, defaultval, refs, ref2s) \ |
|
{ \ |
|
UPB_DEF_INIT(name, UPB_DEF_FIELD, &upb_fielddef_vtbl, refs, ref2s), \ |
|
defaultval, {msgdef}, {subdef}, NULL, false, false, \ |
|
type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES, true, is_extension, \ |
|
lazy, packed, intfmt, tagdelim, type, label, num, selector_base, index \ |
|
} |
|
|
|
|
|
/* upb_msgdef *****************************************************************/ |
|
|
|
struct upb_msgdef { |
|
upb_def base; |
|
|
|
size_t selector_count; |
|
uint32_t submsg_field_count; |
|
|
|
/* Tables for looking up fields by number and name. */ |
|
upb_inttable itof; /* int to field */ |
|
upb_strtable ntof; /* name to field/oneof */ |
|
|
|
/* Is this a map-entry message? */ |
|
bool map_entry; |
|
|
|
/* Whether this message has proto2 or proto3 semantics. */ |
|
upb_syntax_t syntax; |
|
|
|
/* TODO(haberman): proper extension ranges (there can be multiple). */ |
|
}; |
|
|
|
extern const struct upb_refcounted_vtbl upb_msgdef_vtbl; |
|
|
|
/* TODO: also support static initialization of the oneofs table. This will be |
|
* needed if we compile in descriptors that contain oneofs. */ |
|
#define UPB_MSGDEF_INIT(name, selector_count, submsg_field_count, itof, ntof, \ |
|
map_entry, syntax, refs, ref2s) \ |
|
{ \ |
|
UPB_DEF_INIT(name, UPB_DEF_MSG, &upb_fielddef_vtbl, refs, ref2s), \ |
|
selector_count, submsg_field_count, itof, ntof, map_entry, syntax \ |
|
} |
|
|
|
|
|
/* upb_enumdef ****************************************************************/ |
|
|
|
struct upb_enumdef { |
|
upb_def base; |
|
|
|
upb_strtable ntoi; |
|
upb_inttable iton; |
|
int32_t defaultval; |
|
}; |
|
|
|
extern const struct upb_refcounted_vtbl upb_enumdef_vtbl; |
|
|
|
#define UPB_ENUMDEF_INIT(name, ntoi, iton, defaultval, refs, ref2s) \ |
|
{ UPB_DEF_INIT(name, UPB_DEF_ENUM, &upb_enumdef_vtbl, refs, ref2s), ntoi, \ |
|
iton, defaultval } |
|
|
|
|
|
/* upb_oneofdef ***************************************************************/ |
|
|
|
struct upb_oneofdef { |
|
upb_refcounted base; |
|
|
|
const char *name; |
|
upb_strtable ntof; |
|
upb_inttable itof; |
|
const upb_msgdef *parent; |
|
}; |
|
|
|
extern const struct upb_refcounted_vtbl upb_oneofdef_vtbl; |
|
|
|
#define UPB_ONEOFDEF_INIT(name, ntof, itof, refs, ref2s) \ |
|
{ UPB_REFCOUNT_INIT(&upb_oneofdef_vtbl, refs, ref2s), name, ntof, itof } |
|
|
|
|
|
/* upb_symtab *****************************************************************/ |
|
|
|
struct upb_symtab { |
|
upb_refcounted base; |
|
|
|
upb_strtable symtab; |
|
}; |
|
|
|
struct upb_filedef { |
|
upb_refcounted base; |
|
|
|
const char *name; |
|
const char *package; |
|
upb_syntax_t syntax; |
|
|
|
upb_inttable defs; |
|
upb_inttable deps; |
|
}; |
|
|
|
extern const struct upb_refcounted_vtbl upb_filedef_vtbl; |
|
|
|
#endif /* UPB_STATICINIT_H_ */ |
|
/* |
|
** upb::Handlers (upb_handlers) |
|
** |
|
** A upb_handlers is like a virtual table for a upb_msgdef. Each field of the |
|
** message can have associated functions that will be called when we are |
|
** parsing or visiting a stream of data. This is similar to how handlers work |
|
** in SAX (the Simple API for XML). |
|
** |
|
** The handlers have no idea where the data is coming from, so a single set of |
|
** handlers could be used with two completely different data sources (for |
|
** example, a parser and a visitor over in-memory objects). This decoupling is |
|
** the most important feature of upb, because it allows parsers and serializers |
|
** to be highly reusable. |
|
** |
|
** This is a mixed C/C++ interface that offers a full API to both languages. |
|
** See the top-level README for more information. |
|
*/ |
|
|
|
#ifndef UPB_HANDLERS_H |
|
#define UPB_HANDLERS_H |
|
|
|
|
|
#ifdef __cplusplus |
|
namespace upb { |
|
class BufferHandle; |
|
class BytesHandler; |
|
class HandlerAttributes; |
|
class Handlers; |
|
template <class T> class Handler; |
|
template <class T> struct CanonicalType; |
|
} /* namespace upb */ |
|
#endif |
|
|
|
UPB_DECLARE_TYPE(upb::BufferHandle, upb_bufhandle) |
|
UPB_DECLARE_TYPE(upb::BytesHandler, upb_byteshandler) |
|
UPB_DECLARE_TYPE(upb::HandlerAttributes, upb_handlerattr) |
|
UPB_DECLARE_DERIVED_TYPE(upb::Handlers, upb::RefCounted, |
|
upb_handlers, upb_refcounted) |
|
|
|
/* The maximum depth that the handler graph can have. This is a resource limit |
|
* for the C stack since we sometimes need to recursively traverse the graph. |
|
* Cycles are ok; the traversal will stop when it detects a cycle, but we must |
|
* hit the cycle before the maximum depth is reached. |
|
* |
|
* If having a single static limit is too inflexible, we can add another variant |
|
* of Handlers::Freeze that allows specifying this as a parameter. */ |
|
#define UPB_MAX_HANDLER_DEPTH 64 |
|
|
|
/* All the different types of handlers that can be registered. |
|
* Only needed for the advanced functions in upb::Handlers. */ |
|
typedef enum { |
|
UPB_HANDLER_INT32, |
|
UPB_HANDLER_INT64, |
|
UPB_HANDLER_UINT32, |
|
UPB_HANDLER_UINT64, |
|
UPB_HANDLER_FLOAT, |
|
UPB_HANDLER_DOUBLE, |
|
UPB_HANDLER_BOOL, |
|
UPB_HANDLER_STARTSTR, |
|
UPB_HANDLER_STRING, |
|
UPB_HANDLER_ENDSTR, |
|
UPB_HANDLER_STARTSUBMSG, |
|
UPB_HANDLER_ENDSUBMSG, |
|
UPB_HANDLER_STARTSEQ, |
|
UPB_HANDLER_ENDSEQ |
|
} upb_handlertype_t; |
|
|
|
#define UPB_HANDLER_MAX (UPB_HANDLER_ENDSEQ+1) |
|
|
|
#define UPB_BREAK NULL |
|
|
|
/* A convenient definition for when no closure is needed. */ |
|
extern char _upb_noclosure; |
|
#define UPB_NO_CLOSURE &_upb_noclosure |
|
|
|
/* A selector refers to a specific field handler in the Handlers object |
|
* (for example: the STARTSUBMSG handler for field "field15"). */ |
|
typedef int32_t upb_selector_t; |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
/* Forward-declares for C inline accessors. We need to declare these here |
|
* so we can "friend" them in the class declarations in C++. */ |
|
UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h, |
|
upb_selector_t s); |
|
UPB_INLINE const void *upb_handlerattr_handlerdata(const upb_handlerattr *attr); |
|
UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h, |
|
upb_selector_t s); |
|
|
|
UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h); |
|
UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj, |
|
const void *type); |
|
UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf, |
|
size_t ofs); |
|
UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h); |
|
UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h); |
|
UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h); |
|
|
|
UPB_END_EXTERN_C |
|
|
|
|
|
/* Static selectors for upb::Handlers. */ |
|
#define UPB_STARTMSG_SELECTOR 0 |
|
#define UPB_ENDMSG_SELECTOR 1 |
|
#define UPB_STATIC_SELECTOR_COUNT 2 |
|
|
|
/* Static selectors for upb::BytesHandler. */ |
|
#define UPB_STARTSTR_SELECTOR 0 |
|
#define UPB_STRING_SELECTOR 1 |
|
#define UPB_ENDSTR_SELECTOR 2 |
|
|
|
typedef void upb_handlerfree(void *d); |
|
|
|
#ifdef __cplusplus |
|
|
|
/* A set of attributes that accompanies a handler's function pointer. */ |
|
class upb::HandlerAttributes { |
|
public: |
|
HandlerAttributes(); |
|
~HandlerAttributes(); |
|
|
|
/* Sets the handler data that will be passed as the second parameter of the |
|
* handler. To free this pointer when the handlers are freed, call |
|
* Handlers::AddCleanup(). */ |
|
bool SetHandlerData(const void *handler_data); |
|
const void* handler_data() const; |
|
|
|
/* Use this to specify the type of the closure. This will be checked against |
|
* all other closure types for handler that use the same closure. |
|
* Registration will fail if this does not match all other non-NULL closure |
|
* types. */ |
|
bool SetClosureType(const void *closure_type); |
|
const void* closure_type() const; |
|
|
|
/* Use this to specify the type of the returned closure. Only used for |
|
* Start*{String,SubMessage,Sequence} handlers. This must match the closure |
|
* type of any handlers that use it (for example, the StringBuf handler must |
|
* match the closure returned from StartString). */ |
|
bool SetReturnClosureType(const void *return_closure_type); |
|
const void* return_closure_type() const; |
|
|
|
/* Set to indicate that the handler always returns "ok" (either "true" or a |
|
* non-NULL closure). This is a hint that can allow code generators to |
|
* generate more efficient code. */ |
|
bool SetAlwaysOk(bool always_ok); |
|
bool always_ok() const; |
|
|
|
private: |
|
friend UPB_INLINE const void * ::upb_handlerattr_handlerdata( |
|
const upb_handlerattr *attr); |
|
#else |
|
struct upb_handlerattr { |
|
#endif |
|
const void *handler_data_; |
|
const void *closure_type_; |
|
const void *return_closure_type_; |
|
bool alwaysok_; |
|
}; |
|
|
|
#define UPB_HANDLERATTR_INITIALIZER {NULL, NULL, NULL, false} |
|
|
|
typedef struct { |
|
upb_func *func; |
|
|
|
/* It is wasteful to include the entire attributes here: |
|
* |
|
* * Some of the information is redundant (like storing the closure type |
|
* separately for each handler that must match). |
|
* * Some of the info is only needed prior to freeze() (like closure types). |
|
* * alignment padding wastes a lot of space for alwaysok_. |
|
* |
|
* If/when the size and locality of handlers is an issue, we can optimize this |
|
* not to store the entire attr like this. We do not expose the table's |
|
* layout to allow this optimization in the future. */ |
|
upb_handlerattr attr; |
|
} upb_handlers_tabent; |
|
|
|
#ifdef __cplusplus |
|
|
|
/* Extra information about a buffer that is passed to a StringBuf handler. |
|
* TODO(haberman): allow the handle to be pinned so that it will outlive |
|
* the handler invocation. */ |
|
class upb::BufferHandle { |
|
public: |
|
BufferHandle(); |
|
~BufferHandle(); |
|
|
|
/* The beginning of the buffer. This may be different than the pointer |
|
* passed to a StringBuf handler because the handler may receive data |
|
* that is from the middle or end of a larger buffer. */ |
|
const char* buffer() const; |
|
|
|
/* The offset within the attached object where this buffer begins. Only |
|
* meaningful if there is an attached object. */ |
|
size_t object_offset() const; |
|
|
|
/* Note that object_offset is the offset of "buf" within the attached |
|
* object. */ |
|
void SetBuffer(const char* buf, size_t object_offset); |
|
|
|
/* The BufferHandle can have an "attached object", which can be used to |
|
* tunnel through a pointer to the buffer's underlying representation. */ |
|
template <class T> |
|
void SetAttachedObject(const T* obj); |
|
|
|
/* Returns NULL if the attached object is not of this type. */ |
|
template <class T> |
|
const T* GetAttachedObject() const; |
|
|
|
private: |
|
friend UPB_INLINE void ::upb_bufhandle_init(upb_bufhandle *h); |
|
friend UPB_INLINE void ::upb_bufhandle_setobj(upb_bufhandle *h, |
|
const void *obj, |
|
const void *type); |
|
friend UPB_INLINE void ::upb_bufhandle_setbuf(upb_bufhandle *h, |
|
const char *buf, size_t ofs); |
|
friend UPB_INLINE const void* ::upb_bufhandle_obj(const upb_bufhandle *h); |
|
friend UPB_INLINE const void* ::upb_bufhandle_objtype( |
|
const upb_bufhandle *h); |
|
friend UPB_INLINE const char* ::upb_bufhandle_buf(const upb_bufhandle *h); |
|
#else |
|
struct upb_bufhandle { |
|
#endif |
|
const char *buf_; |
|
const void *obj_; |
|
const void *objtype_; |
|
size_t objofs_; |
|
}; |
|
|
|
#ifdef __cplusplus |
|
|
|
/* A upb::Handlers object represents the set of handlers associated with a |
|
* message in the graph of messages. You can think of it as a big virtual |
|
* table with functions corresponding to all the events that can fire while |
|
* parsing or visiting a message of a specific type. |
|
* |
|
* Any handlers that are not set behave as if they had successfully consumed |
|
* the value. Any unset Start* handlers will propagate their closure to the |
|
* inner frame. |
|
* |
|
* The easiest way to create the *Handler objects needed by the Set* methods is |
|
* with the UpbBind() and UpbMakeHandler() macros; see below. */ |
|
class upb::Handlers { |
|
public: |
|
typedef upb_selector_t Selector; |
|
typedef upb_handlertype_t Type; |
|
|
|
typedef Handler<void *(*)(void *, const void *)> StartFieldHandler; |
|
typedef Handler<bool (*)(void *, const void *)> EndFieldHandler; |
|
typedef Handler<bool (*)(void *, const void *)> StartMessageHandler; |
|
typedef Handler<bool (*)(void *, const void *, Status*)> EndMessageHandler; |
|
typedef Handler<void *(*)(void *, const void *, size_t)> StartStringHandler; |
|
typedef Handler<size_t (*)(void *, const void *, const char *, size_t, |
|
const BufferHandle *)> StringHandler; |
|
|
|
template <class T> struct ValueHandler { |
|
typedef Handler<bool(*)(void *, const void *, T)> H; |
|
}; |
|
|
|
typedef ValueHandler<int32_t>::H Int32Handler; |
|
typedef ValueHandler<int64_t>::H Int64Handler; |
|
typedef ValueHandler<uint32_t>::H UInt32Handler; |
|
typedef ValueHandler<uint64_t>::H UInt64Handler; |
|
typedef ValueHandler<float>::H FloatHandler; |
|
typedef ValueHandler<double>::H DoubleHandler; |
|
typedef ValueHandler<bool>::H BoolHandler; |
|
|
|
/* Any function pointer can be converted to this and converted back to its |
|
* correct type. */ |
|
typedef void GenericFunction(); |
|
|
|
typedef void HandlersCallback(const void *closure, upb_handlers *h); |
|
|
|
/* Returns a new handlers object for the given frozen msgdef. |
|
* Returns NULL if memory allocation failed. */ |
|
static reffed_ptr<Handlers> New(const MessageDef *m); |
|
|
|
/* Convenience function for registering a graph of handlers that mirrors the |
|
* graph of msgdefs for some message. For "m" and all its children a new set |
|
* of handlers will be created and the given callback will be invoked, |
|
* allowing the client to register handlers for this message. Note that any |
|
* subhandlers set by the callback will be overwritten. */ |
|
static reffed_ptr<const Handlers> NewFrozen(const MessageDef *m, |
|
HandlersCallback *callback, |
|
const void *closure); |
|
|
|
/* Functionality from upb::RefCounted. */ |
|
UPB_REFCOUNTED_CPPMETHODS |
|
|
|
/* All handler registration functions return bool to indicate success or |
|
* failure; details about failures are stored in this status object. If a |
|
* failure does occur, it must be cleared before the Handlers are frozen, |
|
* otherwise the freeze() operation will fail. The functions may *only* be |
|
* used while the Handlers are mutable. */ |
|
const Status* status(); |
|
void ClearError(); |
|
|
|
/* Call to freeze these Handlers. Requires that any SubHandlers are already |
|
* frozen. For cycles, you must use the static version below and freeze the |
|
* whole graph at once. */ |
|
bool Freeze(Status* s); |
|
|
|
/* Freezes the given set of handlers. You may not freeze a handler without |
|
* also freezing any handlers they point to. */ |
|
static bool Freeze(Handlers*const* handlers, int n, Status* s); |
|
static bool Freeze(const std::vector<Handlers*>& handlers, Status* s); |
|
|
|
/* Returns the msgdef associated with this handlers object. */ |
|
const MessageDef* message_def() const; |
|
|
|
/* Adds the given pointer and function to the list of cleanup functions that |
|
* will be run when these handlers are freed. If this pointer has previously |
|
* been registered, the function returns false and does nothing. */ |
|
bool AddCleanup(void *ptr, upb_handlerfree *cleanup); |
|
|
|
/* Sets the startmsg handler for the message, which is defined as follows: |
|
* |
|
* bool startmsg(MyType* closure) { |
|
* // Called when the message begins. Returns true if processing should |
|
* // continue. |
|
* return true; |
|
* } |
|
*/ |
|
bool SetStartMessageHandler(const StartMessageHandler& handler); |
|
|
|
/* Sets the endmsg handler for the message, which is defined as follows: |
|
* |
|
* bool endmsg(MyType* closure, upb_status *status) { |
|
* // Called when processing of this message ends, whether in success or |
|
* // failure. "status" indicates the final status of processing, and |
|
* // can also be modified in-place to update the final status. |
|
* } |
|
*/ |
|
bool SetEndMessageHandler(const EndMessageHandler& handler); |
|
|
|
/* Sets the value handler for the given field, which is defined as follows |
|
* (this is for an int32 field; other field types will pass their native |
|
* C/C++ type for "val"): |
|
* |
|
* bool OnValue(MyClosure* c, const MyHandlerData* d, int32_t val) { |
|
* // Called when the field's value is encountered. "d" contains |
|
* // whatever data was bound to this field when it was registered. |
|
* // Returns true if processing should continue. |
|
* return true; |
|
* } |
|
* |
|
* handers->SetInt32Handler(f, UpbBind(OnValue, new MyHandlerData(...))); |
|
* |
|
* The value type must exactly match f->type(). |
|
* For example, a handler that takes an int32_t parameter may only be used for |
|
* fields of type UPB_TYPE_INT32 and UPB_TYPE_ENUM. |
|
* |
|
* Returns false if the handler failed to register; in this case the cleanup |
|
* handler (if any) will be called immediately. |
|
*/ |
|
bool SetInt32Handler (const FieldDef* f, const Int32Handler& h); |
|
bool SetInt64Handler (const FieldDef* f, const Int64Handler& h); |
|
bool SetUInt32Handler(const FieldDef* f, const UInt32Handler& h); |
|
bool SetUInt64Handler(const FieldDef* f, const UInt64Handler& h); |
|
bool SetFloatHandler (const FieldDef* f, const FloatHandler& h); |
|
bool SetDoubleHandler(const FieldDef* f, const DoubleHandler& h); |
|
bool SetBoolHandler (const FieldDef* f, const BoolHandler& h); |
|
|
|
/* Like the previous, but templated on the type on the value (ie. int32). |
|
* This is mostly useful to call from other templates. To call this you must |
|
* specify the template parameter explicitly, ie: |
|
* h->SetValueHandler<T>(f, UpbBind(MyHandler<T>, MyData)); */ |
|
template <class T> |
|
bool SetValueHandler( |
|
const FieldDef *f, |
|
const typename ValueHandler<typename CanonicalType<T>::Type>::H& handler); |
|
|
|
/* Sets handlers for a string field, which are defined as follows: |
|
* |
|
* MySubClosure* startstr(MyClosure* c, const MyHandlerData* d, |
|
* size_t size_hint) { |
|
* // Called when a string value begins. The return value indicates the |
|
* // closure for the string. "size_hint" indicates the size of the |
|
* // string if it is known, however if the string is length-delimited |
|
* // and the end-of-string is not available size_hint will be zero. |
|
* // This case is indistinguishable from the case where the size is |
|
* // known to be zero. |
|
* // |
|
* // TODO(haberman): is it important to distinguish these cases? |
|
* // If we had ssize_t as a type we could make -1 "unknown", but |
|
* // ssize_t is POSIX (not ANSI) and therefore less portable. |
|
* // In practice I suspect it won't be important to distinguish. |
|
* return closure; |
|
* } |
|
* |
|
* size_t str(MyClosure* closure, const MyHandlerData* d, |
|
* const char *str, size_t len) { |
|
* // Called for each buffer of string data; the multiple physical buffers |
|
* // are all part of the same logical string. The return value indicates |
|
* // how many bytes were consumed. If this number is less than "len", |
|
* // this will also indicate that processing should be halted for now, |
|
* // like returning false or UPB_BREAK from any other callback. If |
|
* // number is greater than "len", the excess bytes will be skipped over |
|
* // and not passed to the callback. |
|
* return len; |
|
* } |
|
* |
|
* bool endstr(MyClosure* c, const MyHandlerData* d) { |
|
* // Called when a string value ends. Return value indicates whether |
|
* // processing should continue. |
|
* return true; |
|
* } |
|
*/ |
|
bool SetStartStringHandler(const FieldDef* f, const StartStringHandler& h); |
|
bool SetStringHandler(const FieldDef* f, const StringHandler& h); |
|
bool SetEndStringHandler(const FieldDef* f, const EndFieldHandler& h); |
|
|
|
/* Sets the startseq handler, which is defined as follows: |
|
* |
|
* MySubClosure *startseq(MyClosure* c, const MyHandlerData* d) { |
|
* // Called when a sequence (repeated field) begins. The returned |
|
* // pointer indicates the closure for the sequence (or UPB_BREAK |
|
* // to interrupt processing). |
|
* return closure; |
|
* } |
|
* |
|
* h->SetStartSequenceHandler(f, UpbBind(startseq, new MyHandlerData(...))); |
|
* |
|
* Returns "false" if "f" does not belong to this message or is not a |
|
* repeated field. |
|
*/ |
|
bool SetStartSequenceHandler(const FieldDef* f, const StartFieldHandler& h); |
|
|
|
/* Sets the startsubmsg handler for the given field, which is defined as |
|
* follows: |
|
* |
|
* MySubClosure* startsubmsg(MyClosure* c, const MyHandlerData* d) { |
|
* // Called when a submessage begins. The returned pointer indicates the |
|
* // closure for the sequence (or UPB_BREAK to interrupt processing). |
|
* return closure; |
|
* } |
|
* |
|
* h->SetStartSubMessageHandler(f, UpbBind(startsubmsg, |
|
* new MyHandlerData(...))); |
|
* |
|
* Returns "false" if "f" does not belong to this message or is not a |
|
* submessage/group field. |
|
*/ |
|
bool SetStartSubMessageHandler(const FieldDef* f, const StartFieldHandler& h); |
|
|
|
/* Sets the endsubmsg handler for the given field, which is defined as |
|
* follows: |
|
* |
|
* bool endsubmsg(MyClosure* c, const MyHandlerData* d) { |
|
* // Called when a submessage ends. Returns true to continue processing. |
|
* return true; |
|
* } |
|
* |
|
* Returns "false" if "f" does not belong to this message or is not a |
|
* submessage/group field. |
|
*/ |
|
bool SetEndSubMessageHandler(const FieldDef *f, const EndFieldHandler &h); |
|
|
|
/* Starts the endsubseq handler for the given field, which is defined as |
|
* follows: |
|
* |
|
* bool endseq(MyClosure* c, const MyHandlerData* d) { |
|
* // Called when a sequence ends. Returns true continue processing. |
|
* return true; |
|
* } |
|
* |
|
* Returns "false" if "f" does not belong to this message or is not a |
|
* repeated field. |
|
*/ |
|
bool SetEndSequenceHandler(const FieldDef* f, const EndFieldHandler& h); |
|
|
|
/* Sets or gets the object that specifies handlers for the given field, which |
|
* must be a submessage or group. Returns NULL if no handlers are set. */ |
|
bool SetSubHandlers(const FieldDef* f, const Handlers* sub); |
|
const Handlers* GetSubHandlers(const FieldDef* f) const; |
|
|
|
/* Equivalent to GetSubHandlers, but takes the STARTSUBMSG selector for the |
|
* field. */ |
|
const Handlers* GetSubHandlers(Selector startsubmsg) const; |
|
|
|
/* A selector refers to a specific field handler in the Handlers object |
|
* (for example: the STARTSUBMSG handler for field "field15"). |
|
* On success, returns true and stores the selector in "s". |
|
* If the FieldDef or Type are invalid, returns false. |
|
* The returned selector is ONLY valid for Handlers whose MessageDef |
|
* contains this FieldDef. */ |
|
static bool GetSelector(const FieldDef* f, Type type, Selector* s); |
|
|
|
/* Given a START selector of any kind, returns the corresponding END selector. */ |
|
static Selector GetEndSelector(Selector start_selector); |
|
|
|
/* Returns the function pointer for this handler. It is the client's |
|
* responsibility to cast to the correct function type before calling it. */ |
|
GenericFunction* GetHandler(Selector selector); |
|
|
|
/* Sets the given attributes to the attributes for this selector. */ |
|
bool GetAttributes(Selector selector, HandlerAttributes* attr); |
|
|
|
/* Returns the handler data that was registered with this handler. */ |
|
const void* GetHandlerData(Selector selector); |
|
|
|
/* Could add any of the following functions as-needed, with some minor |
|
* implementation changes: |
|
* |
|
* const FieldDef* GetFieldDef(Selector selector); |
|
* static bool IsSequence(Selector selector); */ |
|
|
|
private: |
|
UPB_DISALLOW_POD_OPS(Handlers, upb::Handlers) |
|
|
|
friend UPB_INLINE GenericFunction *::upb_handlers_gethandler( |
|
const upb_handlers *h, upb_selector_t s); |
|
friend UPB_INLINE const void *::upb_handlers_gethandlerdata( |
|
const upb_handlers *h, upb_selector_t s); |
|
#else |
|
struct upb_handlers { |
|
#endif |
|
upb_refcounted base; |
|
|
|
const upb_msgdef *msg; |
|
const upb_handlers **sub; |
|
const void *top_closure_type; |
|
upb_inttable cleanup_; |
|
upb_status status_; /* Used only when mutable. */ |
|
upb_handlers_tabent table[1]; /* Dynamically-sized field handler array. */ |
|
}; |
|
|
|
#ifdef __cplusplus |
|
|
|
namespace upb { |
|
|
|
/* Convenience macros for creating a Handler object that is wrapped with a |
|
* type-safe wrapper function that converts the "void*" parameters/returns |
|
* of the underlying C API into nice C++ function. |
|
* |
|
* Sample usage: |
|
* void OnValue1(MyClosure* c, const MyHandlerData* d, int32_t val) { |
|
* // do stuff ... |
|
* } |
|
* |
|
* // Handler that doesn't need any data bound to it. |
|
* void OnValue2(MyClosure* c, int32_t val) { |
|
* // do stuff ... |
|
* } |
|
* |
|
* // Handler that returns bool so it can return failure if necessary. |
|
* bool OnValue3(MyClosure* c, int32_t val) { |
|
* // do stuff ... |
|
* return ok; |
|
* } |
|
* |
|
* // Member function handler. |
|
* class MyClosure { |
|
* public: |
|
* void OnValue(int32_t val) { |
|
* // do stuff ... |
|
* } |
|
* }; |
|
* |
|
* // Takes ownership of the MyHandlerData. |
|
* handlers->SetInt32Handler(f1, UpbBind(OnValue1, new MyHandlerData(...))); |
|
* handlers->SetInt32Handler(f2, UpbMakeHandler(OnValue2)); |
|
* handlers->SetInt32Handler(f1, UpbMakeHandler(OnValue3)); |
|
* handlers->SetInt32Handler(f2, UpbMakeHandler(&MyClosure::OnValue)); |
|
*/ |
|
|
|
#ifdef UPB_CXX11 |
|
|
|
/* In C++11, the "template" disambiguator can appear even outside templates, |
|
* so all calls can safely use this pair of macros. */ |
|
|
|
#define UpbMakeHandler(f) upb::MatchFunc(f).template GetFunc<f>() |
|
|
|
/* We have to be careful to only evaluate "d" once. */ |
|
#define UpbBind(f, d) upb::MatchFunc(f).template GetFunc<f>((d)) |
|
|
|
#else |
|
|
|
/* Prior to C++11, the "template" disambiguator may only appear inside a |
|
* template, so the regular macro must not use "template" */ |
|
|
|
#define UpbMakeHandler(f) upb::MatchFunc(f).GetFunc<f>() |
|
|
|
#define UpbBind(f, d) upb::MatchFunc(f).GetFunc<f>((d)) |
|
|
|
#endif /* UPB_CXX11 */ |
|
|
|
/* This macro must be used in C++98 for calls from inside a template. But we |
|
* define this variant in all cases; code that wants to be compatible with both |
|
* C++98 and C++11 should always use this macro when calling from a template. */ |
|
#define UpbMakeHandlerT(f) upb::MatchFunc(f).template GetFunc<f>() |
|
|
|
/* We have to be careful to only evaluate "d" once. */ |
|
#define UpbBindT(f, d) upb::MatchFunc(f).template GetFunc<f>((d)) |
|
|
|
/* Handler: a struct that contains the (handler, data, deleter) tuple that is |
|
* used to register all handlers. Users can Make() these directly but it's |
|
* more convenient to use the UpbMakeHandler/UpbBind macros above. */ |
|
template <class T> class Handler { |
|
public: |
|
/* The underlying, handler function signature that upb uses internally. */ |
|
typedef T FuncPtr; |
|
|
|
/* Intentionally implicit. */ |
|
template <class F> Handler(F func); |
|
~Handler(); |
|
|
|
private: |
|
void AddCleanup(Handlers* h) const { |
|
if (cleanup_func_) { |
|
bool ok = h->AddCleanup(cleanup_data_, cleanup_func_); |
|
UPB_ASSERT_VAR(ok, ok); |
|
} |
|
} |
|
|
|
UPB_DISALLOW_COPY_AND_ASSIGN(Handler) |
|
friend class Handlers; |
|
FuncPtr handler_; |
|
mutable HandlerAttributes attr_; |
|
mutable bool registered_; |
|
void *cleanup_data_; |
|
upb_handlerfree *cleanup_func_; |
|
}; |
|
|
|
} /* namespace upb */ |
|
|
|
#endif /* __cplusplus */ |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
/* Native C API. */ |
|
|
|
/* Handler function typedefs. */ |
|
typedef bool upb_startmsg_handlerfunc(void *c, const void*); |
|
typedef bool upb_endmsg_handlerfunc(void *c, const void *, upb_status *status); |
|
typedef void* upb_startfield_handlerfunc(void *c, const void *hd); |
|
typedef bool upb_endfield_handlerfunc(void *c, const void *hd); |
|
typedef bool upb_int32_handlerfunc(void *c, const void *hd, int32_t val); |
|
typedef bool upb_int64_handlerfunc(void *c, const void *hd, int64_t val); |
|
typedef bool upb_uint32_handlerfunc(void *c, const void *hd, uint32_t val); |
|
typedef bool upb_uint64_handlerfunc(void *c, const void *hd, uint64_t val); |
|
typedef bool upb_float_handlerfunc(void *c, const void *hd, float val); |
|
typedef bool upb_double_handlerfunc(void *c, const void *hd, double val); |
|
typedef bool upb_bool_handlerfunc(void *c, const void *hd, bool val); |
|
typedef void *upb_startstr_handlerfunc(void *c, const void *hd, |
|
size_t size_hint); |
|
typedef size_t upb_string_handlerfunc(void *c, const void *hd, const char *buf, |
|
size_t n, const upb_bufhandle* handle); |
|
|
|
/* upb_bufhandle */ |
|
size_t upb_bufhandle_objofs(const upb_bufhandle *h); |
|
|
|
/* upb_handlerattr */ |
|
void upb_handlerattr_init(upb_handlerattr *attr); |
|
void upb_handlerattr_uninit(upb_handlerattr *attr); |
|
|
|
bool upb_handlerattr_sethandlerdata(upb_handlerattr *attr, const void *hd); |
|
bool upb_handlerattr_setclosuretype(upb_handlerattr *attr, const void *type); |
|
const void *upb_handlerattr_closuretype(const upb_handlerattr *attr); |
|
bool upb_handlerattr_setreturnclosuretype(upb_handlerattr *attr, |
|
const void *type); |
|
const void *upb_handlerattr_returnclosuretype(const upb_handlerattr *attr); |
|
bool upb_handlerattr_setalwaysok(upb_handlerattr *attr, bool alwaysok); |
|
bool upb_handlerattr_alwaysok(const upb_handlerattr *attr); |
|
|
|
UPB_INLINE const void *upb_handlerattr_handlerdata( |
|
const upb_handlerattr *attr) { |
|
return attr->handler_data_; |
|
} |
|
|
|
/* upb_handlers */ |
|
typedef void upb_handlers_callback(const void *closure, upb_handlers *h); |
|
upb_handlers *upb_handlers_new(const upb_msgdef *m, |
|
const void *owner); |
|
const upb_handlers *upb_handlers_newfrozen(const upb_msgdef *m, |
|
const void *owner, |
|
upb_handlers_callback *callback, |
|
const void *closure); |
|
|
|
/* Include refcounted methods like upb_handlers_ref(). */ |
|
UPB_REFCOUNTED_CMETHODS(upb_handlers, upb_handlers_upcast) |
|
|
|
const upb_status *upb_handlers_status(upb_handlers *h); |
|
void upb_handlers_clearerr(upb_handlers *h); |
|
const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h); |
|
bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *hfree); |
|
|
|
bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func, |
|
upb_handlerattr *attr); |
|
bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func, |
|
upb_handlerattr *attr); |
|
bool upb_handlers_setint32(upb_handlers *h, const upb_fielddef *f, |
|
upb_int32_handlerfunc *func, upb_handlerattr *attr); |
|
bool upb_handlers_setint64(upb_handlers *h, const upb_fielddef *f, |
|
upb_int64_handlerfunc *func, upb_handlerattr *attr); |
|
bool upb_handlers_setuint32(upb_handlers *h, const upb_fielddef *f, |
|
upb_uint32_handlerfunc *func, |
|
upb_handlerattr *attr); |
|
bool upb_handlers_setuint64(upb_handlers *h, const upb_fielddef *f, |
|
upb_uint64_handlerfunc *func, |
|
upb_handlerattr *attr); |
|
bool upb_handlers_setfloat(upb_handlers *h, const upb_fielddef *f, |
|
upb_float_handlerfunc *func, upb_handlerattr *attr); |
|
bool upb_handlers_setdouble(upb_handlers *h, const upb_fielddef *f, |
|
upb_double_handlerfunc *func, |
|
upb_handlerattr *attr); |
|
bool upb_handlers_setbool(upb_handlers *h, const upb_fielddef *f, |
|
upb_bool_handlerfunc *func, |
|
upb_handlerattr *attr); |
|
bool upb_handlers_setstartstr(upb_handlers *h, const upb_fielddef *f, |
|
upb_startstr_handlerfunc *func, |
|
upb_handlerattr *attr); |
|
bool upb_handlers_setstring(upb_handlers *h, const upb_fielddef *f, |
|
upb_string_handlerfunc *func, |
|
upb_handlerattr *attr); |
|
bool upb_handlers_setendstr(upb_handlers *h, const upb_fielddef *f, |
|
upb_endfield_handlerfunc *func, |
|
upb_handlerattr *attr); |
|
bool upb_handlers_setstartseq(upb_handlers *h, const upb_fielddef *f, |
|
upb_startfield_handlerfunc *func, |
|
upb_handlerattr *attr); |
|
bool upb_handlers_setstartsubmsg(upb_handlers *h, const upb_fielddef *f, |
|
upb_startfield_handlerfunc *func, |
|
upb_handlerattr *attr); |
|
bool upb_handlers_setendsubmsg(upb_handlers *h, const upb_fielddef *f, |
|
upb_endfield_handlerfunc *func, |
|
upb_handlerattr *attr); |
|
bool upb_handlers_setendseq(upb_handlers *h, const upb_fielddef *f, |
|
upb_endfield_handlerfunc *func, |
|
upb_handlerattr *attr); |
|
|
|
bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f, |
|
const upb_handlers *sub); |
|
const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h, |
|
const upb_fielddef *f); |
|
const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h, |
|
upb_selector_t sel); |
|
|
|
UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h, |
|
upb_selector_t s) { |
|
return (upb_func *)h->table[s].func; |
|
} |
|
|
|
bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t s, |
|
upb_handlerattr *attr); |
|
|
|
UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h, |
|
upb_selector_t s) { |
|
return upb_handlerattr_handlerdata(&h->table[s].attr); |
|
} |
|
|
|
#ifdef __cplusplus |
|
|
|
/* Handler types for single fields. |
|
* Right now we only have one for TYPE_BYTES but ones for other types |
|
* should follow. |
|
* |
|
* These follow the same handlers protocol for fields of a message. */ |
|
class upb::BytesHandler { |
|
public: |
|
BytesHandler(); |
|
~BytesHandler(); |
|
#else |
|
struct upb_byteshandler { |
|
#endif |
|
upb_handlers_tabent table[3]; |
|
}; |
|
|
|
void upb_byteshandler_init(upb_byteshandler *h); |
|
|
|
/* Caller must ensure that "d" outlives the handlers. |
|
* TODO(haberman): should this have a "freeze" operation? It's not necessary |
|
* for memory management, but could be useful to force immutability and provide |
|
* a convenient moment to verify that all registration succeeded. */ |
|
bool upb_byteshandler_setstartstr(upb_byteshandler *h, |
|
upb_startstr_handlerfunc *func, void *d); |
|
bool upb_byteshandler_setstring(upb_byteshandler *h, |
|
upb_string_handlerfunc *func, void *d); |
|
bool upb_byteshandler_setendstr(upb_byteshandler *h, |
|
upb_endfield_handlerfunc *func, void *d); |
|
|
|
/* "Static" methods */ |
|
bool upb_handlers_freeze(upb_handlers *const *handlers, int n, upb_status *s); |
|
upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f); |
|
bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type, |
|
upb_selector_t *s); |
|
UPB_INLINE upb_selector_t upb_handlers_getendselector(upb_selector_t start) { |
|
return start + 1; |
|
} |
|
|
|
/* Internal-only. */ |
|
uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f); |
|
uint32_t upb_handlers_selectorcount(const upb_fielddef *f); |
|
|
|
UPB_END_EXTERN_C |
|
|
|
/* |
|
** Inline definitions for handlers.h, which are particularly long and a bit |
|
** tricky. |
|
*/ |
|
|
|
#ifndef UPB_HANDLERS_INL_H_ |
|
#define UPB_HANDLERS_INL_H_ |
|
|
|
#include <limits.h> |
|
|
|
/* C inline methods. */ |
|
|
|
/* upb_bufhandle */ |
|
UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h) { |
|
h->obj_ = NULL; |
|
h->objtype_ = NULL; |
|
h->buf_ = NULL; |
|
h->objofs_ = 0; |
|
} |
|
UPB_INLINE void upb_bufhandle_uninit(upb_bufhandle *h) { |
|
UPB_UNUSED(h); |
|
} |
|
UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj, |
|
const void *type) { |
|
h->obj_ = obj; |
|
h->objtype_ = type; |
|
} |
|
UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf, |
|
size_t ofs) { |
|
h->buf_ = buf; |
|
h->objofs_ = ofs; |
|
} |
|
UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h) { |
|
return h->obj_; |
|
} |
|
UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h) { |
|
return h->objtype_; |
|
} |
|
UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h) { |
|
return h->buf_; |
|
} |
|
|
|
|
|
#ifdef __cplusplus |
|
|
|
/* Type detection and typedefs for integer types. |
|
* For platforms where there are multiple 32-bit or 64-bit types, we need to be |
|
* able to enumerate them so we can properly create overloads for all variants. |
|
* |
|
* If any platform existed where there were three integer types with the same |
|
* size, this would have to become more complicated. For example, short, int, |
|
* and long could all be 32-bits. Even more diabolically, short, int, long, |
|
* and long long could all be 64 bits and still be standard-compliant. |
|
* However, few platforms are this strange, and it's unlikely that upb will be |
|
* used on the strangest ones. */ |
|
|
|
/* Can't count on stdint.h limits like INT32_MAX, because in C++ these are |
|
* only defined when __STDC_LIMIT_MACROS are defined before the *first* include |
|
* of stdint.h. We can't guarantee that someone else didn't include these first |
|
* without defining __STDC_LIMIT_MACROS. */ |
|
#define UPB_INT32_MAX 0x7fffffffLL |
|
#define UPB_INT32_MIN (-UPB_INT32_MAX - 1) |
|
#define UPB_INT64_MAX 0x7fffffffffffffffLL |
|
#define UPB_INT64_MIN (-UPB_INT64_MAX - 1) |
|
|
|
#if INT_MAX == UPB_INT32_MAX && INT_MIN == UPB_INT32_MIN |
|
#define UPB_INT_IS_32BITS 1 |
|
#endif |
|
|
|
#if LONG_MAX == UPB_INT32_MAX && LONG_MIN == UPB_INT32_MIN |
|
#define UPB_LONG_IS_32BITS 1 |
|
#endif |
|
|
|
#if LONG_MAX == UPB_INT64_MAX && LONG_MIN == UPB_INT64_MIN |
|
#define UPB_LONG_IS_64BITS 1 |
|
#endif |
|
|
|
#if LLONG_MAX == UPB_INT64_MAX && LLONG_MIN == UPB_INT64_MIN |
|
#define UPB_LLONG_IS_64BITS 1 |
|
#endif |
|
|
|
/* We use macros instead of typedefs so we can undefine them later and avoid |
|
* leaking them outside this header file. */ |
|
#if UPB_INT_IS_32BITS |
|
#define UPB_INT32_T int |
|
#define UPB_UINT32_T unsigned int |
|
|
|
#if UPB_LONG_IS_32BITS |
|
#define UPB_TWO_32BIT_TYPES 1 |
|
#define UPB_INT32ALT_T long |
|
#define UPB_UINT32ALT_T unsigned long |
|
#endif /* UPB_LONG_IS_32BITS */ |
|
|
|
#elif UPB_LONG_IS_32BITS /* && !UPB_INT_IS_32BITS */ |
|
#define UPB_INT32_T long |
|
#define UPB_UINT32_T unsigned long |
|
#endif /* UPB_INT_IS_32BITS */ |
|
|
|
|
|
#if UPB_LONG_IS_64BITS |
|
#define UPB_INT64_T long |
|
#define UPB_UINT64_T unsigned long |
|
|
|
#if UPB_LLONG_IS_64BITS |
|
#define UPB_TWO_64BIT_TYPES 1 |
|
#define UPB_INT64ALT_T long long |
|
#define UPB_UINT64ALT_T unsigned long long |
|
#endif /* UPB_LLONG_IS_64BITS */ |
|
|
|
#elif UPB_LLONG_IS_64BITS /* && !UPB_LONG_IS_64BITS */ |
|
#define UPB_INT64_T long long |
|
#define UPB_UINT64_T unsigned long long |
|
#endif /* UPB_LONG_IS_64BITS */ |
|
|
|
#undef UPB_INT32_MAX |
|
#undef UPB_INT32_MIN |
|
#undef UPB_INT64_MAX |
|
#undef UPB_INT64_MIN |
|
#undef UPB_INT_IS_32BITS |
|
#undef UPB_LONG_IS_32BITS |
|
#undef UPB_LONG_IS_64BITS |
|
#undef UPB_LLONG_IS_64BITS |
|
|
|
|
|
namespace upb { |
|
|
|
typedef void CleanupFunc(void *ptr); |
|
|
|
/* Template to remove "const" from "const T*" and just return "T*". |
|
* |
|
* We define a nonsense default because otherwise it will fail to instantiate as |
|
* a function parameter type even in cases where we don't expect any caller to |
|
* actually match the overload. */ |
|
class CouldntRemoveConst {}; |
|
template <class T> struct remove_constptr { typedef CouldntRemoveConst type; }; |
|
template <class T> struct remove_constptr<const T *> { typedef T *type; }; |
|
|
|
/* Template that we use below to remove a template specialization from |
|
* consideration if it matches a specific type. */ |
|
template <class T, class U> struct disable_if_same { typedef void Type; }; |
|
template <class T> struct disable_if_same<T, T> {}; |
|
|
|
template <class T> void DeletePointer(void *p) { delete static_cast<T>(p); } |
|
|
|
template <class T1, class T2> |
|
struct FirstUnlessVoidOrBool { |
|
typedef T1 value; |
|
}; |
|
|
|
template <class T2> |
|
struct FirstUnlessVoidOrBool<void, T2> { |
|
typedef T2 value; |
|
}; |
|
|
|
template <class T2> |
|
struct FirstUnlessVoidOrBool<bool, T2> { |
|
typedef T2 value; |
|
}; |
|
|
|
template<class T, class U> |
|
struct is_same { |
|
static bool value; |
|
}; |
|
|
|
template<class T> |
|
struct is_same<T, T> { |
|
static bool value; |
|
}; |
|
|
|
template<class T, class U> |
|
bool is_same<T, U>::value = false; |
|
|
|
template<class T> |
|
bool is_same<T, T>::value = true; |
|
|
|
/* FuncInfo *******************************************************************/ |
|
|
|
/* Info about the user's original, pre-wrapped function. */ |
|
template <class C, class R = void> |
|
struct FuncInfo { |
|
/* The type of the closure that the function takes (its first param). */ |
|
typedef C Closure; |
|
|
|
/* The return type. */ |
|
typedef R Return; |
|
}; |
|
|
|
/* Func ***********************************************************************/ |
|
|
|
/* Func1, Func2, Func3: Template classes representing a function and its |
|
* signature. |
|
* |
|
* Since the function is a template parameter, calling the function can be |
|
* inlined at compile-time and does not require a function pointer at runtime. |
|
* These functions are not bound to a handler data so have no data or cleanup |
|
* handler. */ |
|
struct UnboundFunc { |
|
CleanupFunc *GetCleanup() { return NULL; } |
|
void *GetData() { return NULL; } |
|
}; |
|
|
|
template <class R, class P1, R F(P1), class I> |
|
struct Func1 : public UnboundFunc { |
|
typedef R Return; |
|
typedef I FuncInfo; |
|
static R Call(P1 p1) { return F(p1); } |
|
}; |
|
|
|
template <class R, class P1, class P2, R F(P1, P2), class I> |
|
struct Func2 : public UnboundFunc { |
|
typedef R Return; |
|
typedef I FuncInfo; |
|
static R Call(P1 p1, P2 p2) { return F(p1, p2); } |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I> |
|
struct Func3 : public UnboundFunc { |
|
typedef R Return; |
|
typedef I FuncInfo; |
|
static R Call(P1 p1, P2 p2, P3 p3) { return F(p1, p2, p3); } |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4), |
|
class I> |
|
struct Func4 : public UnboundFunc { |
|
typedef R Return; |
|
typedef I FuncInfo; |
|
static R Call(P1 p1, P2 p2, P3 p3, P4 p4) { return F(p1, p2, p3, p4); } |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4, class P5, |
|
R F(P1, P2, P3, P4, P5), class I> |
|
struct Func5 : public UnboundFunc { |
|
typedef R Return; |
|
typedef I FuncInfo; |
|
static R Call(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) { |
|
return F(p1, p2, p3, p4, p5); |
|
} |
|
}; |
|
|
|
/* BoundFunc ******************************************************************/ |
|
|
|
/* BoundFunc2, BoundFunc3: Like Func2/Func3 except also contains a value that |
|
* shall be bound to the function's second parameter. |
|
* |
|
* Note that the second parameter is a const pointer, but our stored bound value |
|
* is non-const so we can free it when the handlers are destroyed. */ |
|
template <class T> |
|
struct BoundFunc { |
|
typedef typename remove_constptr<T>::type MutableP2; |
|
explicit BoundFunc(MutableP2 data_) : data(data_) {} |
|
CleanupFunc *GetCleanup() { return &DeletePointer<MutableP2>; } |
|
MutableP2 GetData() { return data; } |
|
MutableP2 data; |
|
}; |
|
|
|
template <class R, class P1, class P2, R F(P1, P2), class I> |
|
struct BoundFunc2 : public BoundFunc<P2> { |
|
typedef BoundFunc<P2> Base; |
|
typedef I FuncInfo; |
|
explicit BoundFunc2(typename Base::MutableP2 arg) : Base(arg) {} |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I> |
|
struct BoundFunc3 : public BoundFunc<P2> { |
|
typedef BoundFunc<P2> Base; |
|
typedef I FuncInfo; |
|
explicit BoundFunc3(typename Base::MutableP2 arg) : Base(arg) {} |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4), |
|
class I> |
|
struct BoundFunc4 : public BoundFunc<P2> { |
|
typedef BoundFunc<P2> Base; |
|
typedef I FuncInfo; |
|
explicit BoundFunc4(typename Base::MutableP2 arg) : Base(arg) {} |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4, class P5, |
|
R F(P1, P2, P3, P4, P5), class I> |
|
struct BoundFunc5 : public BoundFunc<P2> { |
|
typedef BoundFunc<P2> Base; |
|
typedef I FuncInfo; |
|
explicit BoundFunc5(typename Base::MutableP2 arg) : Base(arg) {} |
|
}; |
|
|
|
/* FuncSig ********************************************************************/ |
|
|
|
/* FuncSig1, FuncSig2, FuncSig3: template classes reflecting a function |
|
* *signature*, but without a specific function attached. |
|
* |
|
* These classes contain member functions that can be invoked with a |
|
* specific function to return a Func/BoundFunc class. */ |
|
template <class R, class P1> |
|
struct FuncSig1 { |
|
template <R F(P1)> |
|
Func1<R, P1, F, FuncInfo<P1, R> > GetFunc() { |
|
return Func1<R, P1, F, FuncInfo<P1, R> >(); |
|
} |
|
}; |
|
|
|
template <class R, class P1, class P2> |
|
struct FuncSig2 { |
|
template <R F(P1, P2)> |
|
Func2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc() { |
|
return Func2<R, P1, P2, F, FuncInfo<P1, R> >(); |
|
} |
|
|
|
template <R F(P1, P2)> |
|
BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc( |
|
typename remove_constptr<P2>::type param2) { |
|
return BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> >(param2); |
|
} |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3> |
|
struct FuncSig3 { |
|
template <R F(P1, P2, P3)> |
|
Func3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc() { |
|
return Func3<R, P1, P2, P3, F, FuncInfo<P1, R> >(); |
|
} |
|
|
|
template <R F(P1, P2, P3)> |
|
BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc( |
|
typename remove_constptr<P2>::type param2) { |
|
return BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> >(param2); |
|
} |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4> |
|
struct FuncSig4 { |
|
template <R F(P1, P2, P3, P4)> |
|
Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc() { |
|
return Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >(); |
|
} |
|
|
|
template <R F(P1, P2, P3, P4)> |
|
BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc( |
|
typename remove_constptr<P2>::type param2) { |
|
return BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >(param2); |
|
} |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4, class P5> |
|
struct FuncSig5 { |
|
template <R F(P1, P2, P3, P4, P5)> |
|
Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc() { |
|
return Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >(); |
|
} |
|
|
|
template <R F(P1, P2, P3, P4, P5)> |
|
BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc( |
|
typename remove_constptr<P2>::type param2) { |
|
return BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >(param2); |
|
} |
|
}; |
|
|
|
/* Overloaded template function that can construct the appropriate FuncSig* |
|
* class given a function pointer by deducing the template parameters. */ |
|
template <class R, class P1> |
|
inline FuncSig1<R, P1> MatchFunc(R (*f)(P1)) { |
|
UPB_UNUSED(f); /* Only used for template parameter deduction. */ |
|
return FuncSig1<R, P1>(); |
|
} |
|
|
|
template <class R, class P1, class P2> |
|
inline FuncSig2<R, P1, P2> MatchFunc(R (*f)(P1, P2)) { |
|
UPB_UNUSED(f); /* Only used for template parameter deduction. */ |
|
return FuncSig2<R, P1, P2>(); |
|
} |
|
|
|
template <class R, class P1, class P2, class P3> |
|
inline FuncSig3<R, P1, P2, P3> MatchFunc(R (*f)(P1, P2, P3)) { |
|
UPB_UNUSED(f); /* Only used for template parameter deduction. */ |
|
return FuncSig3<R, P1, P2, P3>(); |
|
} |
|
|
|
template <class R, class P1, class P2, class P3, class P4> |
|
inline FuncSig4<R, P1, P2, P3, P4> MatchFunc(R (*f)(P1, P2, P3, P4)) { |
|
UPB_UNUSED(f); /* Only used for template parameter deduction. */ |
|
return FuncSig4<R, P1, P2, P3, P4>(); |
|
} |
|
|
|
template <class R, class P1, class P2, class P3, class P4, class P5> |
|
inline FuncSig5<R, P1, P2, P3, P4, P5> MatchFunc(R (*f)(P1, P2, P3, P4, P5)) { |
|
UPB_UNUSED(f); /* Only used for template parameter deduction. */ |
|
return FuncSig5<R, P1, P2, P3, P4, P5>(); |
|
} |
|
|
|
/* MethodSig ******************************************************************/ |
|
|
|
/* CallMethod*: a function template that calls a given method. */ |
|
template <class R, class C, R (C::*F)()> |
|
R CallMethod0(C *obj) { |
|
return ((*obj).*F)(); |
|
} |
|
|
|
template <class R, class C, class P1, R (C::*F)(P1)> |
|
R CallMethod1(C *obj, P1 arg1) { |
|
return ((*obj).*F)(arg1); |
|
} |
|
|
|
template <class R, class C, class P1, class P2, R (C::*F)(P1, P2)> |
|
R CallMethod2(C *obj, P1 arg1, P2 arg2) { |
|
return ((*obj).*F)(arg1, arg2); |
|
} |
|
|
|
template <class R, class C, class P1, class P2, class P3, R (C::*F)(P1, P2, P3)> |
|
R CallMethod3(C *obj, P1 arg1, P2 arg2, P3 arg3) { |
|
return ((*obj).*F)(arg1, arg2, arg3); |
|
} |
|
|
|
template <class R, class C, class P1, class P2, class P3, class P4, |
|
R (C::*F)(P1, P2, P3, P4)> |
|
R CallMethod4(C *obj, P1 arg1, P2 arg2, P3 arg3, P4 arg4) { |
|
return ((*obj).*F)(arg1, arg2, arg3, arg4); |
|
} |
|
|
|
/* MethodSig: like FuncSig, but for member functions. |
|
* |
|
* GetFunc() returns a normal FuncN object, so after calling GetFunc() no |
|
* more logic is required to special-case methods. */ |
|
template <class R, class C> |
|
struct MethodSig0 { |
|
template <R (C::*F)()> |
|
Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> > GetFunc() { |
|
return Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> >(); |
|
} |
|
}; |
|
|
|
template <class R, class C, class P1> |
|
struct MethodSig1 { |
|
template <R (C::*F)(P1)> |
|
Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc() { |
|
return Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >(); |
|
} |
|
|
|
template <R (C::*F)(P1)> |
|
BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc( |
|
typename remove_constptr<P1>::type param1) { |
|
return BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >( |
|
param1); |
|
} |
|
}; |
|
|
|
template <class R, class C, class P1, class P2> |
|
struct MethodSig2 { |
|
template <R (C::*F)(P1, P2)> |
|
Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> > |
|
GetFunc() { |
|
return Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, |
|
FuncInfo<C *, R> >(); |
|
} |
|
|
|
template <R (C::*F)(P1, P2)> |
|
BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> > |
|
GetFunc(typename remove_constptr<P1>::type param1) { |
|
return BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, |
|
FuncInfo<C *, R> >(param1); |
|
} |
|
}; |
|
|
|
template <class R, class C, class P1, class P2, class P3> |
|
struct MethodSig3 { |
|
template <R (C::*F)(P1, P2, P3)> |
|
Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, FuncInfo<C *, R> > |
|
GetFunc() { |
|
return Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, |
|
FuncInfo<C *, R> >(); |
|
} |
|
|
|
template <R (C::*F)(P1, P2, P3)> |
|
BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, |
|
FuncInfo<C *, R> > |
|
GetFunc(typename remove_constptr<P1>::type param1) { |
|
return BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, |
|
FuncInfo<C *, R> >(param1); |
|
} |
|
}; |
|
|
|
template <class R, class C, class P1, class P2, class P3, class P4> |
|
struct MethodSig4 { |
|
template <R (C::*F)(P1, P2, P3, P4)> |
|
Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>, |
|
FuncInfo<C *, R> > |
|
GetFunc() { |
|
return Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>, |
|
FuncInfo<C *, R> >(); |
|
} |
|
|
|
template <R (C::*F)(P1, P2, P3, P4)> |
|
BoundFunc5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>, |
|
FuncInfo<C *, R> > |
|
GetFunc(typename remove_constptr<P1>::type param1) { |
|
return BoundFunc5<R, C *, P1, P2, P3, P4, |
|
CallMethod4<R, C, P1, P2, P3, P4, F>, FuncInfo<C *, R> >( |
|
param1); |
|
} |
|
}; |
|
|
|
template <class R, class C> |
|
inline MethodSig0<R, C> MatchFunc(R (C::*f)()) { |
|
UPB_UNUSED(f); /* Only used for template parameter deduction. */ |
|
return MethodSig0<R, C>(); |
|
} |
|
|
|
template <class R, class C, class P1> |
|
inline MethodSig1<R, C, P1> MatchFunc(R (C::*f)(P1)) { |
|
UPB_UNUSED(f); /* Only used for template parameter deduction. */ |
|
return MethodSig1<R, C, P1>(); |
|
} |
|
|
|
template <class R, class C, class P1, class P2> |
|
inline MethodSig2<R, C, P1, P2> MatchFunc(R (C::*f)(P1, P2)) { |
|
UPB_UNUSED(f); /* Only used for template parameter deduction. */ |
|
return MethodSig2<R, C, P1, P2>(); |
|
} |
|
|
|
template <class R, class C, class P1, class P2, class P3> |
|
inline MethodSig3<R, C, P1, P2, P3> MatchFunc(R (C::*f)(P1, P2, P3)) { |
|
UPB_UNUSED(f); /* Only used for template parameter deduction. */ |
|
return MethodSig3<R, C, P1, P2, P3>(); |
|
} |
|
|
|
template <class R, class C, class P1, class P2, class P3, class P4> |
|
inline MethodSig4<R, C, P1, P2, P3, P4> MatchFunc(R (C::*f)(P1, P2, P3, P4)) { |
|
UPB_UNUSED(f); /* Only used for template parameter deduction. */ |
|
return MethodSig4<R, C, P1, P2, P3, P4>(); |
|
} |
|
|
|
/* MaybeWrapReturn ************************************************************/ |
|
|
|
/* Template class that attempts to wrap the return value of the function so it |
|
* matches the expected type. There are two main adjustments it may make: |
|
* |
|
* 1. If the function returns void, make it return the expected type and with |
|
* a value that always indicates success. |
|
* 2. If the function returns bool, make it return the expected type with a |
|
* value that indicates success or failure. |
|
* |
|
* The "expected type" for return is: |
|
* 1. void* for start handlers. If the closure parameter has a different type |
|
* we will cast it to void* for the return in the success case. |
|
* 2. size_t for string buffer handlers. |
|
* 3. bool for everything else. */ |
|
|
|
/* Template parameters are FuncN type and desired return type. */ |
|
template <class F, class R, class Enable = void> |
|
struct MaybeWrapReturn; |
|
|
|
/* If the return type matches, return the given function unwrapped. */ |
|
template <class F> |
|
struct MaybeWrapReturn<F, typename F::Return> { |
|
typedef F Func; |
|
}; |
|
|
|
/* Function wrapper that munges the return value from void to (bool)true. */ |
|
template <class P1, class P2, void F(P1, P2)> |
|
bool ReturnTrue2(P1 p1, P2 p2) { |
|
F(p1, p2); |
|
return true; |
|
} |
|
|
|
template <class P1, class P2, class P3, void F(P1, P2, P3)> |
|
bool ReturnTrue3(P1 p1, P2 p2, P3 p3) { |
|
F(p1, p2, p3); |
|
return true; |
|
} |
|
|
|
/* Function wrapper that munges the return value from void to (void*)arg1 */ |
|
template <class P1, class P2, void F(P1, P2)> |
|
void *ReturnClosure2(P1 p1, P2 p2) { |
|
F(p1, p2); |
|
return p1; |
|
} |
|
|
|
template <class P1, class P2, class P3, void F(P1, P2, P3)> |
|
void *ReturnClosure3(P1 p1, P2 p2, P3 p3) { |
|
F(p1, p2, p3); |
|
return p1; |
|
} |
|
|
|
/* Function wrapper that munges the return value from R to void*. */ |
|
template <class R, class P1, class P2, R F(P1, P2)> |
|
void *CastReturnToVoidPtr2(P1 p1, P2 p2) { |
|
return F(p1, p2); |
|
} |
|
|
|
template <class R, class P1, class P2, class P3, R F(P1, P2, P3)> |
|
void *CastReturnToVoidPtr3(P1 p1, P2 p2, P3 p3) { |
|
return F(p1, p2, p3); |
|
} |
|
|
|
/* Function wrapper that munges the return value from bool to void*. */ |
|
template <class P1, class P2, bool F(P1, P2)> |
|
void *ReturnClosureOrBreak2(P1 p1, P2 p2) { |
|
return F(p1, p2) ? p1 : UPB_BREAK; |
|
} |
|
|
|
template <class P1, class P2, class P3, bool F(P1, P2, P3)> |
|
void *ReturnClosureOrBreak3(P1 p1, P2 p2, P3 p3) { |
|
return F(p1, p2, p3) ? p1 : UPB_BREAK; |
|
} |
|
|
|
/* For the string callback, which takes five params, returns the size param. */ |
|
template <class P1, class P2, |
|
void F(P1, P2, const char *, size_t, const BufferHandle *)> |
|
size_t ReturnStringLen(P1 p1, P2 p2, const char *p3, size_t p4, |
|
const BufferHandle *p5) { |
|
F(p1, p2, p3, p4, p5); |
|
return p4; |
|
} |
|
|
|
/* For the string callback, which takes five params, returns the size param or |
|
* zero. */ |
|
template <class P1, class P2, |
|
bool F(P1, P2, const char *, size_t, const BufferHandle *)> |
|
size_t ReturnNOr0(P1 p1, P2 p2, const char *p3, size_t p4, |
|
const BufferHandle *p5) { |
|
return F(p1, p2, p3, p4, p5) ? p4 : 0; |
|
} |
|
|
|
/* If we have a function returning void but want a function returning bool, wrap |
|
* it in a function that returns true. */ |
|
template <class P1, class P2, void F(P1, P2), class I> |
|
struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, bool> { |
|
typedef Func2<bool, P1, P2, ReturnTrue2<P1, P2, F>, I> Func; |
|
}; |
|
|
|
template <class P1, class P2, class P3, void F(P1, P2, P3), class I> |
|
struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, bool> { |
|
typedef Func3<bool, P1, P2, P3, ReturnTrue3<P1, P2, P3, F>, I> Func; |
|
}; |
|
|
|
/* If our function returns void but we want one returning void*, wrap it in a |
|
* function that returns the first argument. */ |
|
template <class P1, class P2, void F(P1, P2), class I> |
|
struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, void *> { |
|
typedef Func2<void *, P1, P2, ReturnClosure2<P1, P2, F>, I> Func; |
|
}; |
|
|
|
template <class P1, class P2, class P3, void F(P1, P2, P3), class I> |
|
struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, void *> { |
|
typedef Func3<void *, P1, P2, P3, ReturnClosure3<P1, P2, P3, F>, I> Func; |
|
}; |
|
|
|
/* If our function returns R* but we want one returning void*, wrap it in a |
|
* function that casts to void*. */ |
|
template <class R, class P1, class P2, R *F(P1, P2), class I> |
|
struct MaybeWrapReturn<Func2<R *, P1, P2, F, I>, void *, |
|
typename disable_if_same<R *, void *>::Type> { |
|
typedef Func2<void *, P1, P2, CastReturnToVoidPtr2<R *, P1, P2, F>, I> Func; |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, R *F(P1, P2, P3), class I> |
|
struct MaybeWrapReturn<Func3<R *, P1, P2, P3, F, I>, void *, |
|
typename disable_if_same<R *, void *>::Type> { |
|
typedef Func3<void *, P1, P2, P3, CastReturnToVoidPtr3<R *, P1, P2, P3, F>, I> |
|
Func; |
|
}; |
|
|
|
/* If our function returns bool but we want one returning void*, wrap it in a |
|
* function that returns either the first param or UPB_BREAK. */ |
|
template <class P1, class P2, bool F(P1, P2), class I> |
|
struct MaybeWrapReturn<Func2<bool, P1, P2, F, I>, void *> { |
|
typedef Func2<void *, P1, P2, ReturnClosureOrBreak2<P1, P2, F>, I> Func; |
|
}; |
|
|
|
template <class P1, class P2, class P3, bool F(P1, P2, P3), class I> |
|
struct MaybeWrapReturn<Func3<bool, P1, P2, P3, F, I>, void *> { |
|
typedef Func3<void *, P1, P2, P3, ReturnClosureOrBreak3<P1, P2, P3, F>, I> |
|
Func; |
|
}; |
|
|
|
/* If our function returns void but we want one returning size_t, wrap it in a |
|
* function that returns the size argument. */ |
|
template <class P1, class P2, |
|
void F(P1, P2, const char *, size_t, const BufferHandle *), class I> |
|
struct MaybeWrapReturn< |
|
Func5<void, P1, P2, const char *, size_t, const BufferHandle *, F, I>, |
|
size_t> { |
|
typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *, |
|
ReturnStringLen<P1, P2, F>, I> Func; |
|
}; |
|
|
|
/* If our function returns bool but we want one returning size_t, wrap it in a |
|
* function that returns either 0 or the buf size. */ |
|
template <class P1, class P2, |
|
bool F(P1, P2, const char *, size_t, const BufferHandle *), class I> |
|
struct MaybeWrapReturn< |
|
Func5<bool, P1, P2, const char *, size_t, const BufferHandle *, F, I>, |
|
size_t> { |
|
typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *, |
|
ReturnNOr0<P1, P2, F>, I> Func; |
|
}; |
|
|
|
/* ConvertParams **************************************************************/ |
|
|
|
/* Template class that converts the function parameters if necessary, and |
|
* ignores the HandlerData parameter if appropriate. |
|
* |
|
* Template parameter is the are FuncN function type. */ |
|
template <class F, class T> |
|
struct ConvertParams; |
|
|
|
/* Function that discards the handler data parameter. */ |
|
template <class R, class P1, R F(P1)> |
|
R IgnoreHandlerData2(void *p1, const void *hd) { |
|
UPB_UNUSED(hd); |
|
return F(static_cast<P1>(p1)); |
|
} |
|
|
|
template <class R, class P1, class P2Wrapper, class P2Wrapped, |
|
R F(P1, P2Wrapped)> |
|
R IgnoreHandlerData3(void *p1, const void *hd, P2Wrapper p2) { |
|
UPB_UNUSED(hd); |
|
return F(static_cast<P1>(p1), p2); |
|
} |
|
|
|
template <class R, class P1, class P2, class P3, R F(P1, P2, P3)> |
|
R IgnoreHandlerData4(void *p1, const void *hd, P2 p2, P3 p3) { |
|
UPB_UNUSED(hd); |
|
return F(static_cast<P1>(p1), p2, p3); |
|
} |
|
|
|
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4)> |
|
R IgnoreHandlerData5(void *p1, const void *hd, P2 p2, P3 p3, P4 p4) { |
|
UPB_UNUSED(hd); |
|
return F(static_cast<P1>(p1), p2, p3, p4); |
|
} |
|
|
|
template <class R, class P1, R F(P1, const char*, size_t)> |
|
R IgnoreHandlerDataIgnoreHandle(void *p1, const void *hd, const char *p2, |
|
size_t p3, const BufferHandle *handle) { |
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(handle); |
|
return F(static_cast<P1>(p1), p2, p3); |
|
} |
|
|
|
/* Function that casts the handler data parameter. */ |
|
template <class R, class P1, class P2, R F(P1, P2)> |
|
R CastHandlerData2(void *c, const void *hd) { |
|
return F(static_cast<P1>(c), static_cast<P2>(hd)); |
|
} |
|
|
|
template <class R, class P1, class P2, class P3Wrapper, class P3Wrapped, |
|
R F(P1, P2, P3Wrapped)> |
|
R CastHandlerData3(void *c, const void *hd, P3Wrapper p3) { |
|
return F(static_cast<P1>(c), static_cast<P2>(hd), p3); |
|
} |
|
|
|
template <class R, class P1, class P2, class P3, class P4, class P5, |
|
R F(P1, P2, P3, P4, P5)> |
|
R CastHandlerData5(void *c, const void *hd, P3 p3, P4 p4, P5 p5) { |
|
return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4, p5); |
|
} |
|
|
|
template <class R, class P1, class P2, R F(P1, P2, const char *, size_t)> |
|
R CastHandlerDataIgnoreHandle(void *c, const void *hd, const char *p3, |
|
size_t p4, const BufferHandle *handle) { |
|
UPB_UNUSED(handle); |
|
return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4); |
|
} |
|
|
|
/* For unbound functions, ignore the handler data. */ |
|
template <class R, class P1, R F(P1), class I, class T> |
|
struct ConvertParams<Func1<R, P1, F, I>, T> { |
|
typedef Func2<R, void *, const void *, IgnoreHandlerData2<R, P1, F>, I> Func; |
|
}; |
|
|
|
template <class R, class P1, class P2, R F(P1, P2), class I, |
|
class R2, class P1_2, class P2_2, class P3_2> |
|
struct ConvertParams<Func2<R, P1, P2, F, I>, |
|
R2 (*)(P1_2, P2_2, P3_2)> { |
|
typedef Func3<R, void *, const void *, P3_2, |
|
IgnoreHandlerData3<R, P1, P3_2, P2, F>, I> Func; |
|
}; |
|
|
|
/* For StringBuffer only; this ignores both the handler data and the |
|
* BufferHandle. */ |
|
template <class R, class P1, R F(P1, const char *, size_t), class I, class T> |
|
struct ConvertParams<Func3<R, P1, const char *, size_t, F, I>, T> { |
|
typedef Func5<R, void *, const void *, const char *, size_t, |
|
const BufferHandle *, IgnoreHandlerDataIgnoreHandle<R, P1, F>, |
|
I> Func; |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4), |
|
class I, class T> |
|
struct ConvertParams<Func4<R, P1, P2, P3, P4, F, I>, T> { |
|
typedef Func5<R, void *, const void *, P2, P3, P4, |
|
IgnoreHandlerData5<R, P1, P2, P3, P4, F>, I> Func; |
|
}; |
|
|
|
/* For bound functions, cast the handler data. */ |
|
template <class R, class P1, class P2, R F(P1, P2), class I, class T> |
|
struct ConvertParams<BoundFunc2<R, P1, P2, F, I>, T> { |
|
typedef Func2<R, void *, const void *, CastHandlerData2<R, P1, P2, F>, I> |
|
Func; |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I, |
|
class R2, class P1_2, class P2_2, class P3_2> |
|
struct ConvertParams<BoundFunc3<R, P1, P2, P3, F, I>, |
|
R2 (*)(P1_2, P2_2, P3_2)> { |
|
typedef Func3<R, void *, const void *, P3_2, |
|
CastHandlerData3<R, P1, P2, P3_2, P3, F>, I> Func; |
|
}; |
|
|
|
/* For StringBuffer only; this ignores the BufferHandle. */ |
|
template <class R, class P1, class P2, R F(P1, P2, const char *, size_t), |
|
class I, class T> |
|
struct ConvertParams<BoundFunc4<R, P1, P2, const char *, size_t, F, I>, T> { |
|
typedef Func5<R, void *, const void *, const char *, size_t, |
|
const BufferHandle *, CastHandlerDataIgnoreHandle<R, P1, P2, F>, |
|
I> Func; |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4, class P5, |
|
R F(P1, P2, P3, P4, P5), class I, class T> |
|
struct ConvertParams<BoundFunc5<R, P1, P2, P3, P4, P5, F, I>, T> { |
|
typedef Func5<R, void *, const void *, P3, P4, P5, |
|
CastHandlerData5<R, P1, P2, P3, P4, P5, F>, I> Func; |
|
}; |
|
|
|
/* utype/ltype are upper/lower-case, ctype is canonical C type, vtype is |
|
* variant C type. */ |
|
#define TYPE_METHODS(utype, ltype, ctype, vtype) \ |
|
template <> struct CanonicalType<vtype> { \ |
|
typedef ctype Type; \ |
|
}; \ |
|
template <> \ |
|
inline bool Handlers::SetValueHandler<vtype>( \ |
|
const FieldDef *f, \ |
|
const Handlers::utype ## Handler& handler) { \ |
|
assert(!handler.registered_); \ |
|
handler.AddCleanup(this); \ |
|
handler.registered_ = true; \ |
|
return upb_handlers_set##ltype(this, f, handler.handler_, &handler.attr_); \ |
|
} \ |
|
|
|
TYPE_METHODS(Double, double, double, double) |
|
TYPE_METHODS(Float, float, float, float) |
|
TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64_T) |
|
TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32_T) |
|
TYPE_METHODS(Int64, int64, int64_t, UPB_INT64_T) |
|
TYPE_METHODS(Int32, int32, int32_t, UPB_INT32_T) |
|
TYPE_METHODS(Bool, bool, bool, bool) |
|
|
|
#ifdef UPB_TWO_32BIT_TYPES |
|
TYPE_METHODS(Int32, int32, int32_t, UPB_INT32ALT_T) |
|
TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32ALT_T) |
|
#endif |
|
|
|
#ifdef UPB_TWO_64BIT_TYPES |
|
TYPE_METHODS(Int64, int64, int64_t, UPB_INT64ALT_T) |
|
TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64ALT_T) |
|
#endif |
|
#undef TYPE_METHODS |
|
|
|
template <> struct CanonicalType<Status*> { |
|
typedef Status* Type; |
|
}; |
|
|
|
/* Type methods that are only one-per-canonical-type and not |
|
* one-per-cvariant. */ |
|
|
|
#define TYPE_METHODS(utype, ctype) \ |
|
inline bool Handlers::Set##utype##Handler(const FieldDef *f, \ |
|
const utype##Handler &h) { \ |
|
return SetValueHandler<ctype>(f, h); \ |
|
} \ |
|
|
|
TYPE_METHODS(Double, double) |
|
TYPE_METHODS(Float, float) |
|
TYPE_METHODS(UInt64, uint64_t) |
|
TYPE_METHODS(UInt32, uint32_t) |
|
TYPE_METHODS(Int64, int64_t) |
|
TYPE_METHODS(Int32, int32_t) |
|
TYPE_METHODS(Bool, bool) |
|
#undef TYPE_METHODS |
|
|
|
template <class F> struct ReturnOf; |
|
|
|
template <class R, class P1, class P2> |
|
struct ReturnOf<R (*)(P1, P2)> { |
|
typedef R Return; |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3> |
|
struct ReturnOf<R (*)(P1, P2, P3)> { |
|
typedef R Return; |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4> |
|
struct ReturnOf<R (*)(P1, P2, P3, P4)> { |
|
typedef R Return; |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4, class P5> |
|
struct ReturnOf<R (*)(P1, P2, P3, P4, P5)> { |
|
typedef R Return; |
|
}; |
|
|
|
template<class T> const void *UniquePtrForType() { |
|
static const char ch = 0; |
|
return &ch; |
|
} |
|
|
|
template <class T> |
|
template <class F> |
|
inline Handler<T>::Handler(F func) |
|
: registered_(false), |
|
cleanup_data_(func.GetData()), |
|
cleanup_func_(func.GetCleanup()) { |
|
upb_handlerattr_sethandlerdata(&attr_, func.GetData()); |
|
typedef typename ReturnOf<T>::Return Return; |
|
typedef typename ConvertParams<F, T>::Func ConvertedParamsFunc; |
|
typedef typename MaybeWrapReturn<ConvertedParamsFunc, Return>::Func |
|
ReturnWrappedFunc; |
|
handler_ = ReturnWrappedFunc().Call; |
|
|
|
/* Set attributes based on what templates can statically tell us about the |
|
* user's function. */ |
|
|
|
/* If the original function returns void, then we know that we wrapped it to |
|
* always return ok. */ |
|
bool always_ok = is_same<typename F::FuncInfo::Return, void>::value; |
|
attr_.SetAlwaysOk(always_ok); |
|
|
|
/* Closure parameter and return type. */ |
|
attr_.SetClosureType(UniquePtrForType<typename F::FuncInfo::Closure>()); |
|
|
|
/* We use the closure type (from the first parameter) if the return type is |
|
* void or bool, since these are the two cases we wrap to return the closure's |
|
* type anyway. |
|
* |
|
* This is all nonsense for non START* handlers, but it doesn't matter because |
|
* in that case the value will be ignored. */ |
|
typedef typename FirstUnlessVoidOrBool<typename F::FuncInfo::Return, |
|
typename F::FuncInfo::Closure>::value |
|
EffectiveReturn; |
|
attr_.SetReturnClosureType(UniquePtrForType<EffectiveReturn>()); |
|
} |
|
|
|
template <class T> |
|
inline Handler<T>::~Handler() { |
|
assert(registered_); |
|
} |
|
|
|
inline HandlerAttributes::HandlerAttributes() { upb_handlerattr_init(this); } |
|
inline HandlerAttributes::~HandlerAttributes() { upb_handlerattr_uninit(this); } |
|
inline bool HandlerAttributes::SetHandlerData(const void *hd) { |
|
return upb_handlerattr_sethandlerdata(this, hd); |
|
} |
|
inline const void* HandlerAttributes::handler_data() const { |
|
return upb_handlerattr_handlerdata(this); |
|
} |
|
inline bool HandlerAttributes::SetClosureType(const void *type) { |
|
return upb_handlerattr_setclosuretype(this, type); |
|
} |
|
inline const void* HandlerAttributes::closure_type() const { |
|
return upb_handlerattr_closuretype(this); |
|
} |
|
inline bool HandlerAttributes::SetReturnClosureType(const void *type) { |
|
return upb_handlerattr_setreturnclosuretype(this, type); |
|
} |
|
inline const void* HandlerAttributes::return_closure_type() const { |
|
return upb_handlerattr_returnclosuretype(this); |
|
} |
|
inline bool HandlerAttributes::SetAlwaysOk(bool always_ok) { |
|
return upb_handlerattr_setalwaysok(this, always_ok); |
|
} |
|
inline bool HandlerAttributes::always_ok() const { |
|
return upb_handlerattr_alwaysok(this); |
|
} |
|
|
|
inline BufferHandle::BufferHandle() { upb_bufhandle_init(this); } |
|
inline BufferHandle::~BufferHandle() { upb_bufhandle_uninit(this); } |
|
inline const char* BufferHandle::buffer() const { |
|
return upb_bufhandle_buf(this); |
|
} |
|
inline size_t BufferHandle::object_offset() const { |
|
return upb_bufhandle_objofs(this); |
|
} |
|
inline void BufferHandle::SetBuffer(const char* buf, size_t ofs) { |
|
upb_bufhandle_setbuf(this, buf, ofs); |
|
} |
|
template <class T> |
|
void BufferHandle::SetAttachedObject(const T* obj) { |
|
upb_bufhandle_setobj(this, obj, UniquePtrForType<T>()); |
|
} |
|
template <class T> |
|
const T* BufferHandle::GetAttachedObject() const { |
|
return upb_bufhandle_objtype(this) == UniquePtrForType<T>() |
|
? static_cast<const T *>(upb_bufhandle_obj(this)) |
|
: NULL; |
|
} |
|
|
|
inline reffed_ptr<Handlers> Handlers::New(const MessageDef *m) { |
|
upb_handlers *h = upb_handlers_new(m, &h); |
|
return reffed_ptr<Handlers>(h, &h); |
|
} |
|
inline reffed_ptr<const Handlers> Handlers::NewFrozen( |
|
const MessageDef *m, upb_handlers_callback *callback, |
|
const void *closure) { |
|
const upb_handlers *h = upb_handlers_newfrozen(m, &h, callback, closure); |
|
return reffed_ptr<const Handlers>(h, &h); |
|
} |
|
inline const Status* Handlers::status() { |
|
return upb_handlers_status(this); |
|
} |
|
inline void Handlers::ClearError() { |
|
return upb_handlers_clearerr(this); |
|
} |
|
inline bool Handlers::Freeze(Status *s) { |
|
upb::Handlers* h = this; |
|
return upb_handlers_freeze(&h, 1, s); |
|
} |
|
inline bool Handlers::Freeze(Handlers *const *handlers, int n, Status *s) { |
|
return upb_handlers_freeze(handlers, n, s); |
|
} |
|
inline bool Handlers::Freeze(const std::vector<Handlers*>& h, Status* status) { |
|
return upb_handlers_freeze((Handlers* const*)&h[0], h.size(), status); |
|
} |
|
inline const MessageDef *Handlers::message_def() const { |
|
return upb_handlers_msgdef(this); |
|
} |
|
inline bool Handlers::AddCleanup(void *p, upb_handlerfree *func) { |
|
return upb_handlers_addcleanup(this, p, func); |
|
} |
|
inline bool Handlers::SetStartMessageHandler( |
|
const Handlers::StartMessageHandler &handler) { |
|
assert(!handler.registered_); |
|
handler.registered_ = true; |
|
handler.AddCleanup(this); |
|
return upb_handlers_setstartmsg(this, handler.handler_, &handler.attr_); |
|
} |
|
inline bool Handlers::SetEndMessageHandler( |
|
const Handlers::EndMessageHandler &handler) { |
|
assert(!handler.registered_); |
|
handler.registered_ = true; |
|
handler.AddCleanup(this); |
|
return upb_handlers_setendmsg(this, handler.handler_, &handler.attr_); |
|
} |
|
inline bool Handlers::SetStartStringHandler(const FieldDef *f, |
|
const StartStringHandler &handler) { |
|
assert(!handler.registered_); |
|
handler.registered_ = true; |
|
handler.AddCleanup(this); |
|
return upb_handlers_setstartstr(this, f, handler.handler_, &handler.attr_); |
|
} |
|
inline bool Handlers::SetEndStringHandler(const FieldDef *f, |
|
const EndFieldHandler &handler) { |
|
assert(!handler.registered_); |
|
handler.registered_ = true; |
|
handler.AddCleanup(this); |
|
return upb_handlers_setendstr(this, f, handler.handler_, &handler.attr_); |
|
} |
|
inline bool Handlers::SetStringHandler(const FieldDef *f, |
|
const StringHandler& handler) { |
|
assert(!handler.registered_); |
|
handler.registered_ = true; |
|
handler.AddCleanup(this); |
|
return upb_handlers_setstring(this, f, handler.handler_, &handler.attr_); |
|
} |
|
inline bool Handlers::SetStartSequenceHandler( |
|
const FieldDef *f, const StartFieldHandler &handler) { |
|
assert(!handler.registered_); |
|
handler.registered_ = true; |
|
handler.AddCleanup(this); |
|
return upb_handlers_setstartseq(this, f, handler.handler_, &handler.attr_); |
|
} |
|
inline bool Handlers::SetStartSubMessageHandler( |
|
const FieldDef *f, const StartFieldHandler &handler) { |
|
assert(!handler.registered_); |
|
handler.registered_ = true; |
|
handler.AddCleanup(this); |
|
return upb_handlers_setstartsubmsg(this, f, handler.handler_, &handler.attr_); |
|
} |
|
inline bool Handlers::SetEndSubMessageHandler(const FieldDef *f, |
|
const EndFieldHandler &handler) { |
|
assert(!handler.registered_); |
|
handler.registered_ = true; |
|
handler.AddCleanup(this); |
|
return upb_handlers_setendsubmsg(this, f, handler.handler_, &handler.attr_); |
|
} |
|
inline bool Handlers::SetEndSequenceHandler(const FieldDef *f, |
|
const EndFieldHandler &handler) { |
|
assert(!handler.registered_); |
|
handler.registered_ = true; |
|
handler.AddCleanup(this); |
|
return upb_handlers_setendseq(this, f, handler.handler_, &handler.attr_); |
|
} |
|
inline bool Handlers::SetSubHandlers(const FieldDef *f, const Handlers *sub) { |
|
return upb_handlers_setsubhandlers(this, f, sub); |
|
} |
|
inline const Handlers *Handlers::GetSubHandlers(const FieldDef *f) const { |
|
return upb_handlers_getsubhandlers(this, f); |
|
} |
|
inline const Handlers *Handlers::GetSubHandlers(Handlers::Selector sel) const { |
|
return upb_handlers_getsubhandlers_sel(this, sel); |
|
} |
|
inline bool Handlers::GetSelector(const FieldDef *f, Handlers::Type type, |
|
Handlers::Selector *s) { |
|
return upb_handlers_getselector(f, type, s); |
|
} |
|
inline Handlers::Selector Handlers::GetEndSelector(Handlers::Selector start) { |
|
return upb_handlers_getendselector(start); |
|
} |
|
inline Handlers::GenericFunction *Handlers::GetHandler( |
|
Handlers::Selector selector) { |
|
return upb_handlers_gethandler(this, selector); |
|
} |
|
inline const void *Handlers::GetHandlerData(Handlers::Selector selector) { |
|
return upb_handlers_gethandlerdata(this, selector); |
|
} |
|
|
|
inline BytesHandler::BytesHandler() { |
|
upb_byteshandler_init(this); |
|
} |
|
|
|
inline BytesHandler::~BytesHandler() {} |
|
|
|
} /* namespace upb */ |
|
|
|
#endif /* __cplusplus */ |
|
|
|
|
|
#undef UPB_TWO_32BIT_TYPES |
|
#undef UPB_TWO_64BIT_TYPES |
|
#undef UPB_INT32_T |
|
#undef UPB_UINT32_T |
|
#undef UPB_INT32ALT_T |
|
#undef UPB_UINT32ALT_T |
|
#undef UPB_INT64_T |
|
#undef UPB_UINT64_T |
|
#undef UPB_INT64ALT_T |
|
#undef UPB_UINT64ALT_T |
|
|
|
#endif /* UPB_HANDLERS_INL_H_ */ |
|
|
|
#endif /* UPB_HANDLERS_H */ |
|
/* |
|
** upb::Sink (upb_sink) |
|
** upb::BytesSink (upb_bytessink) |
|
** |
|
** A upb_sink is an object that binds a upb_handlers object to some runtime |
|
** state. It is the object that can actually receive data via the upb_handlers |
|
** interface. |
|
** |
|
** Unlike upb_def and upb_handlers, upb_sink is never frozen, immutable, or |
|
** thread-safe. You can create as many of them as you want, but each one may |
|
** only be used in a single thread at a time. |
|
** |
|
** If we compare with class-based OOP, a you can think of a upb_def as an |
|
** abstract base class, a upb_handlers as a concrete derived class, and a |
|
** upb_sink as an object (class instance). |
|
*/ |
|
|
|
#ifndef UPB_SINK_H |
|
#define UPB_SINK_H |
|
|
|
|
|
#ifdef __cplusplus |
|
namespace upb { |
|
class BufferSource; |
|
class BytesSink; |
|
class Sink; |
|
} |
|
#endif |
|
|
|
UPB_DECLARE_TYPE(upb::BufferSource, upb_bufsrc) |
|
UPB_DECLARE_TYPE(upb::BytesSink, upb_bytessink) |
|
UPB_DECLARE_TYPE(upb::Sink, upb_sink) |
|
|
|
#ifdef __cplusplus |
|
|
|
/* A upb::Sink is an object that binds a upb::Handlers object to some runtime |
|
* state. It represents an endpoint to which data can be sent. |
|
* |
|
* TODO(haberman): right now all of these functions take selectors. Should they |
|
* take selectorbase instead? |
|
* |
|
* ie. instead of calling: |
|
* sink->StartString(FOO_FIELD_START_STRING, ...) |
|
* a selector base would let you say: |
|
* sink->StartString(FOO_FIELD, ...) |
|
* |
|
* This would make call sites a little nicer and require emitting fewer selector |
|
* definitions in .h files. |
|
* |
|
* But the current scheme has the benefit that you can retrieve a function |
|
* pointer for any handler with handlers->GetHandler(selector), without having |
|
* to have a separate GetHandler() function for each handler type. The JIT |
|
* compiler uses this. To accommodate we'd have to expose a separate |
|
* GetHandler() for every handler type. |
|
* |
|
* Also to ponder: selectors right now are independent of a specific Handlers |
|
* instance. In other words, they allocate a number to every possible handler |
|
* that *could* be registered, without knowing anything about what handlers |
|
* *are* registered. That means that using selectors as table offsets prohibits |
|
* us from compacting the handler table at Freeze() time. If the table is very |
|
* sparse, this could be wasteful. |
|
* |
|
* Having another selector-like thing that is specific to a Handlers instance |
|
* would allow this compacting, but then it would be impossible to write code |
|
* ahead-of-time that can be bound to any Handlers instance at runtime. For |
|
* example, a .proto file parser written as straight C will not know what |
|
* Handlers it will be bound to, so when it calls sink->StartString() what |
|
* selector will it pass? It needs a selector like we have today, that is |
|
* independent of any particular upb::Handlers. |
|
* |
|
* Is there a way then to allow Handlers table compaction? */ |
|
class upb::Sink { |
|
public: |
|
/* Constructor with no initialization; must be Reset() before use. */ |
|
Sink() {} |
|
|
|
/* Constructs a new sink for the given frozen handlers and closure. |
|
* |
|
* TODO: once the Handlers know the expected closure type, verify that T |
|
* matches it. */ |
|
template <class T> Sink(const Handlers* handlers, T* closure); |
|
|
|
/* Resets the value of the sink. */ |
|
template <class T> void Reset(const Handlers* handlers, T* closure); |
|
|
|
/* Returns the top-level object that is bound to this sink. |
|
* |
|
* TODO: once the Handlers know the expected closure type, verify that T |
|
* matches it. */ |
|
template <class T> T* GetObject() const; |
|
|
|
/* Functions for pushing data into the sink. |
|
* |
|
* These return false if processing should stop (either due to error or just |
|
* to suspend). |
|
* |
|
* These may not be called from within one of the same sink's handlers (in |
|
* other words, handlers are not re-entrant). */ |
|
|
|
/* Should be called at the start and end of every message; both the top-level |
|
* message and submessages. This means that submessages should use the |
|
* following sequence: |
|
* sink->StartSubMessage(startsubmsg_selector); |
|
* sink->StartMessage(); |
|
* // ... |
|
* sink->EndMessage(&status); |
|
* sink->EndSubMessage(endsubmsg_selector); */ |
|
bool StartMessage(); |
|
bool EndMessage(Status* status); |
|
|
|
/* Putting of individual values. These work for both repeated and |
|
* non-repeated fields, but for repeated fields you must wrap them in |
|
* calls to StartSequence()/EndSequence(). */ |
|
bool PutInt32(Handlers::Selector s, int32_t val); |
|
bool PutInt64(Handlers::Selector s, int64_t val); |
|
bool PutUInt32(Handlers::Selector s, uint32_t val); |
|
bool PutUInt64(Handlers::Selector s, uint64_t val); |
|
bool PutFloat(Handlers::Selector s, float val); |
|
bool PutDouble(Handlers::Selector s, double val); |
|
bool PutBool(Handlers::Selector s, bool val); |
|
|
|
/* Putting of string/bytes values. Each string can consist of zero or more |
|
* non-contiguous buffers of data. |
|
* |
|
* For StartString(), the function will write a sink for the string to "sub." |
|
* The sub-sink must be used for any/all PutStringBuffer() calls. */ |
|
bool StartString(Handlers::Selector s, size_t size_hint, Sink* sub); |
|
size_t PutStringBuffer(Handlers::Selector s, const char *buf, size_t len, |
|
const BufferHandle *handle); |
|
bool EndString(Handlers::Selector s); |
|
|
|
/* For submessage fields. |
|
* |
|
* For StartSubMessage(), the function will write a sink for the string to |
|
* "sub." The sub-sink must be used for any/all handlers called within the |
|
* submessage. */ |
|
bool StartSubMessage(Handlers::Selector s, Sink* sub); |
|
bool EndSubMessage(Handlers::Selector s); |
|
|
|
/* For repeated fields of any type, the sequence of values must be wrapped in |
|
* these calls. |
|
* |
|
* For StartSequence(), the function will write a sink for the string to |
|
* "sub." The sub-sink must be used for any/all handlers called within the |
|
* sequence. */ |
|
bool StartSequence(Handlers::Selector s, Sink* sub); |
|
bool EndSequence(Handlers::Selector s); |
|
|
|
/* Copy and assign specifically allowed. |
|
* We don't even bother making these members private because so many |
|
* functions need them and this is mainly just a dumb data container anyway. |
|
*/ |
|
#else |
|
struct upb_sink { |
|
#endif |
|
const upb_handlers *handlers; |
|
void *closure; |
|
}; |
|
|
|
#ifdef __cplusplus |
|
class upb::BytesSink { |
|
public: |
|
BytesSink() {} |
|
|
|
/* Constructs a new sink for the given frozen handlers and closure. |
|
* |
|
* TODO(haberman): once the Handlers know the expected closure type, verify |
|
* that T matches it. */ |
|
template <class T> BytesSink(const BytesHandler* handler, T* closure); |
|
|
|
/* Resets the value of the sink. */ |
|
template <class T> void Reset(const BytesHandler* handler, T* closure); |
|
|
|
bool Start(size_t size_hint, void **subc); |
|
size_t PutBuffer(void *subc, const char *buf, size_t len, |
|
const BufferHandle *handle); |
|
bool End(); |
|
#else |
|
struct upb_bytessink { |
|
#endif |
|
const upb_byteshandler *handler; |
|
void *closure; |
|
}; |
|
|
|
#ifdef __cplusplus |
|
|
|
/* A class for pushing a flat buffer of data to a BytesSink. |
|
* You can construct an instance of this to get a resumable source, |
|
* or just call the static PutBuffer() to do a non-resumable push all in one |
|
* go. */ |
|
class upb::BufferSource { |
|
public: |
|
BufferSource(); |
|
BufferSource(const char* buf, size_t len, BytesSink* sink); |
|
|
|
/* Returns true if the entire buffer was pushed successfully. Otherwise the |
|
* next call to PutNext() will resume where the previous one left off. |
|
* TODO(haberman): implement this. */ |
|
bool PutNext(); |
|
|
|
/* A static version; with this version is it not possible to resume in the |
|
* case of failure or a partially-consumed buffer. */ |
|
static bool PutBuffer(const char* buf, size_t len, BytesSink* sink); |
|
|
|
template <class T> static bool PutBuffer(const T& str, BytesSink* sink) { |
|
return PutBuffer(str.c_str(), str.size(), sink); |
|
} |
|
#else |
|
struct upb_bufsrc { |
|
char dummy; |
|
#endif |
|
}; |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
/* Inline definitions. */ |
|
|
|
UPB_INLINE void upb_bytessink_reset(upb_bytessink *s, const upb_byteshandler *h, |
|
void *closure) { |
|
s->handler = h; |
|
s->closure = closure; |
|
} |
|
|
|
UPB_INLINE bool upb_bytessink_start(upb_bytessink *s, size_t size_hint, |
|
void **subc) { |
|
typedef upb_startstr_handlerfunc func; |
|
func *start; |
|
*subc = s->closure; |
|
if (!s->handler) return true; |
|
start = (func *)s->handler->table[UPB_STARTSTR_SELECTOR].func; |
|
|
|
if (!start) return true; |
|
*subc = start(s->closure, upb_handlerattr_handlerdata( |
|
&s->handler->table[UPB_STARTSTR_SELECTOR].attr), |
|
size_hint); |
|
return *subc != NULL; |
|
} |
|
|
|
UPB_INLINE size_t upb_bytessink_putbuf(upb_bytessink *s, void *subc, |
|
const char *buf, size_t size, |
|
const upb_bufhandle* handle) { |
|
typedef upb_string_handlerfunc func; |
|
func *putbuf; |
|
if (!s->handler) return true; |
|
putbuf = (func *)s->handler->table[UPB_STRING_SELECTOR].func; |
|
|
|
if (!putbuf) return true; |
|
return putbuf(subc, upb_handlerattr_handlerdata( |
|
&s->handler->table[UPB_STRING_SELECTOR].attr), |
|
buf, size, handle); |
|
} |
|
|
|
UPB_INLINE bool upb_bytessink_end(upb_bytessink *s) { |
|
typedef upb_endfield_handlerfunc func; |
|
func *end; |
|
if (!s->handler) return true; |
|
end = (func *)s->handler->table[UPB_ENDSTR_SELECTOR].func; |
|
|
|
if (!end) return true; |
|
return end(s->closure, |
|
upb_handlerattr_handlerdata( |
|
&s->handler->table[UPB_ENDSTR_SELECTOR].attr)); |
|
} |
|
|
|
UPB_INLINE bool upb_bufsrc_putbuf(const char *buf, size_t len, |
|
upb_bytessink *sink) { |
|
void *subc; |
|
bool ret; |
|
upb_bufhandle handle; |
|
upb_bufhandle_init(&handle); |
|
upb_bufhandle_setbuf(&handle, buf, 0); |
|
ret = upb_bytessink_start(sink, len, &subc); |
|
if (ret && len != 0) { |
|
ret = (upb_bytessink_putbuf(sink, subc, buf, len, &handle) >= len); |
|
} |
|
if (ret) { |
|
ret = upb_bytessink_end(sink); |
|
} |
|
upb_bufhandle_uninit(&handle); |
|
return ret; |
|
} |
|
|
|
#define PUTVAL(type, ctype) \ |
|
UPB_INLINE bool upb_sink_put##type(upb_sink *s, upb_selector_t sel, \ |
|
ctype val) { \ |
|
typedef upb_##type##_handlerfunc functype; \ |
|
functype *func; \ |
|
const void *hd; \ |
|
if (!s->handlers) return true; \ |
|
func = (functype *)upb_handlers_gethandler(s->handlers, sel); \ |
|
if (!func) return true; \ |
|
hd = upb_handlers_gethandlerdata(s->handlers, sel); \ |
|
return func(s->closure, hd, val); \ |
|
} |
|
|
|
PUTVAL(int32, int32_t) |
|
PUTVAL(int64, int64_t) |
|
PUTVAL(uint32, uint32_t) |
|
PUTVAL(uint64, uint64_t) |
|
PUTVAL(float, float) |
|
PUTVAL(double, double) |
|
PUTVAL(bool, bool) |
|
#undef PUTVAL |
|
|
|
UPB_INLINE void upb_sink_reset(upb_sink *s, const upb_handlers *h, void *c) { |
|
s->handlers = h; |
|
s->closure = c; |
|
} |
|
|
|
UPB_INLINE size_t upb_sink_putstring(upb_sink *s, upb_selector_t sel, |
|
const char *buf, size_t n, |
|
const upb_bufhandle *handle) { |
|
typedef upb_string_handlerfunc func; |
|
func *handler; |
|
const void *hd; |
|
if (!s->handlers) return n; |
|
handler = (func *)upb_handlers_gethandler(s->handlers, sel); |
|
|
|
if (!handler) return n; |
|
hd = upb_handlers_gethandlerdata(s->handlers, sel); |
|
return handler(s->closure, hd, buf, n, handle); |
|
} |
|
|
|
UPB_INLINE bool upb_sink_startmsg(upb_sink *s) { |
|
typedef upb_startmsg_handlerfunc func; |
|
func *startmsg; |
|
const void *hd; |
|
if (!s->handlers) return true; |
|
startmsg = (func*)upb_handlers_gethandler(s->handlers, UPB_STARTMSG_SELECTOR); |
|
|
|
if (!startmsg) return true; |
|
hd = upb_handlers_gethandlerdata(s->handlers, UPB_STARTMSG_SELECTOR); |
|
return startmsg(s->closure, hd); |
|
} |
|
|
|
UPB_INLINE bool upb_sink_endmsg(upb_sink *s, upb_status *status) { |
|
typedef upb_endmsg_handlerfunc func; |
|
func *endmsg; |
|
const void *hd; |
|
if (!s->handlers) return true; |
|
endmsg = (func *)upb_handlers_gethandler(s->handlers, UPB_ENDMSG_SELECTOR); |
|
|
|
if (!endmsg) return true; |
|
hd = upb_handlers_gethandlerdata(s->handlers, UPB_ENDMSG_SELECTOR); |
|
return endmsg(s->closure, hd, status); |
|
} |
|
|
|
UPB_INLINE bool upb_sink_startseq(upb_sink *s, upb_selector_t sel, |
|
upb_sink *sub) { |
|
typedef upb_startfield_handlerfunc func; |
|
func *startseq; |
|
const void *hd; |
|
sub->closure = s->closure; |
|
sub->handlers = s->handlers; |
|
if (!s->handlers) return true; |
|
startseq = (func*)upb_handlers_gethandler(s->handlers, sel); |
|
|
|
if (!startseq) return true; |
|
hd = upb_handlers_gethandlerdata(s->handlers, sel); |
|
sub->closure = startseq(s->closure, hd); |
|
return sub->closure ? true : false; |
|
} |
|
|
|
UPB_INLINE bool upb_sink_endseq(upb_sink *s, upb_selector_t sel) { |
|
typedef upb_endfield_handlerfunc func; |
|
func *endseq; |
|
const void *hd; |
|
if (!s->handlers) return true; |
|
endseq = (func*)upb_handlers_gethandler(s->handlers, sel); |
|
|
|
if (!endseq) return true; |
|
hd = upb_handlers_gethandlerdata(s->handlers, sel); |
|
return endseq(s->closure, hd); |
|
} |
|
|
|
UPB_INLINE bool upb_sink_startstr(upb_sink *s, upb_selector_t sel, |
|
size_t size_hint, upb_sink *sub) { |
|
typedef upb_startstr_handlerfunc func; |
|
func *startstr; |
|
const void *hd; |
|
sub->closure = s->closure; |
|
sub->handlers = s->handlers; |
|
if (!s->handlers) return true; |
|
startstr = (func*)upb_handlers_gethandler(s->handlers, sel); |
|
|
|
if (!startstr) return true; |
|
hd = upb_handlers_gethandlerdata(s->handlers, sel); |
|
sub->closure = startstr(s->closure, hd, size_hint); |
|
return sub->closure ? true : false; |
|
} |
|
|
|
UPB_INLINE bool upb_sink_endstr(upb_sink *s, upb_selector_t sel) { |
|
typedef upb_endfield_handlerfunc func; |
|
func *endstr; |
|
const void *hd; |
|
if (!s->handlers) return true; |
|
endstr = (func*)upb_handlers_gethandler(s->handlers, sel); |
|
|
|
if (!endstr) return true; |
|
hd = upb_handlers_gethandlerdata(s->handlers, sel); |
|
return endstr(s->closure, hd); |
|
} |
|
|
|
UPB_INLINE bool upb_sink_startsubmsg(upb_sink *s, upb_selector_t sel, |
|
upb_sink *sub) { |
|
typedef upb_startfield_handlerfunc func; |
|
func *startsubmsg; |
|
const void *hd; |
|
sub->closure = s->closure; |
|
if (!s->handlers) { |
|
sub->handlers = NULL; |
|
return true; |
|
} |
|
sub->handlers = upb_handlers_getsubhandlers_sel(s->handlers, sel); |
|
startsubmsg = (func*)upb_handlers_gethandler(s->handlers, sel); |
|
|
|
if (!startsubmsg) return true; |
|
hd = upb_handlers_gethandlerdata(s->handlers, sel); |
|
sub->closure = startsubmsg(s->closure, hd); |
|
return sub->closure ? true : false; |
|
} |
|
|
|
UPB_INLINE bool upb_sink_endsubmsg(upb_sink *s, upb_selector_t sel) { |
|
typedef upb_endfield_handlerfunc func; |
|
func *endsubmsg; |
|
const void *hd; |
|
if (!s->handlers) return true; |
|
endsubmsg = (func*)upb_handlers_gethandler(s->handlers, sel); |
|
|
|
if (!endsubmsg) return s->closure; |
|
hd = upb_handlers_gethandlerdata(s->handlers, sel); |
|
return endsubmsg(s->closure, hd); |
|
} |
|
|
|
UPB_END_EXTERN_C |
|
|
|
#ifdef __cplusplus |
|
|
|
namespace upb { |
|
|
|
template <class T> Sink::Sink(const Handlers* handlers, T* closure) { |
|
upb_sink_reset(this, handlers, closure); |
|
} |
|
template <class T> |
|
inline void Sink::Reset(const Handlers* handlers, T* closure) { |
|
upb_sink_reset(this, handlers, closure); |
|
} |
|
inline bool Sink::StartMessage() { |
|
return upb_sink_startmsg(this); |
|
} |
|
inline bool Sink::EndMessage(Status* status) { |
|
return upb_sink_endmsg(this, status); |
|
} |
|
inline bool Sink::PutInt32(Handlers::Selector sel, int32_t val) { |
|
return upb_sink_putint32(this, sel, val); |
|
} |
|
inline bool Sink::PutInt64(Handlers::Selector sel, int64_t val) { |
|
return upb_sink_putint64(this, sel, val); |
|
} |
|
inline bool Sink::PutUInt32(Handlers::Selector sel, uint32_t val) { |
|
return upb_sink_putuint32(this, sel, val); |
|
} |
|
inline bool Sink::PutUInt64(Handlers::Selector sel, uint64_t val) { |
|
return upb_sink_putuint64(this, sel, val); |
|
} |
|
inline bool Sink::PutFloat(Handlers::Selector sel, float val) { |
|
return upb_sink_putfloat(this, sel, val); |
|
} |
|
inline bool Sink::PutDouble(Handlers::Selector sel, double val) { |
|
return upb_sink_putdouble(this, sel, val); |
|
} |
|
inline bool Sink::PutBool(Handlers::Selector sel, bool val) { |
|
return upb_sink_putbool(this, sel, val); |
|
} |
|
inline bool Sink::StartString(Handlers::Selector sel, size_t size_hint, |
|
Sink *sub) { |
|
return upb_sink_startstr(this, sel, size_hint, sub); |
|
} |
|
inline size_t Sink::PutStringBuffer(Handlers::Selector sel, const char *buf, |
|
size_t len, const BufferHandle* handle) { |
|
return upb_sink_putstring(this, sel, buf, len, handle); |
|
} |
|
inline bool Sink::EndString(Handlers::Selector sel) { |
|
return upb_sink_endstr(this, sel); |
|
} |
|
inline bool Sink::StartSubMessage(Handlers::Selector sel, Sink* sub) { |
|
return upb_sink_startsubmsg(this, sel, sub); |
|
} |
|
inline bool Sink::EndSubMessage(Handlers::Selector sel) { |
|
return upb_sink_endsubmsg(this, sel); |
|
} |
|
inline bool Sink::StartSequence(Handlers::Selector sel, Sink* sub) { |
|
return upb_sink_startseq(this, sel, sub); |
|
} |
|
inline bool Sink::EndSequence(Handlers::Selector sel) { |
|
return upb_sink_endseq(this, sel); |
|
} |
|
|
|
template <class T> |
|
BytesSink::BytesSink(const BytesHandler* handler, T* closure) { |
|
Reset(handler, closure); |
|
} |
|
|
|
template <class T> |
|
void BytesSink::Reset(const BytesHandler *handler, T *closure) { |
|
upb_bytessink_reset(this, handler, closure); |
|
} |
|
inline bool BytesSink::Start(size_t size_hint, void **subc) { |
|
return upb_bytessink_start(this, size_hint, subc); |
|
} |
|
inline size_t BytesSink::PutBuffer(void *subc, const char *buf, size_t len, |
|
const BufferHandle *handle) { |
|
return upb_bytessink_putbuf(this, subc, buf, len, handle); |
|
} |
|
inline bool BytesSink::End() { |
|
return upb_bytessink_end(this); |
|
} |
|
|
|
inline bool BufferSource::PutBuffer(const char *buf, size_t len, |
|
BytesSink *sink) { |
|
return upb_bufsrc_putbuf(buf, len, sink); |
|
} |
|
|
|
} /* namespace upb */ |
|
#endif |
|
|
|
#endif |
|
/* |
|
** For handlers that do very tiny, very simple operations, the function call |
|
** overhead of calling a handler can be significant. This file allows the |
|
** user to define handlers that do something very simple like store the value |
|
** to memory and/or set a hasbit. JIT compilers can then special-case these |
|
** handlers and emit specialized code for them instead of actually calling the |
|
** handler. |
|
** |
|
** The functionality is very simple/limited right now but may expand to be able |
|
** to call another function. |
|
*/ |
|
|
|
#ifndef UPB_SHIM_H |
|
#define UPB_SHIM_H |
|
|
|
|
|
typedef struct { |
|
size_t offset; |
|
int32_t hasbit; |
|
} upb_shim_data; |
|
|
|
#ifdef __cplusplus |
|
|
|
namespace upb { |
|
|
|
struct Shim { |
|
typedef upb_shim_data Data; |
|
|
|
/* Sets a handler for the given field that writes the value to the given |
|
* offset and, if hasbit >= 0, sets a bit at the given bit offset. Returns |
|
* true if the handler was set successfully. */ |
|
static bool Set(Handlers *h, const FieldDef *f, size_t ofs, int32_t hasbit); |
|
|
|
/* If this handler is a shim, returns the corresponding upb::Shim::Data and |
|
* stores the type in "type". Otherwise returns NULL. */ |
|
static const Data* GetData(const Handlers* h, Handlers::Selector s, |
|
FieldDef::Type* type); |
|
}; |
|
|
|
} /* namespace upb */ |
|
|
|
#endif |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
/* C API. */ |
|
bool upb_shim_set(upb_handlers *h, const upb_fielddef *f, size_t offset, |
|
int32_t hasbit); |
|
const upb_shim_data *upb_shim_getdata(const upb_handlers *h, upb_selector_t s, |
|
upb_fieldtype_t *type); |
|
|
|
UPB_END_EXTERN_C |
|
|
|
#ifdef __cplusplus |
|
/* C++ Wrappers. */ |
|
namespace upb { |
|
inline bool Shim::Set(Handlers* h, const FieldDef* f, size_t ofs, |
|
int32_t hasbit) { |
|
return upb_shim_set(h, f, ofs, hasbit); |
|
} |
|
inline const Shim::Data* Shim::GetData(const Handlers* h, Handlers::Selector s, |
|
FieldDef::Type* type) { |
|
return upb_shim_getdata(h, s, type); |
|
} |
|
} /* namespace upb */ |
|
#endif |
|
|
|
#endif /* UPB_SHIM_H */ |
|
/* |
|
** upb::SymbolTable (upb_symtab) |
|
** |
|
** A symtab (symbol table) stores a name->def map of upb_defs. Clients could |
|
** always create such tables themselves, but upb_symtab has logic for resolving |
|
** symbolic references, and in particular, for keeping a whole set of consistent |
|
** defs when replacing some subset of those defs. This logic is nontrivial. |
|
** |
|
** This is a mixed C/C++ interface that offers a full API to both languages. |
|
** See the top-level README for more information. |
|
*/ |
|
|
|
#ifndef UPB_SYMTAB_H_ |
|
#define UPB_SYMTAB_H_ |
|
|
|
|
|
#ifdef __cplusplus |
|
#include <vector> |
|
namespace upb { class SymbolTable; } |
|
#endif |
|
|
|
UPB_DECLARE_DERIVED_TYPE(upb::SymbolTable, upb::RefCounted, |
|
upb_symtab, upb_refcounted) |
|
|
|
typedef struct { |
|
UPB_PRIVATE_FOR_CPP |
|
upb_strtable_iter iter; |
|
upb_deftype_t type; |
|
} upb_symtab_iter; |
|
|
|
#ifdef __cplusplus |
|
|
|
/* Non-const methods in upb::SymbolTable are NOT thread-safe. */ |
|
class upb::SymbolTable { |
|
public: |
|
/* Returns a new symbol table with a single ref owned by "owner." |
|
* Returns NULL if memory allocation failed. */ |
|
static reffed_ptr<SymbolTable> New(); |
|
|
|
/* Include RefCounted base methods. */ |
|
UPB_REFCOUNTED_CPPMETHODS |
|
|
|
/* For all lookup functions, the returned pointer is not owned by the |
|
* caller; it may be invalidated by any non-const call or unref of the |
|
* SymbolTable! To protect against this, take a ref if desired. */ |
|
|
|
/* Freezes the symbol table: prevents further modification of it. |
|
* After the Freeze() operation is successful, the SymbolTable must only be |
|
* accessed via a const pointer. |
|
* |
|
* Unlike with upb::MessageDef/upb::EnumDef/etc, freezing a SymbolTable is not |
|
* a necessary step in using a SymbolTable. If you have no need for it to be |
|
* immutable, there is no need to freeze it ever. However sometimes it is |
|
* useful, and SymbolTables that are statically compiled into the binary are |
|
* always frozen by nature. */ |
|
void Freeze(); |
|
|
|
/* Resolves the given symbol using the rules described in descriptor.proto, |
|
* namely: |
|
* |
|
* If the name starts with a '.', it is fully-qualified. Otherwise, |
|
* C++-like scoping rules are used to find the type (i.e. first the nested |
|
* types within this message are searched, then within the parent, on up |
|
* to the root namespace). |
|
* |
|
* If not found, returns NULL. */ |
|
const Def* Resolve(const char* base, const char* sym) const; |
|
|
|
/* Finds an entry in the symbol table with this exact name. If not found, |
|
* returns NULL. */ |
|
const Def* Lookup(const char *sym) const; |
|
const MessageDef* LookupMessage(const char *sym) const; |
|
const EnumDef* LookupEnum(const char *sym) const; |
|
|
|
/* TODO: introduce a C++ iterator, but make it nice and templated so that if |
|
* you ask for an iterator of MessageDef the iterated elements are strongly |
|
* typed as MessageDef*. */ |
|
|
|
/* Adds the given mutable defs to the symtab, resolving all symbols |
|
* (including enum default values) and finalizing the defs. Only one def per |
|
* name may be in the list, but defs can replace existing defs in the symtab. |
|
* All defs must have a name -- anonymous defs are not allowed. Anonymous |
|
* defs can still be frozen by calling upb_def_freeze() directly. |
|
* |
|
* Any existing defs that can reach defs that are being replaced will |
|
* themselves be replaced also, so that the resulting set of defs is fully |
|
* consistent. |
|
* |
|
* This logic implemented in this method is a convenience; ultimately it |
|
* calls some combination of upb_fielddef_setsubdef(), upb_def_dup(), and |
|
* upb_freeze(), any of which the client could call themself. However, since |
|
* the logic for doing so is nontrivial, we provide it here. |
|
* |
|
* The entire operation either succeeds or fails. If the operation fails, |
|
* the symtab is unchanged, false is returned, and status indicates the |
|
* error. The caller passes a ref on all defs to the symtab (even if the |
|
* operation fails). |
|
* |
|
* TODO(haberman): currently failure will leave the symtab unchanged, but may |
|
* leave the defs themselves partially resolved. Does this matter? If so we |
|
* could do a prepass that ensures that all symbols are resolvable and bail |
|
* if not, so we don't mutate anything until we know the operation will |
|
* succeed. |
|
* |
|
* TODO(haberman): since the defs must be mutable, refining a frozen def |
|
* requires making mutable copies of the entire tree. This is wasteful if |
|
* only a few messages are changing. We may want to add a way of adding a |
|
* tree of frozen defs to the symtab (perhaps an alternate constructor where |
|
* you pass the root of the tree?) */ |
|
bool Add(Def*const* defs, size_t n, void* ref_donor, Status* status); |
|
|
|
bool Add(const std::vector<Def*>& defs, void *owner, Status* status) { |
|
return Add((Def*const*)&defs[0], defs.size(), owner, status); |
|
} |
|
|
|
/* Resolves all subdefs for messages in this file and attempts to freeze the |
|
* file. If this succeeds, adds all the symbols to this SymbolTable |
|
* (replacing any existing ones with the same names). */ |
|
bool AddFile(FileDef* file, Status* s); |
|
|
|
private: |
|
UPB_DISALLOW_POD_OPS(SymbolTable, upb::SymbolTable) |
|
}; |
|
|
|
#endif /* __cplusplus */ |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
/* Native C API. */ |
|
|
|
/* Include refcounted methods like upb_symtab_ref(). */ |
|
UPB_REFCOUNTED_CMETHODS(upb_symtab, upb_symtab_upcast) |
|
|
|
upb_symtab *upb_symtab_new(const void *owner); |
|
void upb_symtab_freeze(upb_symtab *s); |
|
const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base, |
|
const char *sym); |
|
const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym); |
|
const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym); |
|
const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym); |
|
bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, size_t n, |
|
void *ref_donor, upb_status *status); |
|
bool upb_symtab_addfile(upb_symtab *s, upb_filedef *file, upb_status* status); |
|
|
|
/* upb_symtab_iter i; |
|
* for(upb_symtab_begin(&i, s, type); !upb_symtab_done(&i); |
|
* upb_symtab_next(&i)) { |
|
* const upb_def *def = upb_symtab_iter_def(&i); |
|
* // ... |
|
* } |
|
* |
|
* For C we don't have separate iterators for const and non-const. |
|
* It is the caller's responsibility to cast the upb_fielddef* to |
|
* const if the upb_msgdef* is const. */ |
|
void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s, |
|
upb_deftype_t type); |
|
void upb_symtab_next(upb_symtab_iter *iter); |
|
bool upb_symtab_done(const upb_symtab_iter *iter); |
|
const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter); |
|
|
|
UPB_END_EXTERN_C |
|
|
|
#ifdef __cplusplus |
|
/* C++ inline wrappers. */ |
|
namespace upb { |
|
inline reffed_ptr<SymbolTable> SymbolTable::New() { |
|
upb_symtab *s = upb_symtab_new(&s); |
|
return reffed_ptr<SymbolTable>(s, &s); |
|
} |
|
|
|
inline void SymbolTable::Freeze() { |
|
return upb_symtab_freeze(this); |
|
} |
|
inline const Def *SymbolTable::Resolve(const char *base, |
|
const char *sym) const { |
|
return upb_symtab_resolve(this, base, sym); |
|
} |
|
inline const Def* SymbolTable::Lookup(const char *sym) const { |
|
return upb_symtab_lookup(this, sym); |
|
} |
|
inline const MessageDef *SymbolTable::LookupMessage(const char *sym) const { |
|
return upb_symtab_lookupmsg(this, sym); |
|
} |
|
inline bool SymbolTable::Add( |
|
Def*const* defs, size_t n, void* ref_donor, Status* status) { |
|
return upb_symtab_add(this, (upb_def*const*)defs, n, ref_donor, status); |
|
} |
|
inline bool SymbolTable::AddFile(FileDef* file, Status* s) { |
|
return upb_symtab_addfile(this, file, s); |
|
} |
|
} /* namespace upb */ |
|
#endif |
|
|
|
#endif /* UPB_SYMTAB_H_ */ |
|
/* |
|
** upb::descriptor::Reader (upb_descreader) |
|
** |
|
** Provides a way of building upb::Defs from data in descriptor.proto format. |
|
*/ |
|
|
|
#ifndef UPB_DESCRIPTOR_H |
|
#define UPB_DESCRIPTOR_H |
|
|
|
|
|
#ifdef __cplusplus |
|
namespace upb { |
|
namespace descriptor { |
|
class Reader; |
|
} /* namespace descriptor */ |
|
} /* namespace upb */ |
|
#endif |
|
|
|
UPB_DECLARE_TYPE(upb::descriptor::Reader, upb_descreader) |
|
|
|
#ifdef __cplusplus |
|
|
|
/* Class that receives descriptor data according to the descriptor.proto schema |
|
* and use it to build upb::Defs corresponding to that schema. */ |
|
class upb::descriptor::Reader { |
|
public: |
|
/* These handlers must have come from NewHandlers() and must outlive the |
|
* Reader. |
|
* |
|
* TODO: generate the handlers statically (like we do with the |
|
* descriptor.proto defs) so that there is no need to pass this parameter (or |
|
* to build/memory-manage the handlers at runtime at all). Unfortunately this |
|
* is a bit tricky to implement for Handlers, but necessary to simplify this |
|
* interface. */ |
|
static Reader* Create(Environment* env, const Handlers* handlers); |
|
|
|
/* The reader's input; this is where descriptor.proto data should be sent. */ |
|
Sink* input(); |
|
|
|
/* Use to get the FileDefs that have been parsed. */ |
|
size_t file_count() const; |
|
FileDef* file(size_t i) const; |
|
|
|
/* Builds and returns handlers for the reader, owned by "owner." */ |
|
static Handlers* NewHandlers(const void* owner); |
|
|
|
private: |
|
UPB_DISALLOW_POD_OPS(Reader, upb::descriptor::Reader) |
|
}; |
|
|
|
#endif |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
/* C API. */ |
|
upb_descreader *upb_descreader_create(upb_env *e, const upb_handlers *h); |
|
upb_sink *upb_descreader_input(upb_descreader *r); |
|
size_t upb_descreader_filecount(const upb_descreader *r); |
|
upb_filedef *upb_descreader_file(const upb_descreader *r, size_t i); |
|
const upb_handlers *upb_descreader_newhandlers(const void *owner); |
|
|
|
UPB_END_EXTERN_C |
|
|
|
#ifdef __cplusplus |
|
/* C++ implementation details. ************************************************/ |
|
namespace upb { |
|
namespace descriptor { |
|
inline Reader* Reader::Create(Environment* e, const Handlers *h) { |
|
return upb_descreader_create(e, h); |
|
} |
|
inline Sink* Reader::input() { return upb_descreader_input(this); } |
|
inline size_t Reader::file_count() const { |
|
return upb_descreader_filecount(this); |
|
} |
|
inline FileDef* Reader::file(size_t i) const { |
|
return upb_descreader_file(this, i); |
|
} |
|
} /* namespace descriptor */ |
|
} /* namespace upb */ |
|
#endif |
|
|
|
#endif /* UPB_DESCRIPTOR_H */ |
|
/* This file contains accessors for a set of compiled-in defs. |
|
* Note that unlike Google's protobuf, it does *not* define |
|
* generated classes or any other kind of data structure for |
|
* actually storing protobufs. It only contains *defs* which |
|
* let you reflect over a protobuf *schema*. |
|
*/ |
|
/* This file was generated by upbc (the upb compiler) from the input |
|
* file: |
|
* |
|
* upb/descriptor/descriptor.proto |
|
* |
|
* Do not edit -- your changes will be discarded when the file is |
|
* regenerated. */ |
|
|
|
#ifndef UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_ |
|
#define UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_ |
|
|
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
/* Enums */ |
|
|
|
typedef enum { |
|
google_protobuf_FieldDescriptorProto_LABEL_OPTIONAL = 1, |
|
google_protobuf_FieldDescriptorProto_LABEL_REQUIRED = 2, |
|
google_protobuf_FieldDescriptorProto_LABEL_REPEATED = 3 |
|
} google_protobuf_FieldDescriptorProto_Label; |
|
|
|
typedef enum { |
|
google_protobuf_FieldDescriptorProto_TYPE_DOUBLE = 1, |
|
google_protobuf_FieldDescriptorProto_TYPE_FLOAT = 2, |
|
google_protobuf_FieldDescriptorProto_TYPE_INT64 = 3, |
|
google_protobuf_FieldDescriptorProto_TYPE_UINT64 = 4, |
|
google_protobuf_FieldDescriptorProto_TYPE_INT32 = 5, |
|
google_protobuf_FieldDescriptorProto_TYPE_FIXED64 = 6, |
|
google_protobuf_FieldDescriptorProto_TYPE_FIXED32 = 7, |
|
google_protobuf_FieldDescriptorProto_TYPE_BOOL = 8, |
|
google_protobuf_FieldDescriptorProto_TYPE_STRING = 9, |
|
google_protobuf_FieldDescriptorProto_TYPE_GROUP = 10, |
|
google_protobuf_FieldDescriptorProto_TYPE_MESSAGE = 11, |
|
google_protobuf_FieldDescriptorProto_TYPE_BYTES = 12, |
|
google_protobuf_FieldDescriptorProto_TYPE_UINT32 = 13, |
|
google_protobuf_FieldDescriptorProto_TYPE_ENUM = 14, |
|
google_protobuf_FieldDescriptorProto_TYPE_SFIXED32 = 15, |
|
google_protobuf_FieldDescriptorProto_TYPE_SFIXED64 = 16, |
|
google_protobuf_FieldDescriptorProto_TYPE_SINT32 = 17, |
|
google_protobuf_FieldDescriptorProto_TYPE_SINT64 = 18 |
|
} google_protobuf_FieldDescriptorProto_Type; |
|
|
|
typedef enum { |
|
google_protobuf_FieldOptions_STRING = 0, |
|
google_protobuf_FieldOptions_CORD = 1, |
|
google_protobuf_FieldOptions_STRING_PIECE = 2 |
|
} google_protobuf_FieldOptions_CType; |
|
|
|
typedef enum { |
|
google_protobuf_FieldOptions_JS_NORMAL = 0, |
|
google_protobuf_FieldOptions_JS_STRING = 1, |
|
google_protobuf_FieldOptions_JS_NUMBER = 2 |
|
} google_protobuf_FieldOptions_JSType; |
|
|
|
typedef enum { |
|
google_protobuf_FileOptions_SPEED = 1, |
|
google_protobuf_FileOptions_CODE_SIZE = 2, |
|
google_protobuf_FileOptions_LITE_RUNTIME = 3 |
|
} google_protobuf_FileOptions_OptimizeMode; |
|
|
|
/* MessageDefs: call these functions to get a ref to a msgdef. */ |
|
const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_EnumDescriptorProto_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_EnumOptions_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_EnumValueDescriptorProto_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_EnumValueOptions_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_FieldDescriptorProto_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_FieldOptions_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_FileDescriptorProto_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_FileDescriptorSet_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_FileOptions_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_MessageOptions_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_MethodDescriptorProto_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_MethodOptions_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_OneofDescriptorProto_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_ServiceDescriptorProto_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_ServiceOptions_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_Location_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_get(const void *owner); |
|
const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_NamePart_get(const void *owner); |
|
|
|
/* EnumDefs: call these functions to get a ref to an enumdef. */ |
|
const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Label_get(const void *owner); |
|
const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Type_get(const void *owner); |
|
const upb_enumdef *upbdefs_google_protobuf_FieldOptions_CType_get(const void *owner); |
|
const upb_enumdef *upbdefs_google_protobuf_FieldOptions_JSType_get(const void *owner); |
|
const upb_enumdef *upbdefs_google_protobuf_FileOptions_OptimizeMode_get(const void *owner); |
|
|
|
/* Functions to test whether this message is of a certain type. */ |
|
UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto.ExtensionRange") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto.ReservedRange") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_EnumDescriptorProto_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumDescriptorProto") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_EnumOptions_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumOptions") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_EnumValueDescriptorProto_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumValueDescriptorProto") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_EnumValueOptions_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumValueOptions") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.FieldDescriptorProto") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.FieldOptions") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_FileDescriptorProto_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileDescriptorProto") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_FileDescriptorSet_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileDescriptorSet") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_FileOptions_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileOptions") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_MessageOptions_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.MessageOptions") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_MethodDescriptorProto_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.MethodDescriptorProto") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_MethodOptions_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.MethodOptions") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_OneofDescriptorProto_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.OneofDescriptorProto") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_ServiceDescriptorProto_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.ServiceDescriptorProto") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_ServiceOptions_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.ServiceOptions") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_SourceCodeInfo_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.SourceCodeInfo") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_SourceCodeInfo_Location_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.SourceCodeInfo.Location") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_UninterpretedOption_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.UninterpretedOption") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_UninterpretedOption_NamePart_is(const upb_msgdef *m) { |
|
return strcmp(upb_msgdef_fullname(m), "google.protobuf.UninterpretedOption.NamePart") == 0; |
|
} |
|
|
|
/* Functions to test whether this enum is of a certain type. */ |
|
UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_Label_is(const upb_enumdef *e) { |
|
return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldDescriptorProto.Label") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_Type_is(const upb_enumdef *e) { |
|
return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldDescriptorProto.Type") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_CType_is(const upb_enumdef *e) { |
|
return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldOptions.CType") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_JSType_is(const upb_enumdef *e) { |
|
return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldOptions.JSType") == 0; |
|
} |
|
UPB_INLINE bool upbdefs_google_protobuf_FileOptions_OptimizeMode_is(const upb_enumdef *e) { |
|
return strcmp(upb_enumdef_fullname(e), "google.protobuf.FileOptions.OptimizeMode") == 0; |
|
} |
|
|
|
|
|
/* Functions to get a fielddef from a msgdef reference. */ |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_f_end(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m)); return upb_msgdef_itof(m, 2); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_f_start(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m)); return upb_msgdef_itof(m, 1); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_f_end(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m)); return upb_msgdef_itof(m, 2); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_f_start(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m)); return upb_msgdef_itof(m, 1); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_enum_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 4); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 6); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_extension_range(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 5); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_field(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 2); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 1); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_nested_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 3); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_oneof_decl(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 8); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 7); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_reserved_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 10); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_reserved_range(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 9); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_allow_alias(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 2); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 3); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 999); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_number(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueOptions_is(m)); return upb_msgdef_itof(m, 1); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueOptions_is(m)); return upb_msgdef_itof(m, 999); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_default_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 7); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_extendee(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_json_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 10); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_label(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_number(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_oneof_index(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 9); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 8); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_type_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_ctype(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 1); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 3); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_jstype(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 6); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_lazy(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 5); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_packed(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 2); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 999); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_weak(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 10); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_enum_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 7); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_message_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 8); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_public_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 10); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_service(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_source_code_info(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 9); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_syntax(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 12); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_weak_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 11); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorSet_f_file(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorSet_is(m)); return upb_msgdef_itof(m, 1); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_cc_enable_arenas(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 31); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_cc_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 16); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_csharp_namespace(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 37); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 23); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_go_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 11); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_generate_equals_and_hash(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 20); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 17); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_multiple_files(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 10); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_outer_classname(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 8); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 1); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_string_check_utf8(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 27); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_javanano_use_deprecated_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 38); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_objc_class_prefix(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 36); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_optimize_for(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 9); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_py_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 18); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 999); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 3); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_map_entry(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 7); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_message_set_wire_format(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 1); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_no_standard_descriptor_accessor(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 2); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 999); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_client_streaming(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_input_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_output_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_server_streaming(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodOptions_is(m)); return upb_msgdef_itof(m, 33); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodOptions_is(m)); return upb_msgdef_itof(m, 999); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_OneofDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_OneofDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_method(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceOptions_is(m)); return upb_msgdef_itof(m, 33); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceOptions_is(m)); return upb_msgdef_itof(m, 999); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_leading_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 3); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_leading_detached_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 6); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_path(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 1); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_span(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 2); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_trailing_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 4); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_f_location(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_is(m)); return upb_msgdef_itof(m, 1); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_f_is_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m)); return upb_msgdef_itof(m, 2); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_f_name_part(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m)); return upb_msgdef_itof(m, 1); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_aggregate_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 8); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_double_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 6); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_identifier_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 3); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 2); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_negative_int_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 5); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_positive_int_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 4); } |
|
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_string_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 7); } |
|
|
|
UPB_END_EXTERN_C |
|
|
|
#ifdef __cplusplus |
|
|
|
namespace upbdefs { |
|
namespace google { |
|
namespace protobuf { |
|
|
|
class DescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
DescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_DescriptorProto_is(m)); |
|
} |
|
|
|
static DescriptorProto get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_get(&m); |
|
return DescriptorProto(m, &m); |
|
} |
|
|
|
class ExtensionRange : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
ExtensionRange(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m)); |
|
} |
|
|
|
static ExtensionRange get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_ExtensionRange_get(&m); |
|
return ExtensionRange(m, &m); |
|
} |
|
}; |
|
|
|
class ReservedRange : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
ReservedRange(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m)); |
|
} |
|
|
|
static ReservedRange get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_ReservedRange_get(&m); |
|
return ReservedRange(m, &m); |
|
} |
|
}; |
|
}; |
|
|
|
class EnumDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
EnumDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); |
|
} |
|
|
|
static EnumDescriptorProto get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumDescriptorProto_get(&m); |
|
return EnumDescriptorProto(m, &m); |
|
} |
|
}; |
|
|
|
class EnumOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
EnumOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_EnumOptions_is(m)); |
|
} |
|
|
|
static EnumOptions get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumOptions_get(&m); |
|
return EnumOptions(m, &m); |
|
} |
|
}; |
|
|
|
class EnumValueDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
EnumValueDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); |
|
} |
|
|
|
static EnumValueDescriptorProto get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumValueDescriptorProto_get(&m); |
|
return EnumValueDescriptorProto(m, &m); |
|
} |
|
}; |
|
|
|
class EnumValueOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
EnumValueOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_EnumValueOptions_is(m)); |
|
} |
|
|
|
static EnumValueOptions get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumValueOptions_get(&m); |
|
return EnumValueOptions(m, &m); |
|
} |
|
}; |
|
|
|
class FieldDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
FieldDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); |
|
} |
|
|
|
static FieldDescriptorProto get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_FieldDescriptorProto_get(&m); |
|
return FieldDescriptorProto(m, &m); |
|
} |
|
|
|
class Label : public ::upb::reffed_ptr<const ::upb::EnumDef> { |
|
public: |
|
Label(const ::upb::EnumDef* e, const void *ref_donor = NULL) |
|
: reffed_ptr(e, ref_donor) { |
|
assert(upbdefs_google_protobuf_FieldDescriptorProto_Label_is(e)); |
|
} |
|
static Label get() { |
|
const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldDescriptorProto_Label_get(&e); |
|
return Label(e, &e); |
|
} |
|
}; |
|
|
|
class Type : public ::upb::reffed_ptr<const ::upb::EnumDef> { |
|
public: |
|
Type(const ::upb::EnumDef* e, const void *ref_donor = NULL) |
|
: reffed_ptr(e, ref_donor) { |
|
assert(upbdefs_google_protobuf_FieldDescriptorProto_Type_is(e)); |
|
} |
|
static Type get() { |
|
const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldDescriptorProto_Type_get(&e); |
|
return Type(e, &e); |
|
} |
|
}; |
|
}; |
|
|
|
class FieldOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
FieldOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_FieldOptions_is(m)); |
|
} |
|
|
|
static FieldOptions get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_FieldOptions_get(&m); |
|
return FieldOptions(m, &m); |
|
} |
|
|
|
class CType : public ::upb::reffed_ptr<const ::upb::EnumDef> { |
|
public: |
|
CType(const ::upb::EnumDef* e, const void *ref_donor = NULL) |
|
: reffed_ptr(e, ref_donor) { |
|
assert(upbdefs_google_protobuf_FieldOptions_CType_is(e)); |
|
} |
|
static CType get() { |
|
const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldOptions_CType_get(&e); |
|
return CType(e, &e); |
|
} |
|
}; |
|
|
|
class JSType : public ::upb::reffed_ptr<const ::upb::EnumDef> { |
|
public: |
|
JSType(const ::upb::EnumDef* e, const void *ref_donor = NULL) |
|
: reffed_ptr(e, ref_donor) { |
|
assert(upbdefs_google_protobuf_FieldOptions_JSType_is(e)); |
|
} |
|
static JSType get() { |
|
const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldOptions_JSType_get(&e); |
|
return JSType(e, &e); |
|
} |
|
}; |
|
}; |
|
|
|
class FileDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
FileDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); |
|
} |
|
|
|
static FileDescriptorProto get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_FileDescriptorProto_get(&m); |
|
return FileDescriptorProto(m, &m); |
|
} |
|
}; |
|
|
|
class FileDescriptorSet : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
FileDescriptorSet(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_FileDescriptorSet_is(m)); |
|
} |
|
|
|
static FileDescriptorSet get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_FileDescriptorSet_get(&m); |
|
return FileDescriptorSet(m, &m); |
|
} |
|
}; |
|
|
|
class FileOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
FileOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_FileOptions_is(m)); |
|
} |
|
|
|
static FileOptions get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_FileOptions_get(&m); |
|
return FileOptions(m, &m); |
|
} |
|
|
|
class OptimizeMode : public ::upb::reffed_ptr<const ::upb::EnumDef> { |
|
public: |
|
OptimizeMode(const ::upb::EnumDef* e, const void *ref_donor = NULL) |
|
: reffed_ptr(e, ref_donor) { |
|
assert(upbdefs_google_protobuf_FileOptions_OptimizeMode_is(e)); |
|
} |
|
static OptimizeMode get() { |
|
const ::upb::EnumDef* e = upbdefs_google_protobuf_FileOptions_OptimizeMode_get(&e); |
|
return OptimizeMode(e, &e); |
|
} |
|
}; |
|
}; |
|
|
|
class MessageOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
MessageOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_MessageOptions_is(m)); |
|
} |
|
|
|
static MessageOptions get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_MessageOptions_get(&m); |
|
return MessageOptions(m, &m); |
|
} |
|
}; |
|
|
|
class MethodDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
MethodDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); |
|
} |
|
|
|
static MethodDescriptorProto get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_MethodDescriptorProto_get(&m); |
|
return MethodDescriptorProto(m, &m); |
|
} |
|
}; |
|
|
|
class MethodOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
MethodOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_MethodOptions_is(m)); |
|
} |
|
|
|
static MethodOptions get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_MethodOptions_get(&m); |
|
return MethodOptions(m, &m); |
|
} |
|
}; |
|
|
|
class OneofDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
OneofDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_OneofDescriptorProto_is(m)); |
|
} |
|
|
|
static OneofDescriptorProto get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_OneofDescriptorProto_get(&m); |
|
return OneofDescriptorProto(m, &m); |
|
} |
|
}; |
|
|
|
class ServiceDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
ServiceDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); |
|
} |
|
|
|
static ServiceDescriptorProto get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_ServiceDescriptorProto_get(&m); |
|
return ServiceDescriptorProto(m, &m); |
|
} |
|
}; |
|
|
|
class ServiceOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
ServiceOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_ServiceOptions_is(m)); |
|
} |
|
|
|
static ServiceOptions get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_ServiceOptions_get(&m); |
|
return ServiceOptions(m, &m); |
|
} |
|
}; |
|
|
|
class SourceCodeInfo : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
SourceCodeInfo(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_SourceCodeInfo_is(m)); |
|
} |
|
|
|
static SourceCodeInfo get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_SourceCodeInfo_get(&m); |
|
return SourceCodeInfo(m, &m); |
|
} |
|
|
|
class Location : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
Location(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); |
|
} |
|
|
|
static Location get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_SourceCodeInfo_Location_get(&m); |
|
return Location(m, &m); |
|
} |
|
}; |
|
}; |
|
|
|
class UninterpretedOption : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
UninterpretedOption(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); |
|
} |
|
|
|
static UninterpretedOption get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_UninterpretedOption_get(&m); |
|
return UninterpretedOption(m, &m); |
|
} |
|
|
|
class NamePart : public ::upb::reffed_ptr<const ::upb::MessageDef> { |
|
public: |
|
NamePart(const ::upb::MessageDef* m, const void *ref_donor = NULL) |
|
: reffed_ptr(m, ref_donor) { |
|
assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m)); |
|
} |
|
|
|
static NamePart get() { |
|
const ::upb::MessageDef* m = upbdefs_google_protobuf_UninterpretedOption_NamePart_get(&m); |
|
return NamePart(m, &m); |
|
} |
|
}; |
|
}; |
|
|
|
} /* namespace protobuf */ |
|
} /* namespace google */ |
|
} /* namespace upbdefs */ |
|
|
|
#endif /* __cplusplus */ |
|
|
|
#endif /* UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_ */ |
|
/* |
|
** Internal-only definitions for the decoder. |
|
*/ |
|
|
|
#ifndef UPB_DECODER_INT_H_ |
|
#define UPB_DECODER_INT_H_ |
|
|
|
/* |
|
** upb::pb::Decoder |
|
** |
|
** A high performance, streaming, resumable decoder for the binary protobuf |
|
** format. |
|
** |
|
** This interface works the same regardless of what decoder backend is being |
|
** used. A client of this class does not need to know whether decoding is using |
|
** a JITted decoder (DynASM, LLVM, etc) or an interpreted decoder. By default, |
|
** it will always use the fastest available decoder. However, you can call |
|
** set_allow_jit(false) to disable any JIT decoder that might be available. |
|
** This is primarily useful for testing purposes. |
|
*/ |
|
|
|
#ifndef UPB_DECODER_H_ |
|
#define UPB_DECODER_H_ |
|
|
|
|
|
#ifdef __cplusplus |
|
namespace upb { |
|
namespace pb { |
|
class CodeCache; |
|
class Decoder; |
|
class DecoderMethod; |
|
class DecoderMethodOptions; |
|
} /* namespace pb */ |
|
} /* namespace upb */ |
|
#endif |
|
|
|
UPB_DECLARE_TYPE(upb::pb::CodeCache, upb_pbcodecache) |
|
UPB_DECLARE_TYPE(upb::pb::Decoder, upb_pbdecoder) |
|
UPB_DECLARE_TYPE(upb::pb::DecoderMethodOptions, upb_pbdecodermethodopts) |
|
|
|
UPB_DECLARE_DERIVED_TYPE(upb::pb::DecoderMethod, upb::RefCounted, |
|
upb_pbdecodermethod, upb_refcounted) |
|
|
|
/* The maximum number of bytes we are required to buffer internally between |
|
* calls to the decoder. The value is 14: a 5 byte unknown tag plus ten-byte |
|
* varint, less one because we are buffering an incomplete value. |
|
* |
|
* Should only be used by unit tests. */ |
|
#define UPB_DECODER_MAX_RESIDUAL_BYTES 14 |
|
|
|
#ifdef __cplusplus |
|
|
|
/* The parameters one uses to construct a DecoderMethod. |
|
* TODO(haberman): move allowjit here? Seems more convenient for users. |
|
* TODO(haberman): move this to be heap allocated for ABI stability. */ |
|
class upb::pb::DecoderMethodOptions { |
|
public: |
|
/* Parameter represents the destination handlers that this method will push |
|
* to. */ |
|
explicit DecoderMethodOptions(const Handlers* dest_handlers); |
|
|
|
/* Should the decoder push submessages to lazy handlers for fields that have |
|
* them? The caller should set this iff the lazy handlers expect data that is |
|
* in protobuf binary format and the caller wishes to lazy parse it. */ |
|
void set_lazy(bool lazy); |
|
#else |
|
struct upb_pbdecodermethodopts { |
|
#endif |
|
const upb_handlers *handlers; |
|
bool lazy; |
|
}; |
|
|
|
#ifdef __cplusplus |
|
|
|
/* Represents the code to parse a protobuf according to a destination |
|
* Handlers. */ |
|
class upb::pb::DecoderMethod { |
|
public: |
|
/* Include base methods from upb::ReferenceCounted. */ |
|
UPB_REFCOUNTED_CPPMETHODS |
|
|
|
/* The destination handlers that are statically bound to this method. |
|
* This method is only capable of outputting to a sink that uses these |
|
* handlers. */ |
|
const Handlers* dest_handlers() const; |
|
|
|
/* The input handlers for this decoder method. */ |
|
const BytesHandler* input_handler() const; |
|
|
|
/* Whether this method is native. */ |
|
bool is_native() const; |
|
|
|
/* Convenience method for generating a DecoderMethod without explicitly |
|
* creating a CodeCache. */ |
|
static reffed_ptr<const DecoderMethod> New(const DecoderMethodOptions& opts); |
|
|
|
private: |
|
UPB_DISALLOW_POD_OPS(DecoderMethod, upb::pb::DecoderMethod) |
|
}; |
|
|
|
#endif |
|
|
|
/* Preallocation hint: decoder won't allocate more bytes than this when first |
|
* constructed. This hint may be an overestimate for some build configurations. |
|
* But if the decoder library is upgraded without recompiling the application, |
|
* it may be an underestimate. */ |
|
#define UPB_PB_DECODER_SIZE 4416 |
|
|
|
#ifdef __cplusplus |
|
|
|
/* A Decoder receives binary protobuf data on its input sink and pushes the |
|
* decoded data to its output sink. */ |
|
class upb::pb::Decoder { |
|
public: |
|
/* Constructs a decoder instance for the given method, which must outlive this |
|
* decoder. Any errors during parsing will be set on the given status, which |
|
* must also outlive this decoder. |
|
* |
|
* The sink must match the given method. */ |
|
static Decoder* Create(Environment* env, const DecoderMethod* method, |
|
Sink* output); |
|
|
|
/* Returns the DecoderMethod this decoder is parsing from. */ |
|
const DecoderMethod* method() const; |
|
|
|
/* The sink on which this decoder receives input. */ |
|
BytesSink* input(); |
|
|
|
/* Returns number of bytes successfully parsed. |
|
* |
|
* This can be useful for determining the stream position where an error |
|
* occurred. |
|
* |
|
* This value may not be up-to-date when called from inside a parsing |
|
* callback. */ |
|
uint64_t BytesParsed() const; |
|
|
|
/* Gets/sets the parsing nexting limit. If the total number of nested |
|
* submessages and repeated fields hits this limit, parsing will fail. This |
|
* is a resource limit that controls the amount of memory used by the parsing |
|
* stack. |
|
* |
|
* Setting the limit will fail if the parser is currently suspended at a depth |
|
* greater than this, or if memory allocation of the stack fails. */ |
|
size_t max_nesting() const; |
|
bool set_max_nesting(size_t max); |
|
|
|
void Reset(); |
|
|
|
static const size_t kSize = UPB_PB_DECODER_SIZE; |
|
|
|
private: |
|
UPB_DISALLOW_POD_OPS(Decoder, upb::pb::Decoder) |
|
}; |
|
|
|
#endif /* __cplusplus */ |
|
|
|
#ifdef __cplusplus |
|
|
|
/* A class for caching protobuf processing code, whether bytecode for the |
|
* interpreted decoder or machine code for the JIT. |
|
* |
|
* This class is not thread-safe. |
|
* |
|
* TODO(haberman): move this to be heap allocated for ABI stability. */ |
|
class upb::pb::CodeCache { |
|
public: |
|
CodeCache(); |
|
~CodeCache(); |
|
|
|
/* Whether the cache is allowed to generate machine code. Defaults to true. |
|
* There is no real reason to turn it off except for testing or if you are |
|
* having a specific problem with the JIT. |
|
* |
|
* Note that allow_jit = true does not *guarantee* that the code will be JIT |
|
* compiled. If this platform is not supported or the JIT was not compiled |
|
* in, the code may still be interpreted. */ |
|
bool allow_jit() const; |
|
|
|
/* This may only be called when the object is first constructed, and prior to |
|
* any code generation, otherwise returns false and does nothing. */ |
|
bool set_allow_jit(bool allow); |
|
|
|
/* Returns a DecoderMethod that can push data to the given handlers. |
|
* If a suitable method already exists, it will be returned from the cache. |
|
* |
|
* Specifying the destination handlers here allows the DecoderMethod to be |
|
* statically bound to the destination handlers if possible, which can allow |
|
* more efficient decoding. However the returned method may or may not |
|
* actually be statically bound. But in all cases, the returned method can |
|
* push data to the given handlers. */ |
|
const DecoderMethod *GetDecoderMethod(const DecoderMethodOptions& opts); |
|
|
|
/* If/when someone needs to explicitly create a dynamically-bound |
|
* DecoderMethod*, we can add a method to get it here. */ |
|
|
|
private: |
|
UPB_DISALLOW_COPY_AND_ASSIGN(CodeCache) |
|
#else |
|
struct upb_pbcodecache { |
|
#endif |
|
bool allow_jit_; |
|
|
|
/* Array of mgroups. */ |
|
upb_inttable groups; |
|
}; |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
upb_pbdecoder *upb_pbdecoder_create(upb_env *e, |
|
const upb_pbdecodermethod *method, |
|
upb_sink *output); |
|
const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d); |
|
upb_bytessink *upb_pbdecoder_input(upb_pbdecoder *d); |
|
uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d); |
|
size_t upb_pbdecoder_maxnesting(const upb_pbdecoder *d); |
|
bool upb_pbdecoder_setmaxnesting(upb_pbdecoder *d, size_t max); |
|
void upb_pbdecoder_reset(upb_pbdecoder *d); |
|
|
|
void upb_pbdecodermethodopts_init(upb_pbdecodermethodopts *opts, |
|
const upb_handlers *h); |
|
void upb_pbdecodermethodopts_setlazy(upb_pbdecodermethodopts *opts, bool lazy); |
|
|
|
|
|
/* Include refcounted methods like upb_pbdecodermethod_ref(). */ |
|
UPB_REFCOUNTED_CMETHODS(upb_pbdecodermethod, upb_pbdecodermethod_upcast) |
|
|
|
const upb_handlers *upb_pbdecodermethod_desthandlers( |
|
const upb_pbdecodermethod *m); |
|
const upb_byteshandler *upb_pbdecodermethod_inputhandler( |
|
const upb_pbdecodermethod *m); |
|
bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m); |
|
const upb_pbdecodermethod *upb_pbdecodermethod_new( |
|
const upb_pbdecodermethodopts *opts, const void *owner); |
|
|
|
void upb_pbcodecache_init(upb_pbcodecache *c); |
|
void upb_pbcodecache_uninit(upb_pbcodecache *c); |
|
bool upb_pbcodecache_allowjit(const upb_pbcodecache *c); |
|
bool upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow); |
|
const upb_pbdecodermethod *upb_pbcodecache_getdecodermethod( |
|
upb_pbcodecache *c, const upb_pbdecodermethodopts *opts); |
|
|
|
UPB_END_EXTERN_C |
|
|
|
#ifdef __cplusplus |
|
|
|
namespace upb { |
|
|
|
namespace pb { |
|
|
|
/* static */ |
|
inline Decoder* Decoder::Create(Environment* env, const DecoderMethod* m, |
|
Sink* sink) { |
|
return upb_pbdecoder_create(env, m, sink); |
|
} |
|
inline const DecoderMethod* Decoder::method() const { |
|
return upb_pbdecoder_method(this); |
|
} |
|
inline BytesSink* Decoder::input() { |
|
return upb_pbdecoder_input(this); |
|
} |
|
inline uint64_t Decoder::BytesParsed() const { |
|
return upb_pbdecoder_bytesparsed(this); |
|
} |
|
inline size_t Decoder::max_nesting() const { |
|
return upb_pbdecoder_maxnesting(this); |
|
} |
|
inline bool Decoder::set_max_nesting(size_t max) { |
|
return upb_pbdecoder_setmaxnesting(this, max); |
|
} |
|
inline void Decoder::Reset() { upb_pbdecoder_reset(this); } |
|
|
|
inline DecoderMethodOptions::DecoderMethodOptions(const Handlers* h) { |
|
upb_pbdecodermethodopts_init(this, h); |
|
} |
|
inline void DecoderMethodOptions::set_lazy(bool lazy) { |
|
upb_pbdecodermethodopts_setlazy(this, lazy); |
|
} |
|
|
|
inline const Handlers* DecoderMethod::dest_handlers() const { |
|
return upb_pbdecodermethod_desthandlers(this); |
|
} |
|
inline const BytesHandler* DecoderMethod::input_handler() const { |
|
return upb_pbdecodermethod_inputhandler(this); |
|
} |
|
inline bool DecoderMethod::is_native() const { |
|
return upb_pbdecodermethod_isnative(this); |
|
} |
|
/* static */ |
|
inline reffed_ptr<const DecoderMethod> DecoderMethod::New( |
|
const DecoderMethodOptions &opts) { |
|
const upb_pbdecodermethod *m = upb_pbdecodermethod_new(&opts, &m); |
|
return reffed_ptr<const DecoderMethod>(m, &m); |
|
} |
|
|
|
inline CodeCache::CodeCache() { |
|
upb_pbcodecache_init(this); |
|
} |
|
inline CodeCache::~CodeCache() { |
|
upb_pbcodecache_uninit(this); |
|
} |
|
inline bool CodeCache::allow_jit() const { |
|
return upb_pbcodecache_allowjit(this); |
|
} |
|
inline bool CodeCache::set_allow_jit(bool allow) { |
|
return upb_pbcodecache_setallowjit(this, allow); |
|
} |
|
inline const DecoderMethod *CodeCache::GetDecoderMethod( |
|
const DecoderMethodOptions& opts) { |
|
return upb_pbcodecache_getdecodermethod(this, &opts); |
|
} |
|
|
|
} /* namespace pb */ |
|
} /* namespace upb */ |
|
|
|
#endif /* __cplusplus */ |
|
|
|
#endif /* UPB_DECODER_H_ */ |
|
|
|
/* C++ names are not actually used since this type isn't exposed to users. */ |
|
#ifdef __cplusplus |
|
namespace upb { |
|
namespace pb { |
|
class MessageGroup; |
|
} /* namespace pb */ |
|
} /* namespace upb */ |
|
#endif |
|
UPB_DECLARE_DERIVED_TYPE(upb::pb::MessageGroup, upb::RefCounted, |
|
mgroup, upb_refcounted) |
|
|
|
/* Opcode definitions. The canonical meaning of each opcode is its |
|
* implementation in the interpreter (the JIT is written to match this). |
|
* |
|
* All instructions have the opcode in the low byte. |
|
* Instruction format for most instructions is: |
|
* |
|
* +-------------------+--------+ |
|
* | arg (24) | op (8) | |
|
* +-------------------+--------+ |
|
* |
|
* Exceptions are indicated below. A few opcodes are multi-word. */ |
|
typedef enum { |
|
/* Opcodes 1-8, 13, 15-18 parse their respective descriptor types. |
|
* Arg for all of these is the upb selector for this field. */ |
|
#define T(type) OP_PARSE_ ## type = UPB_DESCRIPTOR_TYPE_ ## type |
|
T(DOUBLE), T(FLOAT), T(INT64), T(UINT64), T(INT32), T(FIXED64), T(FIXED32), |
|
T(BOOL), T(UINT32), T(SFIXED32), T(SFIXED64), T(SINT32), T(SINT64), |
|
#undef T |
|
OP_STARTMSG = 9, /* No arg. */ |
|
OP_ENDMSG = 10, /* No arg. */ |
|
OP_STARTSEQ = 11, |
|
OP_ENDSEQ = 12, |
|
OP_STARTSUBMSG = 14, |
|
OP_ENDSUBMSG = 19, |
|
OP_STARTSTR = 20, |
|
OP_STRING = 21, |
|
OP_ENDSTR = 22, |
|
|
|
OP_PUSHTAGDELIM = 23, /* No arg. */ |
|
OP_PUSHLENDELIM = 24, /* No arg. */ |
|
OP_POP = 25, /* No arg. */ |
|
OP_SETDELIM = 26, /* No arg. */ |
|
OP_SETBIGGROUPNUM = 27, /* two words: |
|
* | unused (24) | opc (8) | |
|
* | groupnum (32) | */ |
|
OP_CHECKDELIM = 28, |
|
OP_CALL = 29, |
|
OP_RET = 30, |
|
OP_BRANCH = 31, |
|
|
|
/* Different opcodes depending on how many bytes expected. */ |
|
OP_TAG1 = 32, /* | match tag (16) | jump target (8) | opc (8) | */ |
|
OP_TAG2 = 33, /* | match tag (16) | jump target (8) | opc (8) | */ |
|
OP_TAGN = 34, /* three words: */ |
|
/* | unused (16) | jump target(8) | opc (8) | */ |
|
/* | match tag 1 (32) | */ |
|
/* | match tag 2 (32) | */ |
|
|
|
OP_SETDISPATCH = 35, /* N words: */ |
|
/* | unused (24) | opc | */ |
|
/* | upb_inttable* (32 or 64) | */ |
|
|
|
OP_DISPATCH = 36, /* No arg. */ |
|
|
|
OP_HALT = 37 /* No arg. */ |
|
} opcode; |
|
|
|
#define OP_MAX OP_HALT |
|
|
|
UPB_INLINE opcode getop(uint32_t instr) { return instr & 0xff; } |
|
|
|
/* Method group; represents a set of decoder methods that had their code |
|
* emitted together, and must therefore be freed together. Immutable once |
|
* created. It is possible we may want to expose this to users at some point. |
|
* |
|
* Overall ownership of Decoder objects looks like this: |
|
* |
|
* +----------+ |
|
* | | <---> DecoderMethod |
|
* | method | |
|
* CodeCache ---> | group | <---> DecoderMethod |
|
* | | |
|
* | (mgroup) | <---> DecoderMethod |
|
* +----------+ |
|
*/ |
|
struct mgroup { |
|
upb_refcounted base; |
|
|
|
/* Maps upb_msgdef/upb_handlers -> upb_pbdecodermethod. We own refs on the |
|
* methods. */ |
|
upb_inttable methods; |
|
|
|
/* When we add the ability to link to previously existing mgroups, we'll |
|
* need an array of mgroups we reference here, and own refs on them. */ |
|
|
|
/* The bytecode for our methods, if any exists. Owned by us. */ |
|
uint32_t *bytecode; |
|
uint32_t *bytecode_end; |
|
|
|
#ifdef UPB_USE_JIT_X64 |
|
/* JIT-generated machine code, if any. */ |
|
upb_string_handlerfunc *jit_code; |
|
/* The size of the jit_code (required to munmap()). */ |
|
size_t jit_size; |
|
char *debug_info; |
|
void *dl; |
|
#endif |
|
}; |
|
|
|
/* The maximum that any submessages can be nested. Matches proto2's limit. |
|
* This specifies the size of the decoder's statically-sized array and therefore |
|
* setting it high will cause the upb::pb::Decoder object to be larger. |
|
* |
|
* If necessary we can add a runtime-settable property to Decoder that allow |
|
* this to be larger than the compile-time setting, but this would add |
|
* complexity, particularly since we would have to decide how/if to give users |
|
* the ability to set a custom memory allocation function. */ |
|
#define UPB_DECODER_MAX_NESTING 64 |
|
|
|
/* Internal-only struct used by the decoder. */ |
|
typedef struct { |
|
/* Space optimization note: we store two pointers here that the JIT |
|
* doesn't need at all; the upb_handlers* inside the sink and |
|
* the dispatch table pointer. We can optimze so that the JIT uses |
|
* smaller stack frames than the interpreter. The only thing we need |
|
* to guarantee is that the fallback routines can find end_ofs. */ |
|
upb_sink sink; |
|
|
|
/* The absolute stream offset of the end-of-frame delimiter. |
|
* Non-delimited frames (groups and non-packed repeated fields) reuse the |
|
* delimiter of their parent, even though the frame may not end there. |
|
* |
|
* NOTE: the JIT stores a slightly different value here for non-top frames. |
|
* It stores the value relative to the end of the enclosed message. But the |
|
* top frame is still stored the same way, which is important for ensuring |
|
* that calls from the JIT into C work correctly. */ |
|
uint64_t end_ofs; |
|
const uint32_t *base; |
|
|
|
/* 0 indicates a length-delimited field. |
|
* A positive number indicates a known group. |
|
* A negative number indicates an unknown group. */ |
|
int32_t groupnum; |
|
upb_inttable *dispatch; /* Not used by the JIT. */ |
|
} upb_pbdecoder_frame; |
|
|
|
struct upb_pbdecodermethod { |
|
upb_refcounted base; |
|
|
|
/* While compiling, the base is relative in "ofs", after compiling it is |
|
* absolute in "ptr". */ |
|
union { |
|
uint32_t ofs; /* PC offset of method. */ |
|
void *ptr; /* Pointer to bytecode or machine code for this method. */ |
|
} code_base; |
|
|
|
/* The decoder method group to which this method belongs. We own a ref. |
|
* Owning a ref on the entire group is more coarse-grained than is strictly |
|
* necessary; all we truly require is that methods we directly reference |
|
* outlive us, while the group could contain many other messages we don't |
|
* require. But the group represents the messages that were |
|
* allocated+compiled together, so it makes the most sense to free them |
|
* together also. */ |
|
const upb_refcounted *group; |
|
|
|
/* Whether this method is native code or bytecode. */ |
|
bool is_native_; |
|
|
|
/* The handler one calls to invoke this method. */ |
|
upb_byteshandler input_handler_; |
|
|
|
/* The destination handlers this method is bound to. We own a ref. */ |
|
const upb_handlers *dest_handlers_; |
|
|
|
/* Dispatch table -- used by both bytecode decoder and JIT when encountering a |
|
* field number that wasn't the one we were expecting to see. See |
|
* decoder.int.h for the layout of this table. */ |
|
upb_inttable dispatch; |
|
}; |
|
|
|
struct upb_pbdecoder { |
|
upb_env *env; |
|
|
|
/* Our input sink. */ |
|
upb_bytessink input_; |
|
|
|
/* The decoder method we are parsing with (owned). */ |
|
const upb_pbdecodermethod *method_; |
|
|
|
size_t call_len; |
|
const uint32_t *pc, *last; |
|
|
|
/* Current input buffer and its stream offset. */ |
|
const char *buf, *ptr, *end, *checkpoint; |
|
|
|
/* End of the delimited region, relative to ptr, NULL if not in this buf. */ |
|
const char *delim_end; |
|
|
|
/* End of the delimited region, relative to ptr, end if not in this buf. */ |
|
const char *data_end; |
|
|
|
/* Overall stream offset of "buf." */ |
|
uint64_t bufstart_ofs; |
|
|
|
/* Buffer for residual bytes not parsed from the previous buffer. */ |
|
char residual[UPB_DECODER_MAX_RESIDUAL_BYTES]; |
|
char *residual_end; |
|
|
|
/* Bytes of data that should be discarded from the input beore we start |
|
* parsing again. We set this when we internally determine that we can |
|
* safely skip the next N bytes, but this region extends past the current |
|
* user buffer. */ |
|
size_t skip; |
|
|
|
/* Stores the user buffer passed to our decode function. */ |
|
const char *buf_param; |
|
size_t size_param; |
|
const upb_bufhandle *handle; |
|
|
|
/* Our internal stack. */ |
|
upb_pbdecoder_frame *stack, *top, *limit; |
|
const uint32_t **callstack; |
|
size_t stack_size; |
|
|
|
upb_status *status; |
|
|
|
#ifdef UPB_USE_JIT_X64 |
|
/* Used momentarily by the generated code to store a value while a user |
|
* function is called. */ |
|
uint32_t tmp_len; |
|
|
|
const void *saved_rsp; |
|
#endif |
|
}; |
|
|
|
/* Decoder entry points; used as handlers. */ |
|
void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint); |
|
void *upb_pbdecoder_startjit(void *closure, const void *hd, size_t size_hint); |
|
size_t upb_pbdecoder_decode(void *closure, const void *hd, const char *buf, |
|
size_t size, const upb_bufhandle *handle); |
|
bool upb_pbdecoder_end(void *closure, const void *handler_data); |
|
|
|
/* Decoder-internal functions that the JIT calls to handle fallback paths. */ |
|
int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf, |
|
size_t size, const upb_bufhandle *handle); |
|
size_t upb_pbdecoder_suspend(upb_pbdecoder *d); |
|
int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum, |
|
uint8_t wire_type); |
|
int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d, uint64_t expected); |
|
int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d, uint64_t *u64); |
|
int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32); |
|
int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64); |
|
void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg); |
|
|
|
/* Error messages that are shared between the bytecode and JIT decoders. */ |
|
extern const char *kPbDecoderStackOverflow; |
|
extern const char *kPbDecoderSubmessageTooLong; |
|
|
|
/* Access to decoderplan members needed by the decoder. */ |
|
const char *upb_pbdecoder_getopname(unsigned int op); |
|
|
|
/* JIT codegen entry point. */ |
|
void upb_pbdecoder_jit(mgroup *group); |
|
void upb_pbdecoder_freejit(mgroup *group); |
|
UPB_REFCOUNTED_CMETHODS(mgroup, mgroup_upcast) |
|
|
|
/* A special label that means "do field dispatch for this message and branch to |
|
* wherever that takes you." */ |
|
#define LABEL_DISPATCH 0 |
|
|
|
/* A special slot in the dispatch table that stores the epilogue (ENDMSG and/or |
|
* RET) for branching to when we find an appropriate ENDGROUP tag. */ |
|
#define DISPATCH_ENDMSG 0 |
|
|
|
/* It's important to use this invalid wire type instead of 0 (which is a valid |
|
* wire type). */ |
|
#define NO_WIRE_TYPE 0xff |
|
|
|
/* The dispatch table layout is: |
|
* [field number] -> [ 48-bit offset ][ 8-bit wt2 ][ 8-bit wt1 ] |
|
* |
|
* If wt1 matches, jump to the 48-bit offset. If wt2 matches, lookup |
|
* (UPB_MAX_FIELDNUMBER + fieldnum) and jump there. |
|
* |
|
* We need two wire types because of packed/non-packed compatibility. A |
|
* primitive repeated field can use either wire type and be valid. While we |
|
* could key the table on fieldnum+wiretype, the table would be 8x sparser. |
|
* |
|
* Storing two wire types in the primary value allows us to quickly rule out |
|
* the second wire type without needing to do a separate lookup (this case is |
|
* less common than an unknown field). */ |
|
UPB_INLINE uint64_t upb_pbdecoder_packdispatch(uint64_t ofs, uint8_t wt1, |
|
uint8_t wt2) { |
|
return (ofs << 16) | (wt2 << 8) | wt1; |
|
} |
|
|
|
UPB_INLINE void upb_pbdecoder_unpackdispatch(uint64_t dispatch, uint64_t *ofs, |
|
uint8_t *wt1, uint8_t *wt2) { |
|
*wt1 = (uint8_t)dispatch; |
|
*wt2 = (uint8_t)(dispatch >> 8); |
|
*ofs = dispatch >> 16; |
|
} |
|
|
|
/* All of the functions in decoder.c that return int32_t return values according |
|
* to the following scheme: |
|
* 1. negative values indicate a return code from the following list. |
|
* 2. positive values indicate that error or end of buffer was hit, and |
|
* that the decode function should immediately return the given value |
|
* (the decoder state has already been suspended and is ready to be |
|
* resumed). */ |
|
#define DECODE_OK -1 |
|
#define DECODE_MISMATCH -2 /* Used only from checktag_slow(). */ |
|
#define DECODE_ENDGROUP -3 /* Used only from checkunknown(). */ |
|
|
|
#define CHECK_RETURN(x) { int32_t ret = x; if (ret >= 0) return ret; } |
|
|
|
#endif /* UPB_DECODER_INT_H_ */ |
|
/* |
|
** A number of routines for varint manipulation (we keep them all around to |
|
** have multiple approaches available for benchmarking). |
|
*/ |
|
|
|
#ifndef UPB_VARINT_DECODER_H_ |
|
#define UPB_VARINT_DECODER_H_ |
|
|
|
#include <assert.h> |
|
#include <stdint.h> |
|
#include <string.h> |
|
|
|
#ifdef __cplusplus |
|
extern "C" { |
|
#endif |
|
|
|
/* A list of types as they are encoded on-the-wire. */ |
|
typedef enum { |
|
UPB_WIRE_TYPE_VARINT = 0, |
|
UPB_WIRE_TYPE_64BIT = 1, |
|
UPB_WIRE_TYPE_DELIMITED = 2, |
|
UPB_WIRE_TYPE_START_GROUP = 3, |
|
UPB_WIRE_TYPE_END_GROUP = 4, |
|
UPB_WIRE_TYPE_32BIT = 5 |
|
} upb_wiretype_t; |
|
|
|
#define UPB_MAX_WIRE_TYPE 5 |
|
|
|
/* The maximum number of bytes that it takes to encode a 64-bit varint. |
|
* Note that with a better encoding this could be 9 (TODO: write up a |
|
* wiki document about this). */ |
|
#define UPB_PB_VARINT_MAX_LEN 10 |
|
|
|
/* Array of the "native" (ie. non-packed-repeated) wire type for the given a |
|
* descriptor type (upb_descriptortype_t). */ |
|
extern const uint8_t upb_pb_native_wire_types[]; |
|
|
|
/* Zig-zag encoding/decoding **************************************************/ |
|
|
|
UPB_INLINE int32_t upb_zzdec_32(uint32_t n) { |
|
return (n >> 1) ^ -(int32_t)(n & 1); |
|
} |
|
UPB_INLINE int64_t upb_zzdec_64(uint64_t n) { |
|
return (n >> 1) ^ -(int64_t)(n & 1); |
|
} |
|
UPB_INLINE uint32_t upb_zzenc_32(int32_t n) { return (n << 1) ^ (n >> 31); } |
|
UPB_INLINE uint64_t upb_zzenc_64(int64_t n) { return (n << 1) ^ (n >> 63); } |
|
|
|
/* Decoding *******************************************************************/ |
|
|
|
/* All decoding functions return this struct by value. */ |
|
typedef struct { |
|
const char *p; /* NULL if the varint was unterminated. */ |
|
uint64_t val; |
|
} upb_decoderet; |
|
|
|
UPB_INLINE upb_decoderet upb_decoderet_make(const char *p, uint64_t val) { |
|
upb_decoderet ret; |
|
ret.p = p; |
|
ret.val = val; |
|
return ret; |
|
} |
|
|
|
/* Four functions for decoding a varint of at most eight bytes. They are all |
|
* functionally identical, but are implemented in different ways and likely have |
|
* different performance profiles. We keep them around for performance testing. |
|
* |
|
* Note that these functions may not read byte-by-byte, so they must not be used |
|
* unless there are at least eight bytes left in the buffer! */ |
|
upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r); |
|
upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r); |
|
upb_decoderet upb_vdecode_max8_wright(upb_decoderet r); |
|
upb_decoderet upb_vdecode_max8_massimino(upb_decoderet r); |
|
|
|
/* Template for a function that checks the first two bytes with branching |
|
* and dispatches 2-10 bytes with a separate function. Note that this may read |
|
* up to 10 bytes, so it must not be used unless there are at least ten bytes |
|
* left in the buffer! */ |
|
#define UPB_VARINT_DECODER_CHECK2(name, decode_max8_function) \ |
|
UPB_INLINE upb_decoderet upb_vdecode_check2_ ## name(const char *_p) { \ |
|
uint8_t *p = (uint8_t*)_p; \ |
|
upb_decoderet r; \ |
|
if ((*p & 0x80) == 0) { \ |
|
/* Common case: one-byte varint. */ \ |
|
return upb_decoderet_make(_p + 1, *p & 0x7fU); \ |
|
} \ |
|
r = upb_decoderet_make(_p + 2, (*p & 0x7fU) | ((*(p + 1) & 0x7fU) << 7)); \ |
|
if ((*(p + 1) & 0x80) == 0) { \ |
|
/* Two-byte varint. */ \ |
|
return r; \ |
|
} \ |
|
/* Longer varint, fallback to out-of-line function. */ \ |
|
return decode_max8_function(r); \ |
|
} |
|
|
|
UPB_VARINT_DECODER_CHECK2(branch32, upb_vdecode_max8_branch32) |
|
UPB_VARINT_DECODER_CHECK2(branch64, upb_vdecode_max8_branch64) |
|
UPB_VARINT_DECODER_CHECK2(wright, upb_vdecode_max8_wright) |
|
UPB_VARINT_DECODER_CHECK2(massimino, upb_vdecode_max8_massimino) |
|
#undef UPB_VARINT_DECODER_CHECK2 |
|
|
|
/* Our canonical functions for decoding varints, based on the currently |
|
* favored best-performing implementations. */ |
|
UPB_INLINE upb_decoderet upb_vdecode_fast(const char *p) { |
|
if (sizeof(long) == 8) |
|
return upb_vdecode_check2_branch64(p); |
|
else |
|
return upb_vdecode_check2_branch32(p); |
|
} |
|
|
|
UPB_INLINE upb_decoderet upb_vdecode_max8_fast(upb_decoderet r) { |
|
return upb_vdecode_max8_massimino(r); |
|
} |
|
|
|
|
|
/* Encoding *******************************************************************/ |
|
|
|
UPB_INLINE int upb_value_size(uint64_t val) { |
|
#ifdef __GNUC__ |
|
int high_bit = 63 - __builtin_clzll(val); /* 0-based, undef if val == 0. */ |
|
#else |
|
int high_bit = 0; |
|
uint64_t tmp = val; |
|
while(tmp >>= 1) high_bit++; |
|
#endif |
|
return val == 0 ? 1 : high_bit / 8 + 1; |
|
} |
|
|
|
/* Encodes a 64-bit varint into buf (which must be >=UPB_PB_VARINT_MAX_LEN |
|
* bytes long), returning how many bytes were used. |
|
* |
|
* TODO: benchmark and optimize if necessary. */ |
|
UPB_INLINE size_t upb_vencode64(uint64_t val, char *buf) { |
|
size_t i; |
|
if (val == 0) { buf[0] = 0; return 1; } |
|
i = 0; |
|
while (val) { |
|
uint8_t byte = val & 0x7fU; |
|
val >>= 7; |
|
if (val) byte |= 0x80U; |
|
buf[i++] = byte; |
|
} |
|
return i; |
|
} |
|
|
|
UPB_INLINE size_t upb_varint_size(uint64_t val) { |
|
char buf[UPB_PB_VARINT_MAX_LEN]; |
|
return upb_vencode64(val, buf); |
|
} |
|
|
|
/* Encodes a 32-bit varint, *not* sign-extended. */ |
|
UPB_INLINE uint64_t upb_vencode32(uint32_t val) { |
|
char buf[UPB_PB_VARINT_MAX_LEN]; |
|
size_t bytes = upb_vencode64(val, buf); |
|
uint64_t ret = 0; |
|
assert(bytes <= 5); |
|
memcpy(&ret, buf, bytes); |
|
assert(ret <= 0xffffffffffU); |
|
return ret; |
|
} |
|
|
|
#ifdef __cplusplus |
|
} /* extern "C" */ |
|
#endif |
|
|
|
#endif /* UPB_VARINT_DECODER_H_ */ |
|
/* |
|
** upb::pb::Encoder (upb_pb_encoder) |
|
** |
|
** Implements a set of upb_handlers that write protobuf data to the binary wire |
|
** format. |
|
** |
|
** This encoder implementation does not have any access to any out-of-band or |
|
** precomputed lengths for submessages, so it must buffer submessages internally |
|
** before it can emit the first byte. |
|
*/ |
|
|
|
#ifndef UPB_ENCODER_H_ |
|
#define UPB_ENCODER_H_ |
|
|
|
|
|
#ifdef __cplusplus |
|
namespace upb { |
|
namespace pb { |
|
class Encoder; |
|
} /* namespace pb */ |
|
} /* namespace upb */ |
|
#endif |
|
|
|
UPB_DECLARE_TYPE(upb::pb::Encoder, upb_pb_encoder) |
|
|
|
#define UPB_PBENCODER_MAX_NESTING 100 |
|
|
|
/* upb::pb::Encoder ***********************************************************/ |
|
|
|
/* Preallocation hint: decoder won't allocate more bytes than this when first |
|
* constructed. This hint may be an overestimate for some build configurations. |
|
* But if the decoder library is upgraded without recompiling the application, |
|
* it may be an underestimate. */ |
|
#define UPB_PB_ENCODER_SIZE 768 |
|
|
|
#ifdef __cplusplus |
|
|
|
class upb::pb::Encoder { |
|
public: |
|
/* Creates a new encoder in the given environment. The Handlers must have |
|
* come from NewHandlers() below. */ |
|
static Encoder* Create(Environment* env, const Handlers* handlers, |
|
BytesSink* output); |
|
|
|
/* The input to the encoder. */ |
|
Sink* input(); |
|
|
|
/* Creates a new set of handlers for this MessageDef. */ |
|
static reffed_ptr<const Handlers> NewHandlers(const MessageDef* msg); |
|
|
|
static const size_t kSize = UPB_PB_ENCODER_SIZE; |
|
|
|
private: |
|
UPB_DISALLOW_POD_OPS(Encoder, upb::pb::Encoder) |
|
}; |
|
|
|
#endif |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m, |
|
const void *owner); |
|
upb_sink *upb_pb_encoder_input(upb_pb_encoder *p); |
|
upb_pb_encoder* upb_pb_encoder_create(upb_env* e, const upb_handlers* h, |
|
upb_bytessink* output); |
|
|
|
UPB_END_EXTERN_C |
|
|
|
#ifdef __cplusplus |
|
|
|
namespace upb { |
|
namespace pb { |
|
inline Encoder* Encoder::Create(Environment* env, const Handlers* handlers, |
|
BytesSink* output) { |
|
return upb_pb_encoder_create(env, handlers, output); |
|
} |
|
inline Sink* Encoder::input() { |
|
return upb_pb_encoder_input(this); |
|
} |
|
inline reffed_ptr<const Handlers> Encoder::NewHandlers( |
|
const upb::MessageDef *md) { |
|
const Handlers* h = upb_pb_encoder_newhandlers(md, &h); |
|
return reffed_ptr<const Handlers>(h, &h); |
|
} |
|
} /* namespace pb */ |
|
} /* namespace upb */ |
|
|
|
#endif |
|
|
|
#endif /* UPB_ENCODER_H_ */ |
|
/* |
|
** upb's core components like upb_decoder and upb_msg are carefully designed to |
|
** avoid depending on each other for maximum orthogonality. In other words, |
|
** you can use a upb_decoder to decode into *any* kind of structure; upb_msg is |
|
** just one such structure. A upb_msg can be serialized/deserialized into any |
|
** format, protobuf binary format is just one such format. |
|
** |
|
** However, for convenience we provide functions here for doing common |
|
** operations like deserializing protobuf binary format into a upb_msg. The |
|
** compromise is that this file drags in almost all of upb as a dependency, |
|
** which could be undesirable if you're trying to use a trimmed-down build of |
|
** upb. |
|
** |
|
** While these routines are convenient, they do not reuse any encoding/decoding |
|
** state. For example, if a decoder is JIT-based, it will be re-JITted every |
|
** time these functions are called. For this reason, if you are parsing lots |
|
** of data and efficiency is an issue, these may not be the best functions to |
|
** use (though they are useful for prototyping, before optimizing). |
|
*/ |
|
|
|
#ifndef UPB_GLUE_H |
|
#define UPB_GLUE_H |
|
|
|
#include <stdbool.h> |
|
|
|
#ifdef __cplusplus |
|
#include <vector> |
|
|
|
extern "C" { |
|
#endif |
|
|
|
/* Loads a binary descriptor and returns a NULL-terminated array of unfrozen |
|
* filedefs. The caller owns the returned array, which must be freed with |
|
* upb_gfree(). */ |
|
upb_filedef **upb_loaddescriptor(const char *buf, size_t n, const void *owner, |
|
upb_status *status); |
|
|
|
#ifdef __cplusplus |
|
} /* extern "C" */ |
|
|
|
namespace upb { |
|
|
|
inline bool LoadDescriptor(const char* buf, size_t n, Status* status, |
|
std::vector<reffed_ptr<FileDef> >* files) { |
|
FileDef** parsed_files = upb_loaddescriptor(buf, n, &parsed_files, status); |
|
|
|
if (parsed_files) { |
|
FileDef** p = parsed_files; |
|
while (*p) { |
|
files->push_back(reffed_ptr<FileDef>(*p, &parsed_files)); |
|
++p; |
|
} |
|
free(parsed_files); |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
/* Templated so it can accept both string and std::string. */ |
|
template <typename T> |
|
bool LoadDescriptor(const T& desc, Status* status, |
|
std::vector<reffed_ptr<FileDef> >* files) { |
|
return LoadDescriptor(desc.c_str(), desc.size(), status, files); |
|
} |
|
|
|
} /* namespace upb */ |
|
|
|
#endif |
|
|
|
#endif /* UPB_GLUE_H */ |
|
/* |
|
** upb::pb::TextPrinter (upb_textprinter) |
|
** |
|
** Handlers for writing to protobuf text format. |
|
*/ |
|
|
|
#ifndef UPB_TEXT_H_ |
|
#define UPB_TEXT_H_ |
|
|
|
|
|
#ifdef __cplusplus |
|
namespace upb { |
|
namespace pb { |
|
class TextPrinter; |
|
} /* namespace pb */ |
|
} /* namespace upb */ |
|
#endif |
|
|
|
UPB_DECLARE_TYPE(upb::pb::TextPrinter, upb_textprinter) |
|
|
|
#ifdef __cplusplus |
|
|
|
class upb::pb::TextPrinter { |
|
public: |
|
/* The given handlers must have come from NewHandlers(). It must outlive the |
|
* TextPrinter. */ |
|
static TextPrinter *Create(Environment *env, const upb::Handlers *handlers, |
|
BytesSink *output); |
|
|
|
void SetSingleLineMode(bool single_line); |
|
|
|
Sink* input(); |
|
|
|
/* If handler caching becomes a requirement we can add a code cache as in |
|
* decoder.h */ |
|
static reffed_ptr<const Handlers> NewHandlers(const MessageDef* md); |
|
}; |
|
|
|
#endif |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
/* C API. */ |
|
upb_textprinter *upb_textprinter_create(upb_env *env, const upb_handlers *h, |
|
upb_bytessink *output); |
|
void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line); |
|
upb_sink *upb_textprinter_input(upb_textprinter *p); |
|
|
|
const upb_handlers *upb_textprinter_newhandlers(const upb_msgdef *m, |
|
const void *owner); |
|
|
|
UPB_END_EXTERN_C |
|
|
|
#ifdef __cplusplus |
|
|
|
namespace upb { |
|
namespace pb { |
|
inline TextPrinter *TextPrinter::Create(Environment *env, |
|
const upb::Handlers *handlers, |
|
BytesSink *output) { |
|
return upb_textprinter_create(env, handlers, output); |
|
} |
|
inline void TextPrinter::SetSingleLineMode(bool single_line) { |
|
upb_textprinter_setsingleline(this, single_line); |
|
} |
|
inline Sink* TextPrinter::input() { |
|
return upb_textprinter_input(this); |
|
} |
|
inline reffed_ptr<const Handlers> TextPrinter::NewHandlers( |
|
const MessageDef *md) { |
|
const Handlers* h = upb_textprinter_newhandlers(md, &h); |
|
return reffed_ptr<const Handlers>(h, &h); |
|
} |
|
} /* namespace pb */ |
|
} /* namespace upb */ |
|
|
|
#endif |
|
|
|
#endif /* UPB_TEXT_H_ */ |
|
/* |
|
** upb::json::Parser (upb_json_parser) |
|
** |
|
** Parses JSON according to a specific schema. |
|
** Support for parsing arbitrary JSON (schema-less) will be added later. |
|
*/ |
|
|
|
#ifndef UPB_JSON_PARSER_H_ |
|
#define UPB_JSON_PARSER_H_ |
|
|
|
|
|
#ifdef __cplusplus |
|
namespace upb { |
|
namespace json { |
|
class Parser; |
|
class ParserMethod; |
|
} /* namespace json */ |
|
} /* namespace upb */ |
|
#endif |
|
|
|
UPB_DECLARE_TYPE(upb::json::Parser, upb_json_parser) |
|
UPB_DECLARE_DERIVED_TYPE(upb::json::ParserMethod, upb::RefCounted, |
|
upb_json_parsermethod, upb_refcounted) |
|
|
|
/* upb::json::Parser **********************************************************/ |
|
|
|
/* Preallocation hint: parser won't allocate more bytes than this when first |
|
* constructed. This hint may be an overestimate for some build configurations. |
|
* But if the parser library is upgraded without recompiling the application, |
|
* it may be an underestimate. */ |
|
#define UPB_JSON_PARSER_SIZE 4112 |
|
|
|
#ifdef __cplusplus |
|
|
|
/* Parses an incoming BytesStream, pushing the results to the destination |
|
* sink. */ |
|
class upb::json::Parser { |
|
public: |
|
static Parser* Create(Environment* env, const ParserMethod* method, |
|
Sink* output); |
|
|
|
BytesSink* input(); |
|
|
|
private: |
|
UPB_DISALLOW_POD_OPS(Parser, upb::json::Parser) |
|
}; |
|
|
|
class upb::json::ParserMethod { |
|
public: |
|
/* Include base methods from upb::ReferenceCounted. */ |
|
UPB_REFCOUNTED_CPPMETHODS |
|
|
|
/* Returns handlers for parsing according to the specified schema. */ |
|
static reffed_ptr<const ParserMethod> New(const upb::MessageDef* md); |
|
|
|
/* The destination handlers that are statically bound to this method. |
|
* This method is only capable of outputting to a sink that uses these |
|
* handlers. */ |
|
const Handlers* dest_handlers() const; |
|
|
|
/* The input handlers for this decoder method. */ |
|
const BytesHandler* input_handler() const; |
|
|
|
private: |
|
UPB_DISALLOW_POD_OPS(ParserMethod, upb::json::ParserMethod) |
|
}; |
|
|
|
#endif |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
upb_json_parser* upb_json_parser_create(upb_env* e, |
|
const upb_json_parsermethod* m, |
|
upb_sink* output); |
|
upb_bytessink *upb_json_parser_input(upb_json_parser *p); |
|
|
|
upb_json_parsermethod* upb_json_parsermethod_new(const upb_msgdef* md, |
|
const void* owner); |
|
const upb_handlers *upb_json_parsermethod_desthandlers( |
|
const upb_json_parsermethod *m); |
|
const upb_byteshandler *upb_json_parsermethod_inputhandler( |
|
const upb_json_parsermethod *m); |
|
|
|
/* Include refcounted methods like upb_json_parsermethod_ref(). */ |
|
UPB_REFCOUNTED_CMETHODS(upb_json_parsermethod, upb_json_parsermethod_upcast) |
|
|
|
UPB_END_EXTERN_C |
|
|
|
#ifdef __cplusplus |
|
|
|
namespace upb { |
|
namespace json { |
|
inline Parser* Parser::Create(Environment* env, const ParserMethod* method, |
|
Sink* output) { |
|
return upb_json_parser_create(env, method, output); |
|
} |
|
inline BytesSink* Parser::input() { |
|
return upb_json_parser_input(this); |
|
} |
|
|
|
inline const Handlers* ParserMethod::dest_handlers() const { |
|
return upb_json_parsermethod_desthandlers(this); |
|
} |
|
inline const BytesHandler* ParserMethod::input_handler() const { |
|
return upb_json_parsermethod_inputhandler(this); |
|
} |
|
/* static */ |
|
inline reffed_ptr<const ParserMethod> ParserMethod::New( |
|
const MessageDef* md) { |
|
const upb_json_parsermethod *m = upb_json_parsermethod_new(md, &m); |
|
return reffed_ptr<const ParserMethod>(m, &m); |
|
} |
|
|
|
} /* namespace json */ |
|
} /* namespace upb */ |
|
|
|
#endif |
|
|
|
|
|
#endif /* UPB_JSON_PARSER_H_ */ |
|
/* |
|
** upb::json::Printer |
|
** |
|
** Handlers that emit JSON according to a specific protobuf schema. |
|
*/ |
|
|
|
#ifndef UPB_JSON_TYPED_PRINTER_H_ |
|
#define UPB_JSON_TYPED_PRINTER_H_ |
|
|
|
|
|
#ifdef __cplusplus |
|
namespace upb { |
|
namespace json { |
|
class Printer; |
|
} /* namespace json */ |
|
} /* namespace upb */ |
|
#endif |
|
|
|
UPB_DECLARE_TYPE(upb::json::Printer, upb_json_printer) |
|
|
|
|
|
/* upb::json::Printer *********************************************************/ |
|
|
|
#define UPB_JSON_PRINTER_SIZE 176 |
|
|
|
#ifdef __cplusplus |
|
|
|
/* Prints an incoming stream of data to a BytesSink in JSON format. */ |
|
class upb::json::Printer { |
|
public: |
|
static Printer* Create(Environment* env, const upb::Handlers* handlers, |
|
BytesSink* output); |
|
|
|
/* The input to the printer. */ |
|
Sink* input(); |
|
|
|
/* Returns handlers for printing according to the specified schema. |
|
* If preserve_proto_fieldnames is true, the output JSON will use the |
|
* original .proto field names (ie. {"my_field":3}) instead of using |
|
* camelCased names, which is the default: (eg. {"myField":3}). */ |
|
static reffed_ptr<const Handlers> NewHandlers(const upb::MessageDef* md, |
|
bool preserve_proto_fieldnames); |
|
|
|
static const size_t kSize = UPB_JSON_PRINTER_SIZE; |
|
|
|
private: |
|
UPB_DISALLOW_POD_OPS(Printer, upb::json::Printer) |
|
}; |
|
|
|
#endif |
|
|
|
UPB_BEGIN_EXTERN_C |
|
|
|
/* Native C API. */ |
|
upb_json_printer *upb_json_printer_create(upb_env *e, const upb_handlers *h, |
|
upb_bytessink *output); |
|
upb_sink *upb_json_printer_input(upb_json_printer *p); |
|
const upb_handlers *upb_json_printer_newhandlers(const upb_msgdef *md, |
|
bool preserve_fieldnames, |
|
const void *owner); |
|
|
|
UPB_END_EXTERN_C |
|
|
|
#ifdef __cplusplus |
|
|
|
namespace upb { |
|
namespace json { |
|
inline Printer* Printer::Create(Environment* env, const upb::Handlers* handlers, |
|
BytesSink* output) { |
|
return upb_json_printer_create(env, handlers, output); |
|
} |
|
inline Sink* Printer::input() { return upb_json_printer_input(this); } |
|
inline reffed_ptr<const Handlers> Printer::NewHandlers( |
|
const upb::MessageDef *md, bool preserve_proto_fieldnames) { |
|
const Handlers* h = upb_json_printer_newhandlers( |
|
md, preserve_proto_fieldnames, &h); |
|
return reffed_ptr<const Handlers>(h, &h); |
|
} |
|
} /* namespace json */ |
|
} /* namespace upb */ |
|
|
|
#endif |
|
|
|
#endif /* UPB_JSON_TYPED_PRINTER_H_ */
|
|
|