Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

677 lines
18 KiB

// Protocol Buffers - Google's data interchange format
// Copyright 2023 Google LLC. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "upb/mem/arena.h"
#include <stddef.h>
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <memory>
#include <thread>
#include <type_traits>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "absl/base/thread_annotations.h"
#include "absl/cleanup/cleanup.h"
#include "absl/container/flat_hash_map.h"
#include "absl/random/distributions.h"
#include "absl/random/random.h"
#include "absl/synchronization/mutex.h"
#include "absl/synchronization/notification.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "upb/mem/alloc.h"
#include "upb/mem/arena.hpp"
// Must be last.
#include "upb/port/def.inc"
namespace {
struct CustomAlloc {
upb_alloc alloc;
int counter;
bool ran_cleanup;
};
void* CustomAllocFunc(upb_alloc* alloc, void* ptr, size_t oldsize,
size_t size) {
CustomAlloc* custom_alloc = reinterpret_cast<CustomAlloc*>(alloc);
if (size == 0) {
custom_alloc->counter--;
} else {
custom_alloc->counter++;
}
return upb_alloc_global.func(alloc, ptr, oldsize, size);
}
void CustomAllocCleanup(upb_alloc* alloc) {
CustomAlloc* custom_alloc = reinterpret_cast<CustomAlloc*>(alloc);
EXPECT_THAT(custom_alloc->counter, 0);
custom_alloc->ran_cleanup = true;
}
TEST(ArenaTest, ArenaWithAllocCleanup) {
CustomAlloc alloc = {{&CustomAllocFunc}, 0, false};
upb_Arena* arena =
upb_Arena_Init(nullptr, 0, reinterpret_cast<upb_alloc*>(&alloc));
EXPECT_EQ(alloc.counter, 1);
upb_Arena_SetAllocCleanup(arena, CustomAllocCleanup);
upb_Arena_Free(arena);
EXPECT_TRUE(alloc.ran_cleanup);
}
struct SizeTracker {
upb_alloc alloc;
upb_alloc* delegate_alloc;
absl::flat_hash_map<void*, size_t>* sizes;
};
static_assert(std::is_standard_layout<SizeTracker>());
static void* size_checking_allocfunc(upb_alloc* alloc, void* ptr,
size_t oldsize, size_t size) {
SizeTracker* size_alloc = reinterpret_cast<SizeTracker*>(alloc);
void* result = size_alloc->delegate_alloc->func(alloc, ptr, oldsize, size);
if (ptr != nullptr) {
UPB_ASSERT(size_alloc->sizes->at(ptr) == oldsize);
size_alloc->sizes->erase(ptr);
}
if (result != nullptr) {
size_alloc->sizes->emplace(result, size);
}
return result;
}
TEST(ArenaTest, SizedFree) {
absl::flat_hash_map<void*, size_t> sizes;
SizeTracker alloc;
alloc.alloc.func = size_checking_allocfunc;
alloc.delegate_alloc = &upb_alloc_global;
alloc.sizes = &sizes;
upb_Arena* arena = upb_Arena_Init(nullptr, 0, &alloc.alloc);
(void)upb_Arena_Malloc(arena, 500);
void* to_resize = upb_Arena_Malloc(arena, 2000);
void* resized = upb_Arena_Realloc(arena, to_resize, 2000, 4000);
upb_Arena_ShrinkLast(arena, resized, 4000, 1);
EXPECT_GT(sizes.size(), 0);
upb_Arena_Free(arena);
EXPECT_EQ(sizes.size(), 0);
}
TEST(ArenaTest, SizeHint) {
absl::flat_hash_map<void*, size_t> sizes;
SizeTracker alloc;
alloc.alloc.func = size_checking_allocfunc;
alloc.delegate_alloc = &upb_alloc_global;
alloc.sizes = &sizes;
upb_Arena* arena = upb_Arena_Init(nullptr, 2459, &alloc.alloc);
EXPECT_EQ(sizes.size(), 1);
EXPECT_NE(upb_Arena_Malloc(arena, 2459), nullptr);
EXPECT_EQ(sizes.size(), 1);
EXPECT_NE(upb_Arena_Malloc(arena, 500), nullptr);
EXPECT_EQ(sizes.size(), 2);
upb_Arena_Free(arena);
EXPECT_EQ(sizes.size(), 0);
}
class OverheadTest {
public:
OverheadTest(const OverheadTest&) = delete;
OverheadTest& operator=(const OverheadTest&) = delete;
explicit OverheadTest(size_t first = 0, size_t max_block_size = 0) {
if (max_block_size) {
upb_Arena_SetMaxBlockSize(max_block_size);
}
alloc_.alloc.func = size_checking_allocfunc;
alloc_.delegate_alloc = &upb_alloc_global;
alloc_.sizes = &sizes_;
arena_ = upb_Arena_Init(nullptr, first, &alloc_.alloc);
arena_alloced_ = 0;
arena_alloc_count_ = 0;
}
void Alloc(size_t size) {
upb_Arena_Malloc(arena_, size);
arena_alloced_ += size;
arena_alloc_count_++;
}
uintptr_t SpaceAllocated() {
return upb_Arena_SpaceAllocated(arena_, nullptr);
}
double WastePct() {
uintptr_t backing_alloced = upb_Arena_SpaceAllocated(arena_, nullptr);
double waste = backing_alloced - arena_alloced_;
return waste / backing_alloced;
}
double AmortizedAlloc() {
return ((double)sizes_.size()) / arena_alloc_count_;
}
~OverheadTest() {
upb_Arena_Free(arena_);
upb_Arena_SetMaxBlockSize(32 << 10);
}
upb_Arena* arena_;
protected:
absl::flat_hash_map<void*, size_t> sizes_;
SizeTracker alloc_;
uintptr_t arena_alloced_;
uintptr_t arena_alloc_count_;
};
TEST(OverheadTest, SingleMassiveBlockThenLittle) {
OverheadTest test;
// Little blocks
for (int i = 0; i < 4; i++) {
test.Alloc(32);
}
// Big block!
test.Alloc(16000);
for (int i = 0; i < 50; i++) {
test.Alloc(64);
}
if (!UPB_ASAN) {
EXPECT_NEAR(test.WastePct(), 0.6, 0.025);
EXPECT_NEAR(test.AmortizedAlloc(), 0.05, 0.025);
}
}
TEST(OverheadTest, Overhead_AlternatingSmallLargeBlocks) {
OverheadTest test(512, 4096);
for (int i = 0; i < 100; i++) {
test.Alloc(5000);
test.Alloc(64);
}
if (!UPB_ASAN) {
EXPECT_NEAR(test.WastePct(), 0.45, 0.025);
EXPECT_NEAR(test.AmortizedAlloc(), 1, 0.025);
}
}
TEST(OverheadTest, PartialMaxBlocks) {
OverheadTest test(512, 4096);
for (int i = 0; i < 10; i++) {
test.Alloc(2096 + i);
}
if (!UPB_ASAN) {
EXPECT_NEAR(test.WastePct(), 0.47, 0.025);
EXPECT_NEAR(test.AmortizedAlloc(), 1.1, 0.25);
}
}
TEST(OverheadTest, SmallBlocksLargerThanInitial) {
OverheadTest test;
size_t initial_block_size = upb_Arena_SpaceAllocated(test.arena_, nullptr);
for (int i = 0; i < 10; i++) {
test.Alloc(initial_block_size * 2 + 1);
}
if (!UPB_ASAN && sizeof(void*) == 8) {
EXPECT_NEAR(test.WastePct(), 0.37, 0.025);
EXPECT_NEAR(test.AmortizedAlloc(), 0.5, 0.025);
}
}
TEST(OverheadTest, SmallBlocksLargerThanInitial_many) {
OverheadTest test;
size_t initial_block_size = upb_Arena_SpaceAllocated(test.arena_, nullptr);
for (int i = 0; i < 100; i++) {
test.Alloc(initial_block_size * 2 + 1);
}
if (!UPB_ASAN) {
EXPECT_NEAR(test.WastePct(), 0.14, 0.025);
EXPECT_NEAR(test.AmortizedAlloc(), 0.08, 0.025);
}
for (int i = 0; i < 900; i++) {
test.Alloc(initial_block_size * 2 + 1);
}
if (!UPB_ASAN) {
EXPECT_NEAR(test.WastePct(), 0.03, 0.025);
EXPECT_NEAR(test.AmortizedAlloc(), 0.05, 0.025);
}
}
TEST(OverheadTest, DefaultMaxBlockSize) {
OverheadTest test;
// Perform 600 1k allocations (600k total) and ensure that the amount of
// memory allocated does not exceed 700k.
for (int i = 0; i < 600; ++i) {
test.Alloc(1024);
}
EXPECT_LE(test.SpaceAllocated(), 700 * 1024);
}
TEST(ArenaTest, ArenaFuse) {
upb_Arena* arena1 = upb_Arena_New();
upb_Arena* arena2 = upb_Arena_New();
EXPECT_TRUE(upb_Arena_Fuse(arena1, arena2));
upb_Arena_Free(arena1);
upb_Arena_Free(arena2);
}
TEST(ArenaTest, FuseWithInitialBlock) {
char buf1[1024];
char buf2[1024];
upb_Arena* arenas[] = {upb_Arena_Init(buf1, 1024, &upb_alloc_global),
upb_Arena_Init(buf2, 1024, &upb_alloc_global),
upb_Arena_Init(nullptr, 0, &upb_alloc_global)};
int size = sizeof(arenas) / sizeof(arenas[0]);
for (int i = 0; i < size; ++i) {
for (int j = 0; j < size; ++j) {
if (i == j) {
// Fuse to self is always allowed.
EXPECT_TRUE(upb_Arena_Fuse(arenas[i], arenas[j]));
} else {
EXPECT_FALSE(upb_Arena_Fuse(arenas[i], arenas[j]));
}
}
}
for (int i = 0; i < size; ++i) upb_Arena_Free(arenas[i]);
}
class Environment {
public:
void RandomNewFree(absl::BitGen& gen, size_t min_index = 0) {
auto a = std::make_shared<const upb::Arena>();
SwapRandomArena(gen, a, min_index);
}
void RandomIncRefCount(absl::BitGen& gen) {
std::shared_ptr<const upb::Arena> a = RandomNonNullArena(gen);
upb_Arena_IncRefFor(a->ptr(), nullptr);
upb_Arena_DecRefFor(a->ptr(), nullptr);
}
void RandomFuse(absl::BitGen& gen) {
std::shared_ptr<const upb::Arena> a = RandomNonNullArena(gen);
std::shared_ptr<const upb::Arena> b = RandomNonNullArena(gen);
EXPECT_TRUE(upb_Arena_Fuse(a->ptr(), b->ptr()));
}
void RandomPoke(absl::BitGen& gen, size_t min_index = 0) {
switch (absl::Uniform(gen, 0, 2)) {
case 0:
RandomNewFree(gen, min_index);
break;
case 1:
RandomFuse(gen);
break;
default:
break;
}
}
std::shared_ptr<const upb::Arena> IndexedNonNullArena(size_t index) {
absl::MutexLock lock(&mutex_);
std::shared_ptr<const upb::Arena>& ret = arenas_[index];
if (!ret) ret = std::make_shared<const upb::Arena>();
return ret;
}
private:
size_t RandomIndex(absl::BitGen& gen, size_t min_index = 0) {
return absl::Uniform<size_t>(gen, min_index,
std::tuple_size<ArenaArray>::value);
}
// Swaps a random arena from the set with the given arena.
void SwapRandomArena(absl::BitGen& gen, std::shared_ptr<const upb::Arena>& a,
size_t min_index) {
size_t i = RandomIndex(gen, min_index);
absl::MutexLock lock(&mutex_);
arenas_[i].swap(a);
}
// Returns a random arena from the set, ensuring that the returned arena is
// non-null.
//
// Note that the returned arena is shared and may be accessed concurrently
// by other threads.
std::shared_ptr<const upb::Arena> RandomNonNullArena(absl::BitGen& gen) {
return IndexedNonNullArena(RandomIndex(gen));
}
using ArenaArray = std::array<std::shared_ptr<const upb::Arena>, 100>;
ArenaArray arenas_ ABSL_GUARDED_BY(mutex_);
absl::Mutex mutex_;
};
TEST(ArenaTest, FuzzSingleThreaded) {
Environment env;
absl::BitGen gen;
auto end = absl::Now() + absl::Seconds(0.5);
while (absl::Now() < end) {
env.RandomPoke(gen);
}
}
TEST(ArenaTest, LargeAlloc) {
// Tests an allocation larger than the max block size.
upb_Arena* arena = upb_Arena_New();
size_t size = 100000;
char* mem = static_cast<char*>(upb_Arena_Malloc(arena, size));
EXPECT_NE(mem, nullptr);
for (size_t i = 0; i < size; ++i) {
mem[i] = static_cast<char>(i);
}
for (size_t i = 0; i < size; ++i) {
EXPECT_EQ(mem[i], static_cast<char>(i));
}
upb_Arena_Free(arena);
}
TEST(ArenaTest, MaxBlockSize) {
upb_Arena* arena = upb_Arena_New();
// Perform 600 1k allocations (600k total) and ensure that the amount of
// memory allocated does not exceed 700k.
for (int i = 0; i < 600; ++i) {
upb_Arena_Malloc(arena, 1024);
}
EXPECT_LE(upb_Arena_SpaceAllocated(arena, nullptr), 700 * 1024);
upb_Arena_Free(arena);
}
#ifndef UPB_SUPPRESS_MISSING_ATOMICS
TEST(ArenaTest, FuzzFuseFreeRace) {
Environment env;
absl::Notification done;
std::vector<std::thread> threads;
for (int i = 0; i < 10; ++i) {
threads.emplace_back([&]() {
absl::BitGen gen;
while (!done.HasBeenNotified()) {
env.RandomNewFree(gen);
}
});
}
absl::BitGen gen;
auto end = absl::Now() + absl::Seconds(2);
while (absl::Now() < end) {
env.RandomFuse(gen);
}
done.Notify();
for (auto& t : threads) t.join();
}
TEST(ArenaTest, FuzzFuseFuseRace) {
Environment env;
absl::Notification done;
std::vector<std::thread> threads;
for (int i = 0; i < 10; ++i) {
threads.emplace_back([&]() {
absl::BitGen gen;
while (!done.HasBeenNotified()) {
env.RandomFuse(gen);
}
});
}
absl::BitGen gen;
auto end = absl::Now() + absl::Seconds(2);
while (absl::Now() < end) {
env.RandomFuse(gen);
}
done.Notify();
for (auto& t : threads) t.join();
}
static void* checking_global_allocfunc(upb_alloc* alloc, void* ptr,
size_t oldsize, size_t size) {
int header_size = std::max(alignof(max_align_t), sizeof(int));
if (ptr) {
ptr = UPB_PTR_AT(ptr, -header_size, void);
UPB_ASSERT(*reinterpret_cast<int*>(ptr) == 0x5AFE);
}
if (size == 0) {
free(ptr);
return nullptr;
}
void* ret;
if (oldsize == 0) {
ret = malloc(size + header_size);
} else {
ret = realloc(ptr, size + header_size);
}
if (ret) {
*reinterpret_cast<int*>(ret) = 0x5AFE;
return UPB_PTR_AT(ret, header_size, void);
}
return ret;
}
TEST(ArenaTest, FuzzFuseFreeAllocatorRace) {
upb_Arena_SetMaxBlockSize(128);
upb_alloc_func* old = upb_alloc_global.func;
upb_alloc_global.func = checking_global_allocfunc;
absl::Cleanup reset_max_block_size = [old] {
upb_Arena_SetMaxBlockSize(32 << 10);
upb_alloc_global.func = old;
};
absl::Notification done;
std::vector<std::thread> threads;
size_t thread_count = 10;
std::vector<std::array<upb_Arena*, 11>> arenas;
for (size_t i = 0; i < 10000; ++i) {
std::array<upb_Arena*, 11> arr;
arr[0] = upb_Arena_New();
for (size_t j = 1; j < thread_count + 1; ++j) {
arr[j] = upb_Arena_New();
upb_Arena_Fuse(arr[j - 1], arr[j]);
}
arenas.push_back(arr);
}
for (size_t i = 0; i < thread_count; ++i) {
size_t tid = i;
threads.emplace_back([&, tid]() {
size_t arenaCtr = 0;
while (!done.HasBeenNotified() && arenaCtr < arenas.size()) {
upb_Arena* read = arenas[arenaCtr++][tid];
(void)upb_Arena_Malloc(read, 128);
(void)upb_Arena_Malloc(read, 128);
upb_Arena_Free(read);
}
while (arenaCtr < arenas.size()) {
upb_Arena_Free(arenas[arenaCtr++][tid]);
}
});
}
auto end = absl::Now() + absl::Seconds(2);
size_t arenaCtr = 0;
while (absl::Now() < end && arenaCtr < arenas.size()) {
upb_Arena* read = arenas[arenaCtr++][thread_count];
(void)upb_Arena_Malloc(read, 128);
(void)upb_Arena_Malloc(read, 128);
upb_Arena_Free(read);
}
done.Notify();
while (arenaCtr < arenas.size()) {
upb_Arena_Free(arenas[arenaCtr++][thread_count]);
}
for (auto& t : threads) t.join();
}
TEST(ArenaTest, FuzzFuseSpaceAllocatedRace) {
upb_Arena_SetMaxBlockSize(128);
absl::Cleanup reset_max_block_size = [] {
upb_Arena_SetMaxBlockSize(32 << 10);
};
absl::Notification done;
std::vector<std::thread> threads;
std::vector<upb_Arena*> arenas;
size_t thread_count = 10;
size_t fuses_per_thread = 1000;
size_t root_arenas_limit = 250;
for (size_t i = 0; i < root_arenas_limit; ++i) {
arenas.push_back(upb_Arena_New());
for (size_t j = 0; j < thread_count; ++j) {
upb_Arena_IncRefFor(arenas[i], nullptr);
}
}
for (size_t i = 0; i < thread_count; ++i) {
threads.emplace_back([&]() {
size_t arenaCtr = 0;
while (!done.HasBeenNotified() && arenaCtr < arenas.size()) {
upb_Arena* read = arenas[arenaCtr++];
for (size_t j = 0; j < fuses_per_thread; ++j) {
upb_Arena* fuse = upb_Arena_New();
upb_Arena_Fuse(read, fuse);
upb_Arena_Free(read);
read = fuse;
}
upb_Arena_Free(read);
}
while (arenaCtr < arenas.size()) {
upb_Arena_Free(arenas[arenaCtr++]);
}
});
}
auto end = absl::Now() + absl::Seconds(2);
size_t arenaCtr = 0;
uintptr_t total_allocated = 0;
while (absl::Now() < end && arenaCtr < arenas.size()) {
upb_Arena* read = arenas[arenaCtr++];
size_t count;
size_t allocated;
do {
allocated = upb_Arena_SpaceAllocated(read, &count);
} while (count < fuses_per_thread * thread_count);
upb_Arena_Free(read);
total_allocated += allocated;
}
done.Notify();
for (auto& t : threads) t.join();
while (arenaCtr < arenas.size()) {
upb_Arena_Free(arenas[arenaCtr++]);
}
ASSERT_GT(total_allocated, arenaCtr);
}
TEST(ArenaTest, FuzzAllocSpaceAllocatedRace) {
upb_Arena_SetMaxBlockSize(128);
absl::Cleanup reset_max_block_size = [] {
upb_Arena_SetMaxBlockSize(32 << 10);
};
upb_Arena* arena = upb_Arena_New();
absl::Notification done;
std::vector<std::thread> threads;
for (int i = 0; i < 1; ++i) {
threads.emplace_back([&]() {
while (!done.HasBeenNotified()) {
size_t count;
upb_Arena_SpaceAllocated(arena, &count);
}
});
}
auto end = absl::Now() + absl::Seconds(2);
uintptr_t total = 0;
while (absl::Now() < end && total < 10000000) {
if (upb_Arena_Malloc(arena, 128) == nullptr) {
break;
}
total += 128;
}
done.Notify();
for (auto& t : threads) t.join();
upb_Arena_Free(arena);
}
TEST(ArenaTest, ArenaIncRef) {
upb_Arena* arena1 = upb_Arena_New();
EXPECT_EQ(upb_Arena_DebugRefCount(arena1), 1);
upb_Arena_IncRefFor(arena1, nullptr);
EXPECT_EQ(upb_Arena_DebugRefCount(arena1), 2);
upb_Arena_DecRefFor(arena1, nullptr);
EXPECT_EQ(upb_Arena_DebugRefCount(arena1), 1);
upb_Arena_Free(arena1);
}
TEST(ArenaTest, FuzzFuseIncRefCountRace) {
Environment env;
absl::Notification done;
std::vector<std::thread> threads;
for (int i = 0; i < 10; ++i) {
threads.emplace_back([&]() {
absl::BitGen gen;
while (!done.HasBeenNotified()) {
env.RandomNewFree(gen);
}
});
}
absl::BitGen gen;
auto end = absl::Now() + absl::Seconds(2);
while (absl::Now() < end) {
env.RandomFuse(gen);
env.RandomIncRefCount(gen);
}
done.Notify();
for (auto& t : threads) t.join();
}
TEST(ArenaTest, IncRefCountShouldFailForInitialBlock) {
char buf1[1024];
upb_Arena* arena = upb_Arena_Init(buf1, 1024, &upb_alloc_global);
EXPECT_FALSE(upb_Arena_IncRefFor(arena, nullptr));
}
TEST(ArenaTest, FuzzFuseIsFusedRace) {
Environment env;
// Create two arenas and fuse them.
std::shared_ptr<const upb::Arena> a = env.IndexedNonNullArena(0);
std::shared_ptr<const upb::Arena> b = env.IndexedNonNullArena(1);
upb_Arena_Fuse(a->ptr(), b->ptr());
EXPECT_TRUE(upb_Arena_IsFused(a->ptr(), b->ptr()));
absl::Notification done;
std::vector<std::thread> threads;
for (int i = 0; i < 10; ++i) {
threads.emplace_back([&]() {
absl::BitGen gen;
while (!done.HasBeenNotified()) {
env.RandomPoke(gen, 2);
}
});
}
absl::BitGen gen;
auto end = absl::Now() + absl::Seconds(2);
while (absl::Now() < end) {
// Verify that the two arenas are still fused.
EXPECT_TRUE(upb_Arena_IsFused(a->ptr(), b->ptr()));
}
done.Notify();
for (auto& t : threads) t.join();
}
#endif
} // namespace