Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

836 lines
25 KiB

// Protocol Buffers - Google's data interchange format
// Copyright 2014 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "protobuf.h"
// -----------------------------------------------------------------------------
// Basic map operations on top of upb's strtable.
//
// Note that we roll our own `Map` container here because, as for
// `RepeatedField`, we want a strongly-typed container. This is so that any user
// errors due to incorrect map key or value types are raised as close as
// possible to the error site, rather than at some deferred point (e.g.,
// serialization).
//
// We build our `Map` on top of upb_strtable so that we're able to take
// advantage of the native_slot storage abstraction, as RepeatedField does.
// (This is not quite a perfect mapping -- see the key conversions below -- but
// gives us full support and error-checking for all value types for free.)
// -----------------------------------------------------------------------------
// Map values are stored using the native_slot abstraction (as with repeated
// field values), but keys are a bit special. Since we use a strtable, we need
// to store keys as sequences of bytes such that equality of those bytes maps
// one-to-one to equality of keys. We store strings directly (i.e., they map to
// their own bytes) and integers as native integers (using the native_slot
// abstraction).
// Note that there is another tradeoff here in keeping string keys as native
// strings rather than Ruby strings: traversing the Map requires conversion to
// Ruby string values on every traversal, potentially creating more garbage. We
// should consider ways to cache a Ruby version of the key if this becomes an
// issue later.
// Forms a key to use with the underlying strtable from a Ruby key value. |buf|
// must point to TABLE_KEY_BUF_LENGTH bytes of temporary space, used to
// construct a key byte sequence if needed. |out_key| and |out_length| provide
// the resulting key data/length.
#define TABLE_KEY_BUF_LENGTH 8 // sizeof(uint64_t)
static VALUE table_key(Map* self, VALUE key,
char* buf,
const char** out_key,
size_t* out_length) {
switch (self->key_type) {
case UPB_TYPE_BYTES:
case UPB_TYPE_STRING:
// Strings: use string content directly.
if (TYPE(key) == T_SYMBOL) {
key = rb_id2str(SYM2ID(key));
}
Check_Type(key, T_STRING);
key = native_slot_encode_and_freeze_string(self->key_type, key);
*out_key = RSTRING_PTR(key);
*out_length = RSTRING_LEN(key);
break;
case UPB_TYPE_BOOL:
case UPB_TYPE_INT32:
case UPB_TYPE_INT64:
case UPB_TYPE_UINT32:
case UPB_TYPE_UINT64:
native_slot_set("", self->key_type, Qnil, buf, key);
*out_key = buf;
*out_length = native_slot_size(self->key_type);
break;
default:
// Map constructor should not allow a Map with another key type to be
// constructed.
assert(false);
break;
}
return key;
}
static VALUE table_key_to_ruby(Map* self, upb_strview key) {
switch (self->key_type) {
case UPB_TYPE_BYTES:
case UPB_TYPE_STRING: {
VALUE ret = rb_str_new(key.data, key.size);
rb_enc_associate(ret,
(self->key_type == UPB_TYPE_BYTES) ?
kRubyString8bitEncoding : kRubyStringUtf8Encoding);
return ret;
}
case UPB_TYPE_BOOL:
case UPB_TYPE_INT32:
case UPB_TYPE_INT64:
case UPB_TYPE_UINT32:
case UPB_TYPE_UINT64:
return native_slot_get(self->key_type, Qnil, key.data);
default:
assert(false);
return Qnil;
}
}
static void* value_memory(upb_value* v) {
return (void*)(&v->val);
}
// -----------------------------------------------------------------------------
// Map container type.
// -----------------------------------------------------------------------------
const rb_data_type_t Map_type = {
"Google::Protobuf::Map",
{ Map_mark, Map_free, NULL },
};
VALUE cMap;
Map* ruby_to_Map(VALUE _self) {
Map* self;
TypedData_Get_Struct(_self, Map, &Map_type, self);
return self;
}
void Map_mark(void* _self) {
Map* self = _self;
rb_gc_mark(self->value_type_class);
rb_gc_mark(self->parse_frame);
if (self->value_type == UPB_TYPE_STRING ||
self->value_type == UPB_TYPE_BYTES ||
self->value_type == UPB_TYPE_MESSAGE) {
upb_strtable_iter it;
for (upb_strtable_begin(&it, &self->table);
!upb_strtable_done(&it);
upb_strtable_next(&it)) {
upb_value v = upb_strtable_iter_value(&it);
void* mem = value_memory(&v);
native_slot_mark(self->value_type, mem);
}
}
}
void Map_free(void* _self) {
Map* self = _self;
upb_strtable_uninit(&self->table);
xfree(self);
}
VALUE Map_alloc(VALUE klass) {
Map* self = ALLOC(Map);
memset(self, 0, sizeof(Map));
self->value_type_class = Qnil;
return TypedData_Wrap_Struct(klass, &Map_type, self);
}
VALUE Map_set_frame(VALUE map, VALUE val) {
Map* self = ruby_to_Map(map);
self->parse_frame = val;
return val;
}
static bool needs_typeclass(upb_fieldtype_t type) {
switch (type) {
case UPB_TYPE_MESSAGE:
case UPB_TYPE_ENUM:
return true;
default:
return false;
}
}
/*
* call-seq:
* Map.new(key_type, value_type, value_typeclass = nil, init_hashmap = {})
* => new map
*
* Allocates a new Map container. This constructor may be called with 2, 3, or 4
* arguments. The first two arguments are always present and are symbols (taking
* on the same values as field-type symbols in message descriptors) that
* indicate the type of the map key and value fields.
*
* The supported key types are: :int32, :int64, :uint32, :uint64, :bool,
* :string, :bytes.
*
* The supported value types are: :int32, :int64, :uint32, :uint64, :bool,
* :string, :bytes, :enum, :message.
*
* The third argument, value_typeclass, must be present if value_type is :enum
* or :message. As in RepeatedField#new, this argument must be a message class
* (for :message) or enum module (for :enum).
*
* The last argument, if present, provides initial content for map. Note that
* this may be an ordinary Ruby hashmap or another Map instance with identical
* key and value types. Also note that this argument may be present whether or
* not value_typeclass is present (and it is unambiguously separate from
* value_typeclass because value_typeclass's presence is strictly determined by
* value_type). The contents of this initial hashmap or Map instance are
* shallow-copied into the new Map: the original map is unmodified, but
* references to underlying objects will be shared if the value type is a
* message type.
*/
VALUE Map_init(int argc, VALUE* argv, VALUE _self) {
Map* self = ruby_to_Map(_self);
int init_value_arg;
// We take either two args (:key_type, :value_type), three args (:key_type,
// :value_type, "ValueMessageType"), or four args (the above plus an initial
// hashmap).
if (argc < 2 || argc > 4) {
rb_raise(rb_eArgError, "Map constructor expects 2, 3 or 4 arguments.");
}
self->key_type = ruby_to_fieldtype(argv[0]);
self->value_type = ruby_to_fieldtype(argv[1]);
self->parse_frame = Qnil;
// Check that the key type is an allowed type.
switch (self->key_type) {
case UPB_TYPE_INT32:
case UPB_TYPE_INT64:
case UPB_TYPE_UINT32:
case UPB_TYPE_UINT64:
case UPB_TYPE_BOOL:
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
// These are OK.
break;
default:
rb_raise(rb_eArgError, "Invalid key type for map.");
}
init_value_arg = 2;
if (needs_typeclass(self->value_type) && argc > 2) {
self->value_type_class = argv[2];
validate_type_class(self->value_type, self->value_type_class);
init_value_arg = 3;
}
// Table value type is always UINT64: this ensures enough space to store the
// native_slot value.
if (!upb_strtable_init(&self->table, UPB_CTYPE_UINT64)) {
rb_raise(rb_eRuntimeError, "Could not allocate table.");
}
if (argc > init_value_arg) {
Map_merge_into_self(_self, argv[init_value_arg]);
}
return Qnil;
}
/*
* call-seq:
* Map.each(&block)
*
* Invokes &block on each |key, value| pair in the map, in unspecified order.
* Note that Map also includes Enumerable; map thus acts like a normal Ruby
* sequence.
*/
VALUE Map_each(VALUE _self) {
Map* self = ruby_to_Map(_self);
upb_strtable_iter it;
for (upb_strtable_begin(&it, &self->table);
!upb_strtable_done(&it);
upb_strtable_next(&it)) {
VALUE key = table_key_to_ruby(self, upb_strtable_iter_key(&it));
upb_value v = upb_strtable_iter_value(&it);
void* mem = value_memory(&v);
VALUE value = native_slot_get(self->value_type,
self->value_type_class,
mem);
rb_yield_values(2, key, value);
}
return Qnil;
}
/*
* call-seq:
* Map.keys => [list_of_keys]
*
* Returns the list of keys contained in the map, in unspecified order.
*/
VALUE Map_keys(VALUE _self) {
Map* self = ruby_to_Map(_self);
VALUE ret = rb_ary_new();
upb_strtable_iter it;
for (upb_strtable_begin(&it, &self->table);
!upb_strtable_done(&it);
upb_strtable_next(&it)) {
VALUE key = table_key_to_ruby(self, upb_strtable_iter_key(&it));
rb_ary_push(ret, key);
}
return ret;
}
/*
* call-seq:
* Map.values => [list_of_values]
*
* Returns the list of values contained in the map, in unspecified order.
*/
VALUE Map_values(VALUE _self) {
Map* self = ruby_to_Map(_self);
VALUE ret = rb_ary_new();
upb_strtable_iter it;
for (upb_strtable_begin(&it, &self->table);
!upb_strtable_done(&it);
upb_strtable_next(&it)) {
upb_value v = upb_strtable_iter_value(&it);
void* mem = value_memory(&v);
VALUE value = native_slot_get(self->value_type,
self->value_type_class,
mem);
rb_ary_push(ret, value);
}
return ret;
}
/*
* call-seq:
* Map.[](key) => value
*
* Accesses the element at the given key. Throws an exception if the key type is
* incorrect. Returns nil when the key is not present in the map.
*/
VALUE Map_index(VALUE _self, VALUE key) {
Map* self = ruby_to_Map(_self);
char keybuf[TABLE_KEY_BUF_LENGTH];
const char* keyval = NULL;
size_t length = 0;
upb_value v;
key = table_key(self, key, keybuf, &keyval, &length);
if (upb_strtable_lookup2(&self->table, keyval, length, &v)) {
void* mem = value_memory(&v);
return native_slot_get(self->value_type, self->value_type_class, mem);
} else {
return Qnil;
}
}
/*
* call-seq:
* Map.[]=(key, value) => value
*
* Inserts or overwrites the value at the given key with the given new value.
* Throws an exception if the key type is incorrect. Returns the new value that
* was just inserted.
*/
VALUE Map_index_set(VALUE _self, VALUE key, VALUE value) {
Map* self = ruby_to_Map(_self);
char keybuf[TABLE_KEY_BUF_LENGTH];
const char* keyval = NULL;
size_t length = 0;
upb_value v;
void* mem;
key = table_key(self, key, keybuf, &keyval, &length);
rb_check_frozen(_self);
if (TYPE(value) == T_HASH) {
VALUE args[1] = { value };
value = rb_class_new_instance(1, args, self->value_type_class);
}
mem = value_memory(&v);
native_slot_set("", self->value_type, self->value_type_class, mem, value);
// Replace any existing value by issuing a 'remove' operation first.
upb_strtable_remove2(&self->table, keyval, length, NULL);
if (!upb_strtable_insert2(&self->table, keyval, length, v)) {
rb_raise(rb_eRuntimeError, "Could not insert into table");
}
// Ruby hashmap's :[]= method also returns the inserted value.
return value;
}
/*
* call-seq:
* Map.has_key?(key) => bool
*
* Returns true if the given key is present in the map. Throws an exception if
* the key has the wrong type.
*/
VALUE Map_has_key(VALUE _self, VALUE key) {
Map* self = ruby_to_Map(_self);
char keybuf[TABLE_KEY_BUF_LENGTH];
const char* keyval = NULL;
size_t length = 0;
key = table_key(self, key, keybuf, &keyval, &length);
if (upb_strtable_lookup2(&self->table, keyval, length, NULL)) {
return Qtrue;
} else {
return Qfalse;
}
}
/*
* call-seq:
* Map.delete(key) => old_value
*
* Deletes the value at the given key, if any, returning either the old value or
* nil if none was present. Throws an exception if the key is of the wrong type.
*/
VALUE Map_delete(VALUE _self, VALUE key) {
Map* self = ruby_to_Map(_self);
char keybuf[TABLE_KEY_BUF_LENGTH];
const char* keyval = NULL;
size_t length = 0;
upb_value v;
key = table_key(self, key, keybuf, &keyval, &length);
rb_check_frozen(_self);
if (upb_strtable_remove2(&self->table, keyval, length, &v)) {
void* mem = value_memory(&v);
return native_slot_get(self->value_type, self->value_type_class, mem);
} else {
return Qnil;
}
}
/*
* call-seq:
* Map.clear
*
* Removes all entries from the map.
*/
VALUE Map_clear(VALUE _self) {
Map* self = ruby_to_Map(_self);
rb_check_frozen(_self);
// Uninit and reinit the table -- this is faster than iterating and doing a
// delete-lookup on each key.
upb_strtable_uninit(&self->table);
if (!upb_strtable_init(&self->table, UPB_CTYPE_INT64)) {
rb_raise(rb_eRuntimeError, "Unable to re-initialize table");
}
return Qnil;
}
/*
* call-seq:
* Map.length
*
* Returns the number of entries (key-value pairs) in the map.
*/
VALUE Map_length(VALUE _self) {
Map* self = ruby_to_Map(_self);
return ULL2NUM(upb_strtable_count(&self->table));
}
VALUE Map_new_this_type(VALUE _self) {
Map* self = ruby_to_Map(_self);
VALUE new_map = Qnil;
VALUE key_type = fieldtype_to_ruby(self->key_type);
VALUE value_type = fieldtype_to_ruby(self->value_type);
if (self->value_type_class != Qnil) {
new_map = rb_funcall(CLASS_OF(_self), rb_intern("new"), 3,
key_type, value_type, self->value_type_class);
} else {
new_map = rb_funcall(CLASS_OF(_self), rb_intern("new"), 2,
key_type, value_type);
}
return new_map;
}
/*
* call-seq:
* Map.dup => new_map
*
* Duplicates this map with a shallow copy. References to all non-primitive
* element objects (e.g., submessages) are shared.
*/
VALUE Map_dup(VALUE _self) {
Map* self = ruby_to_Map(_self);
VALUE new_map = Map_new_this_type(_self);
Map* new_self = ruby_to_Map(new_map);
upb_strtable_iter it;
for (upb_strtable_begin(&it, &self->table);
!upb_strtable_done(&it);
upb_strtable_next(&it)) {
upb_strview k = upb_strtable_iter_key(&it);
upb_value v = upb_strtable_iter_value(&it);
void* mem = value_memory(&v);
upb_value dup;
void* dup_mem = value_memory(&dup);
native_slot_dup(self->value_type, dup_mem, mem);
if (!upb_strtable_insert2(&new_self->table, k.data, k.size, dup)) {
rb_raise(rb_eRuntimeError, "Error inserting value into new table");
}
}
return new_map;
}
// Used by Google::Protobuf.deep_copy but not exposed directly.
VALUE Map_deep_copy(VALUE _self) {
Map* self = ruby_to_Map(_self);
VALUE new_map = Map_new_this_type(_self);
Map* new_self = ruby_to_Map(new_map);
upb_strtable_iter it;
for (upb_strtable_begin(&it, &self->table);
!upb_strtable_done(&it);
upb_strtable_next(&it)) {
upb_strview k = upb_strtable_iter_key(&it);
upb_value v = upb_strtable_iter_value(&it);
void* mem = value_memory(&v);
upb_value dup;
void* dup_mem = value_memory(&dup);
native_slot_deep_copy(self->value_type, self->value_type_class, dup_mem,
mem);
if (!upb_strtable_insert2(&new_self->table, k.data, k.size, dup)) {
rb_raise(rb_eRuntimeError, "Error inserting value into new table");
}
}
return new_map;
}
/*
* call-seq:
* Map.==(other) => boolean
*
* Compares this map to another. Maps are equal if they have identical key sets,
* and for each key, the values in both maps compare equal. Elements are
* compared as per normal Ruby semantics, by calling their :== methods (or
* performing a more efficient comparison for primitive types).
*
* Maps with dissimilar key types or value types/typeclasses are never equal,
* even if value comparison (for example, between integers and floats) would
* have otherwise indicated that every element has equal value.
*/
VALUE Map_eq(VALUE _self, VALUE _other) {
Map* self = ruby_to_Map(_self);
Map* other;
upb_strtable_iter it;
// Allow comparisons to Ruby hashmaps by converting to a temporary Map
// instance. Slow, but workable.
if (TYPE(_other) == T_HASH) {
VALUE other_map = Map_new_this_type(_self);
Map_merge_into_self(other_map, _other);
_other = other_map;
}
other = ruby_to_Map(_other);
if (self == other) {
return Qtrue;
}
if (self->key_type != other->key_type ||
self->value_type != other->value_type ||
self->value_type_class != other->value_type_class) {
return Qfalse;
}
if (upb_strtable_count(&self->table) != upb_strtable_count(&other->table)) {
return Qfalse;
}
// For each member of self, check that an equal member exists at the same key
// in other.
for (upb_strtable_begin(&it, &self->table);
!upb_strtable_done(&it);
upb_strtable_next(&it)) {
upb_strview k = upb_strtable_iter_key(&it);
upb_value v = upb_strtable_iter_value(&it);
void* mem = value_memory(&v);
upb_value other_v;
void* other_mem = value_memory(&other_v);
if (!upb_strtable_lookup2(&other->table, k.data, k.size, &other_v)) {
// Not present in other map.
return Qfalse;
}
if (!native_slot_eq(self->value_type, self->value_type_class, mem,
other_mem)) {
// Present, but value not equal.
return Qfalse;
}
}
return Qtrue;
}
/*
* call-seq:
* Map.hash => hash_value
*
* Returns a hash value based on this map's contents.
*/
VALUE Map_hash(VALUE _self) {
Map* self = ruby_to_Map(_self);
st_index_t h = rb_hash_start(0);
VALUE hash_sym = rb_intern("hash");
upb_strtable_iter it;
for (upb_strtable_begin(&it, &self->table); !upb_strtable_done(&it);
upb_strtable_next(&it)) {
VALUE key = table_key_to_ruby(self, upb_strtable_iter_key(&it));
upb_value v = upb_strtable_iter_value(&it);
void* mem = value_memory(&v);
VALUE value = native_slot_get(self->value_type,
self->value_type_class,
mem);
h = rb_hash_uint(h, NUM2LONG(rb_funcall(key, hash_sym, 0)));
h = rb_hash_uint(h, NUM2LONG(rb_funcall(value, hash_sym, 0)));
}
return INT2FIX(h);
}
/*
* call-seq:
* Map.to_h => {}
*
* Returns a Ruby Hash object containing all the values within the map
*/
VALUE Map_to_h(VALUE _self) {
Map* self = ruby_to_Map(_self);
VALUE hash = rb_hash_new();
upb_strtable_iter it;
for (upb_strtable_begin(&it, &self->table);
!upb_strtable_done(&it);
upb_strtable_next(&it)) {
VALUE key = table_key_to_ruby(self, upb_strtable_iter_key(&it));
upb_value v = upb_strtable_iter_value(&it);
void* mem = value_memory(&v);
VALUE value = native_slot_get(self->value_type,
self->value_type_class,
mem);
if (self->value_type == UPB_TYPE_MESSAGE) {
value = Message_to_h(value);
}
rb_hash_aset(hash, key, value);
}
return hash;
}
/*
* call-seq:
* Map.inspect => string
*
* Returns a string representing this map's elements. It will be formatted as
* "{key => value, key => value, ...}", with each key and value string
* representation computed by its own #inspect method.
*/
VALUE Map_inspect(VALUE _self) {
Map* self = ruby_to_Map(_self);
VALUE str = rb_str_new2("{");
bool first = true;
VALUE inspect_sym = rb_intern("inspect");
upb_strtable_iter it;
for (upb_strtable_begin(&it, &self->table); !upb_strtable_done(&it);
upb_strtable_next(&it)) {
VALUE key = table_key_to_ruby(self, upb_strtable_iter_key(&it));
upb_value v = upb_strtable_iter_value(&it);
void* mem = value_memory(&v);
VALUE value = native_slot_get(self->value_type,
self->value_type_class,
mem);
if (!first) {
str = rb_str_cat2(str, ", ");
} else {
first = false;
}
str = rb_str_append(str, rb_funcall(key, inspect_sym, 0));
str = rb_str_cat2(str, "=>");
str = rb_str_append(str, rb_funcall(value, inspect_sym, 0));
}
str = rb_str_cat2(str, "}");
return str;
}
/*
* call-seq:
* Map.merge(other_map) => map
*
* Copies key/value pairs from other_map into a copy of this map. If a key is
* set in other_map and this map, the value from other_map overwrites the value
* in the new copy of this map. Returns the new copy of this map with merged
* contents.
*/
VALUE Map_merge(VALUE _self, VALUE hashmap) {
VALUE dupped = Map_dup(_self);
return Map_merge_into_self(dupped, hashmap);
}
static int merge_into_self_callback(VALUE key, VALUE value, VALUE self) {
Map_index_set(self, key, value);
return ST_CONTINUE;
}
// Used only internally -- shared by #merge and #initialize.
VALUE Map_merge_into_self(VALUE _self, VALUE hashmap) {
if (TYPE(hashmap) == T_HASH) {
rb_hash_foreach(hashmap, merge_into_self_callback, _self);
} else if (RB_TYPE_P(hashmap, T_DATA) && RTYPEDDATA_P(hashmap) &&
RTYPEDDATA_TYPE(hashmap) == &Map_type) {
Map* self = ruby_to_Map(_self);
Map* other = ruby_to_Map(hashmap);
upb_strtable_iter it;
if (self->key_type != other->key_type ||
self->value_type != other->value_type ||
self->value_type_class != other->value_type_class) {
rb_raise(rb_eArgError, "Attempt to merge Map with mismatching types");
}
for (upb_strtable_begin(&it, &other->table);
!upb_strtable_done(&it);
upb_strtable_next(&it)) {
upb_strview k = upb_strtable_iter_key(&it);
// Replace any existing value by issuing a 'remove' operation first.
upb_value v;
upb_value oldv;
upb_strtable_remove2(&self->table, k.data, k.size, &oldv);
v = upb_strtable_iter_value(&it);
upb_strtable_insert2(&self->table, k.data, k.size, v);
}
} else {
rb_raise(rb_eArgError, "Unknown type merging into Map");
}
return _self;
}
// Internal method: map iterator initialization (used for serialization).
void Map_begin(VALUE _self, Map_iter* iter) {
Map* self = ruby_to_Map(_self);
iter->self = self;
upb_strtable_begin(&iter->it, &self->table);
}
void Map_next(Map_iter* iter) {
upb_strtable_next(&iter->it);
}
bool Map_done(Map_iter* iter) {
return upb_strtable_done(&iter->it);
}
VALUE Map_iter_key(Map_iter* iter) {
return table_key_to_ruby(iter->self, upb_strtable_iter_key(&iter->it));
}
VALUE Map_iter_value(Map_iter* iter) {
upb_value v = upb_strtable_iter_value(&iter->it);
void* mem = value_memory(&v);
return native_slot_get(iter->self->value_type,
iter->self->value_type_class,
mem);
}
void Map_register(VALUE module) {
VALUE klass = rb_define_class_under(module, "Map", rb_cObject);
rb_define_alloc_func(klass, Map_alloc);
rb_gc_register_address(&cMap);
cMap = klass;
rb_define_method(klass, "initialize", Map_init, -1);
rb_define_method(klass, "each", Map_each, 0);
rb_define_method(klass, "keys", Map_keys, 0);
rb_define_method(klass, "values", Map_values, 0);
rb_define_method(klass, "[]", Map_index, 1);
rb_define_method(klass, "[]=", Map_index_set, 2);
rb_define_method(klass, "has_key?", Map_has_key, 1);
rb_define_method(klass, "delete", Map_delete, 1);
rb_define_method(klass, "clear", Map_clear, 0);
rb_define_method(klass, "length", Map_length, 0);
rb_define_method(klass, "dup", Map_dup, 0);
rb_define_method(klass, "==", Map_eq, 1);
rb_define_method(klass, "hash", Map_hash, 0);
rb_define_method(klass, "to_h", Map_to_h, 0);
rb_define_method(klass, "inspect", Map_inspect, 0);
rb_define_method(klass, "merge", Map_merge, 1);
rb_include_module(klass, rb_mEnumerable);
}