Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
883 lines
23 KiB
883 lines
23 KiB
/* |
|
** upb_table Implementation |
|
** |
|
** Implementation is heavily inspired by Lua's ltable.c. |
|
*/ |
|
|
|
#include "upb/table.int.h" |
|
|
|
#include <string.h> |
|
|
|
#include "upb/port_def.inc" |
|
|
|
#define UPB_MAXARRSIZE 16 /* 64k. */ |
|
|
|
/* From Chromium. */ |
|
#define ARRAY_SIZE(x) \ |
|
((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x]))))) |
|
|
|
static const double MAX_LOAD = 0.85; |
|
|
|
/* The minimum utilization of the array part of a mixed hash/array table. This |
|
* is a speed/memory-usage tradeoff (though it's not straightforward because of |
|
* cache effects). The lower this is, the more memory we'll use. */ |
|
static const double MIN_DENSITY = 0.1; |
|
|
|
bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; } |
|
|
|
int log2ceil(uint64_t v) { |
|
int ret = 0; |
|
bool pow2 = is_pow2(v); |
|
while (v >>= 1) ret++; |
|
ret = pow2 ? ret : ret + 1; /* Ceiling. */ |
|
return UPB_MIN(UPB_MAXARRSIZE, ret); |
|
} |
|
|
|
char *upb_strdup(const char *s, upb_alloc *a) { |
|
return upb_strdup2(s, strlen(s), a); |
|
} |
|
|
|
char *upb_strdup2(const char *s, size_t len, upb_alloc *a) { |
|
size_t n; |
|
char *p; |
|
|
|
/* Prevent overflow errors. */ |
|
if (len == SIZE_MAX) return NULL; |
|
/* Always null-terminate, even if binary data; but don't rely on the input to |
|
* have a null-terminating byte since it may be a raw binary buffer. */ |
|
n = len + 1; |
|
p = upb_malloc(a, n); |
|
if (p) { |
|
memcpy(p, s, len); |
|
p[len] = 0; |
|
} |
|
return p; |
|
} |
|
|
|
/* A type to represent the lookup key of either a strtable or an inttable. */ |
|
typedef union { |
|
uintptr_t num; |
|
struct { |
|
const char *str; |
|
size_t len; |
|
} str; |
|
} lookupkey_t; |
|
|
|
static lookupkey_t strkey2(const char *str, size_t len) { |
|
lookupkey_t k; |
|
k.str.str = str; |
|
k.str.len = len; |
|
return k; |
|
} |
|
|
|
static lookupkey_t intkey(uintptr_t key) { |
|
lookupkey_t k; |
|
k.num = key; |
|
return k; |
|
} |
|
|
|
typedef uint32_t hashfunc_t(upb_tabkey key); |
|
typedef bool eqlfunc_t(upb_tabkey k1, lookupkey_t k2); |
|
|
|
/* Base table (shared code) ***************************************************/ |
|
|
|
/* For when we need to cast away const. */ |
|
static upb_tabent *mutable_entries(upb_table *t) { |
|
return (upb_tabent*)t->entries; |
|
} |
|
|
|
static bool isfull(upb_table *t) { |
|
if (upb_table_size(t) == 0) { |
|
return true; |
|
} else { |
|
return ((double)(t->count + 1) / upb_table_size(t)) > MAX_LOAD; |
|
} |
|
} |
|
|
|
static bool init(upb_table *t, uint8_t size_lg2, upb_alloc *a) { |
|
size_t bytes; |
|
|
|
t->count = 0; |
|
t->size_lg2 = size_lg2; |
|
t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0; |
|
bytes = upb_table_size(t) * sizeof(upb_tabent); |
|
if (bytes > 0) { |
|
t->entries = upb_malloc(a, bytes); |
|
if (!t->entries) return false; |
|
memset(mutable_entries(t), 0, bytes); |
|
} else { |
|
t->entries = NULL; |
|
} |
|
return true; |
|
} |
|
|
|
static void uninit(upb_table *t, upb_alloc *a) { |
|
upb_free(a, mutable_entries(t)); |
|
} |
|
|
|
static upb_tabent *emptyent(upb_table *t) { |
|
upb_tabent *e = mutable_entries(t) + upb_table_size(t); |
|
while (1) { if (upb_tabent_isempty(--e)) return e; UPB_ASSERT(e > t->entries); } |
|
} |
|
|
|
static upb_tabent *getentry_mutable(upb_table *t, uint32_t hash) { |
|
return (upb_tabent*)upb_getentry(t, hash); |
|
} |
|
|
|
static const upb_tabent *findentry(const upb_table *t, lookupkey_t key, |
|
uint32_t hash, eqlfunc_t *eql) { |
|
const upb_tabent *e; |
|
|
|
if (t->size_lg2 == 0) return NULL; |
|
e = upb_getentry(t, hash); |
|
if (upb_tabent_isempty(e)) return NULL; |
|
while (1) { |
|
if (eql(e->key, key)) return e; |
|
if ((e = e->next) == NULL) return NULL; |
|
} |
|
} |
|
|
|
static upb_tabent *findentry_mutable(upb_table *t, lookupkey_t key, |
|
uint32_t hash, eqlfunc_t *eql) { |
|
return (upb_tabent*)findentry(t, key, hash, eql); |
|
} |
|
|
|
static bool lookup(const upb_table *t, lookupkey_t key, upb_value *v, |
|
uint32_t hash, eqlfunc_t *eql) { |
|
const upb_tabent *e = findentry(t, key, hash, eql); |
|
if (e) { |
|
if (v) { |
|
_upb_value_setval(v, e->val.val); |
|
} |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
/* The given key must not already exist in the table. */ |
|
static void insert(upb_table *t, lookupkey_t key, upb_tabkey tabkey, |
|
upb_value val, uint32_t hash, |
|
hashfunc_t *hashfunc, eqlfunc_t *eql) { |
|
upb_tabent *mainpos_e; |
|
upb_tabent *our_e; |
|
|
|
UPB_ASSERT(findentry(t, key, hash, eql) == NULL); |
|
|
|
t->count++; |
|
mainpos_e = getentry_mutable(t, hash); |
|
our_e = mainpos_e; |
|
|
|
if (upb_tabent_isempty(mainpos_e)) { |
|
/* Our main position is empty; use it. */ |
|
our_e->next = NULL; |
|
} else { |
|
/* Collision. */ |
|
upb_tabent *new_e = emptyent(t); |
|
/* Head of collider's chain. */ |
|
upb_tabent *chain = getentry_mutable(t, hashfunc(mainpos_e->key)); |
|
if (chain == mainpos_e) { |
|
/* Existing ent is in its main posisiton (it has the same hash as us, and |
|
* is the head of our chain). Insert to new ent and append to this chain. */ |
|
new_e->next = mainpos_e->next; |
|
mainpos_e->next = new_e; |
|
our_e = new_e; |
|
} else { |
|
/* Existing ent is not in its main position (it is a node in some other |
|
* chain). This implies that no existing ent in the table has our hash. |
|
* Evict it (updating its chain) and use its ent for head of our chain. */ |
|
*new_e = *mainpos_e; /* copies next. */ |
|
while (chain->next != mainpos_e) { |
|
chain = (upb_tabent*)chain->next; |
|
UPB_ASSERT(chain); |
|
} |
|
chain->next = new_e; |
|
our_e = mainpos_e; |
|
our_e->next = NULL; |
|
} |
|
} |
|
our_e->key = tabkey; |
|
our_e->val.val = val.val; |
|
UPB_ASSERT(findentry(t, key, hash, eql) == our_e); |
|
} |
|
|
|
static bool rm(upb_table *t, lookupkey_t key, upb_value *val, |
|
upb_tabkey *removed, uint32_t hash, eqlfunc_t *eql) { |
|
upb_tabent *chain = getentry_mutable(t, hash); |
|
if (upb_tabent_isempty(chain)) return false; |
|
if (eql(chain->key, key)) { |
|
/* Element to remove is at the head of its chain. */ |
|
t->count--; |
|
if (val) _upb_value_setval(val, chain->val.val); |
|
if (removed) *removed = chain->key; |
|
if (chain->next) { |
|
upb_tabent *move = (upb_tabent*)chain->next; |
|
*chain = *move; |
|
move->key = 0; /* Make the slot empty. */ |
|
} else { |
|
chain->key = 0; /* Make the slot empty. */ |
|
} |
|
return true; |
|
} else { |
|
/* Element to remove is either in a non-head position or not in the |
|
* table. */ |
|
while (chain->next && !eql(chain->next->key, key)) { |
|
chain = (upb_tabent*)chain->next; |
|
} |
|
if (chain->next) { |
|
/* Found element to remove. */ |
|
upb_tabent *rm = (upb_tabent*)chain->next; |
|
t->count--; |
|
if (val) _upb_value_setval(val, chain->next->val.val); |
|
if (removed) *removed = rm->key; |
|
rm->key = 0; /* Make the slot empty. */ |
|
chain->next = rm->next; |
|
return true; |
|
} else { |
|
/* Element to remove is not in the table. */ |
|
return false; |
|
} |
|
} |
|
} |
|
|
|
static size_t next(const upb_table *t, size_t i) { |
|
do { |
|
if (++i >= upb_table_size(t)) |
|
return SIZE_MAX; |
|
} while(upb_tabent_isempty(&t->entries[i])); |
|
|
|
return i; |
|
} |
|
|
|
static size_t begin(const upb_table *t) { |
|
return next(t, -1); |
|
} |
|
|
|
|
|
/* upb_strtable ***************************************************************/ |
|
|
|
/* A simple "subclass" of upb_table that only adds a hash function for strings. */ |
|
|
|
static upb_tabkey strcopy(lookupkey_t k2, upb_alloc *a) { |
|
uint32_t len = (uint32_t) k2.str.len; |
|
char *str = upb_malloc(a, k2.str.len + sizeof(uint32_t) + 1); |
|
if (str == NULL) return 0; |
|
memcpy(str, &len, sizeof(uint32_t)); |
|
memcpy(str + sizeof(uint32_t), k2.str.str, k2.str.len); |
|
str[sizeof(uint32_t) + k2.str.len] = '\0'; |
|
return (uintptr_t)str; |
|
} |
|
|
|
static uint32_t strhash(upb_tabkey key) { |
|
uint32_t len; |
|
char *str = upb_tabstr(key, &len); |
|
return upb_murmur_hash2(str, len, 0); |
|
} |
|
|
|
static bool streql(upb_tabkey k1, lookupkey_t k2) { |
|
uint32_t len; |
|
char *str = upb_tabstr(k1, &len); |
|
return len == k2.str.len && memcmp(str, k2.str.str, len) == 0; |
|
} |
|
|
|
bool upb_strtable_init2(upb_strtable *t, upb_ctype_t ctype, upb_alloc *a) { |
|
return init(&t->t, 2, a); |
|
} |
|
|
|
void upb_strtable_uninit2(upb_strtable *t, upb_alloc *a) { |
|
size_t i; |
|
for (i = 0; i < upb_table_size(&t->t); i++) |
|
upb_free(a, (void*)t->t.entries[i].key); |
|
uninit(&t->t, a); |
|
} |
|
|
|
bool upb_strtable_resize(upb_strtable *t, size_t size_lg2, upb_alloc *a) { |
|
upb_strtable new_table; |
|
upb_strtable_iter i; |
|
|
|
if (!init(&new_table.t, size_lg2, a)) |
|
return false; |
|
upb_strtable_begin(&i, t); |
|
for ( ; !upb_strtable_done(&i); upb_strtable_next(&i)) { |
|
upb_strview key = upb_strtable_iter_key(&i); |
|
upb_strtable_insert3( |
|
&new_table, key.data, key.size, |
|
upb_strtable_iter_value(&i), a); |
|
} |
|
upb_strtable_uninit2(t, a); |
|
*t = new_table; |
|
return true; |
|
} |
|
|
|
bool upb_strtable_insert3(upb_strtable *t, const char *k, size_t len, |
|
upb_value v, upb_alloc *a) { |
|
lookupkey_t key; |
|
upb_tabkey tabkey; |
|
uint32_t hash; |
|
|
|
if (isfull(&t->t)) { |
|
/* Need to resize. New table of double the size, add old elements to it. */ |
|
if (!upb_strtable_resize(t, t->t.size_lg2 + 1, a)) { |
|
return false; |
|
} |
|
} |
|
|
|
key = strkey2(k, len); |
|
tabkey = strcopy(key, a); |
|
if (tabkey == 0) return false; |
|
|
|
hash = upb_murmur_hash2(key.str.str, key.str.len, 0); |
|
insert(&t->t, key, tabkey, v, hash, &strhash, &streql); |
|
return true; |
|
} |
|
|
|
bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len, |
|
upb_value *v) { |
|
uint32_t hash = upb_murmur_hash2(key, len, 0); |
|
return lookup(&t->t, strkey2(key, len), v, hash, &streql); |
|
} |
|
|
|
bool upb_strtable_remove3(upb_strtable *t, const char *key, size_t len, |
|
upb_value *val, upb_alloc *alloc) { |
|
uint32_t hash = upb_murmur_hash2(key, len, 0); |
|
upb_tabkey tabkey; |
|
if (rm(&t->t, strkey2(key, len), val, &tabkey, hash, &streql)) { |
|
upb_free(alloc, (void*)tabkey); |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
/* Iteration */ |
|
|
|
static const upb_tabent *str_tabent(const upb_strtable_iter *i) { |
|
return &i->t->t.entries[i->index]; |
|
} |
|
|
|
void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t) { |
|
i->t = t; |
|
i->index = begin(&t->t); |
|
} |
|
|
|
void upb_strtable_next(upb_strtable_iter *i) { |
|
i->index = next(&i->t->t, i->index); |
|
} |
|
|
|
bool upb_strtable_done(const upb_strtable_iter *i) { |
|
if (!i->t) return true; |
|
return i->index >= upb_table_size(&i->t->t) || |
|
upb_tabent_isempty(str_tabent(i)); |
|
} |
|
|
|
upb_strview upb_strtable_iter_key(const upb_strtable_iter *i) { |
|
UPB_ASSERT(!upb_strtable_done(i)); |
|
upb_strview key; |
|
uint32_t len; |
|
key.data = upb_tabstr(str_tabent(i)->key, &len); |
|
key.size = len; |
|
return key; |
|
} |
|
|
|
upb_value upb_strtable_iter_value(const upb_strtable_iter *i) { |
|
UPB_ASSERT(!upb_strtable_done(i)); |
|
return _upb_value_val(str_tabent(i)->val.val); |
|
} |
|
|
|
void upb_strtable_iter_setdone(upb_strtable_iter *i) { |
|
i->t = NULL; |
|
i->index = SIZE_MAX; |
|
} |
|
|
|
bool upb_strtable_iter_isequal(const upb_strtable_iter *i1, |
|
const upb_strtable_iter *i2) { |
|
if (upb_strtable_done(i1) && upb_strtable_done(i2)) |
|
return true; |
|
return i1->t == i2->t && i1->index == i2->index; |
|
} |
|
|
|
|
|
/* upb_inttable ***************************************************************/ |
|
|
|
/* For inttables we use a hybrid structure where small keys are kept in an |
|
* array and large keys are put in the hash table. */ |
|
|
|
static uint32_t inthash(upb_tabkey key) { return upb_inthash(key); } |
|
|
|
static bool inteql(upb_tabkey k1, lookupkey_t k2) { |
|
return k1 == k2.num; |
|
} |
|
|
|
static upb_tabval *mutable_array(upb_inttable *t) { |
|
return (upb_tabval*)t->array; |
|
} |
|
|
|
static upb_tabval *inttable_val(upb_inttable *t, uintptr_t key) { |
|
if (key < t->array_size) { |
|
return upb_arrhas(t->array[key]) ? &(mutable_array(t)[key]) : NULL; |
|
} else { |
|
upb_tabent *e = |
|
findentry_mutable(&t->t, intkey(key), upb_inthash(key), &inteql); |
|
return e ? &e->val : NULL; |
|
} |
|
} |
|
|
|
static const upb_tabval *inttable_val_const(const upb_inttable *t, |
|
uintptr_t key) { |
|
return inttable_val((upb_inttable*)t, key); |
|
} |
|
|
|
size_t upb_inttable_count(const upb_inttable *t) { |
|
return t->t.count + t->array_count; |
|
} |
|
|
|
static void check(upb_inttable *t) { |
|
UPB_UNUSED(t); |
|
#if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG) |
|
{ |
|
/* This check is very expensive (makes inserts/deletes O(N)). */ |
|
size_t count = 0; |
|
upb_inttable_iter i; |
|
upb_inttable_begin(&i, t); |
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i), count++) { |
|
UPB_ASSERT(upb_inttable_lookup(t, upb_inttable_iter_key(&i), NULL)); |
|
} |
|
UPB_ASSERT(count == upb_inttable_count(t)); |
|
} |
|
#endif |
|
} |
|
|
|
bool upb_inttable_sizedinit(upb_inttable *t, size_t asize, int hsize_lg2, |
|
upb_alloc *a) { |
|
size_t array_bytes; |
|
|
|
if (!init(&t->t, hsize_lg2, a)) return false; |
|
/* Always make the array part at least 1 long, so that we know key 0 |
|
* won't be in the hash part, which simplifies things. */ |
|
t->array_size = UPB_MAX(1, asize); |
|
t->array_count = 0; |
|
array_bytes = t->array_size * sizeof(upb_value); |
|
t->array = upb_malloc(a, array_bytes); |
|
if (!t->array) { |
|
uninit(&t->t, a); |
|
return false; |
|
} |
|
memset(mutable_array(t), 0xff, array_bytes); |
|
check(t); |
|
return true; |
|
} |
|
|
|
bool upb_inttable_init2(upb_inttable *t, upb_ctype_t ctype, upb_alloc *a) { |
|
return upb_inttable_sizedinit(t, 0, 4, a); |
|
} |
|
|
|
void upb_inttable_uninit2(upb_inttable *t, upb_alloc *a) { |
|
uninit(&t->t, a); |
|
upb_free(a, mutable_array(t)); |
|
} |
|
|
|
bool upb_inttable_insert2(upb_inttable *t, uintptr_t key, upb_value val, |
|
upb_alloc *a) { |
|
upb_tabval tabval; |
|
tabval.val = val.val; |
|
UPB_ASSERT(upb_arrhas(tabval)); /* This will reject (uint64_t)-1. Fix this. */ |
|
|
|
if (key < t->array_size) { |
|
UPB_ASSERT(!upb_arrhas(t->array[key])); |
|
t->array_count++; |
|
mutable_array(t)[key].val = val.val; |
|
} else { |
|
if (isfull(&t->t)) { |
|
/* Need to resize the hash part, but we re-use the array part. */ |
|
size_t i; |
|
upb_table new_table; |
|
|
|
if (!init(&new_table, t->t.size_lg2 + 1, a)) { |
|
return false; |
|
} |
|
|
|
for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) { |
|
const upb_tabent *e = &t->t.entries[i]; |
|
uint32_t hash; |
|
upb_value v; |
|
|
|
_upb_value_setval(&v, e->val.val); |
|
hash = upb_inthash(e->key); |
|
insert(&new_table, intkey(e->key), e->key, v, hash, &inthash, &inteql); |
|
} |
|
|
|
UPB_ASSERT(t->t.count == new_table.count); |
|
|
|
uninit(&t->t, a); |
|
t->t = new_table; |
|
} |
|
insert(&t->t, intkey(key), key, val, upb_inthash(key), &inthash, &inteql); |
|
} |
|
check(t); |
|
return true; |
|
} |
|
|
|
bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v) { |
|
const upb_tabval *table_v = inttable_val_const(t, key); |
|
if (!table_v) return false; |
|
if (v) _upb_value_setval(v, table_v->val); |
|
return true; |
|
} |
|
|
|
bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val) { |
|
upb_tabval *table_v = inttable_val(t, key); |
|
if (!table_v) return false; |
|
table_v->val = val.val; |
|
return true; |
|
} |
|
|
|
bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val) { |
|
bool success; |
|
if (key < t->array_size) { |
|
if (upb_arrhas(t->array[key])) { |
|
upb_tabval empty = UPB_TABVALUE_EMPTY_INIT; |
|
t->array_count--; |
|
if (val) { |
|
_upb_value_setval(val, t->array[key].val); |
|
} |
|
mutable_array(t)[key] = empty; |
|
success = true; |
|
} else { |
|
success = false; |
|
} |
|
} else { |
|
success = rm(&t->t, intkey(key), val, NULL, upb_inthash(key), &inteql); |
|
} |
|
check(t); |
|
return success; |
|
} |
|
|
|
bool upb_inttable_push2(upb_inttable *t, upb_value val, upb_alloc *a) { |
|
return upb_inttable_insert2(t, upb_inttable_count(t), val, a); |
|
} |
|
|
|
upb_value upb_inttable_pop(upb_inttable *t) { |
|
upb_value val; |
|
bool ok = upb_inttable_remove(t, upb_inttable_count(t) - 1, &val); |
|
UPB_ASSERT(ok); |
|
return val; |
|
} |
|
|
|
bool upb_inttable_insertptr2(upb_inttable *t, const void *key, upb_value val, |
|
upb_alloc *a) { |
|
return upb_inttable_insert2(t, (uintptr_t)key, val, a); |
|
} |
|
|
|
bool upb_inttable_lookupptr(const upb_inttable *t, const void *key, |
|
upb_value *v) { |
|
return upb_inttable_lookup(t, (uintptr_t)key, v); |
|
} |
|
|
|
bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val) { |
|
return upb_inttable_remove(t, (uintptr_t)key, val); |
|
} |
|
|
|
void upb_inttable_compact2(upb_inttable *t, upb_alloc *a) { |
|
/* A power-of-two histogram of the table keys. */ |
|
size_t counts[UPB_MAXARRSIZE + 1] = {0}; |
|
|
|
/* The max key in each bucket. */ |
|
uintptr_t max[UPB_MAXARRSIZE + 1] = {0}; |
|
|
|
upb_inttable_iter i; |
|
size_t arr_count; |
|
int size_lg2; |
|
upb_inttable new_t; |
|
|
|
upb_inttable_begin(&i, t); |
|
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
uintptr_t key = upb_inttable_iter_key(&i); |
|
int bucket = log2ceil(key); |
|
max[bucket] = UPB_MAX(max[bucket], key); |
|
counts[bucket]++; |
|
} |
|
|
|
/* Find the largest power of two that satisfies the MIN_DENSITY |
|
* definition (while actually having some keys). */ |
|
arr_count = upb_inttable_count(t); |
|
|
|
for (size_lg2 = ARRAY_SIZE(counts) - 1; size_lg2 > 0; size_lg2--) { |
|
if (counts[size_lg2] == 0) { |
|
/* We can halve again without losing any entries. */ |
|
continue; |
|
} else if (arr_count >= (1 << size_lg2) * MIN_DENSITY) { |
|
break; |
|
} |
|
|
|
arr_count -= counts[size_lg2]; |
|
} |
|
|
|
UPB_ASSERT(arr_count <= upb_inttable_count(t)); |
|
|
|
{ |
|
/* Insert all elements into new, perfectly-sized table. */ |
|
size_t arr_size = max[size_lg2] + 1; /* +1 so arr[max] will fit. */ |
|
size_t hash_count = upb_inttable_count(t) - arr_count; |
|
size_t hash_size = hash_count ? (hash_count / MAX_LOAD) + 1 : 0; |
|
int hashsize_lg2 = log2ceil(hash_size); |
|
|
|
upb_inttable_sizedinit(&new_t, arr_size, hashsize_lg2, a); |
|
upb_inttable_begin(&i, t); |
|
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
uintptr_t k = upb_inttable_iter_key(&i); |
|
upb_inttable_insert2(&new_t, k, upb_inttable_iter_value(&i), a); |
|
} |
|
UPB_ASSERT(new_t.array_size == arr_size); |
|
UPB_ASSERT(new_t.t.size_lg2 == hashsize_lg2); |
|
} |
|
upb_inttable_uninit2(t, a); |
|
*t = new_t; |
|
} |
|
|
|
/* Iteration. */ |
|
|
|
static const upb_tabent *int_tabent(const upb_inttable_iter *i) { |
|
UPB_ASSERT(!i->array_part); |
|
return &i->t->t.entries[i->index]; |
|
} |
|
|
|
static upb_tabval int_arrent(const upb_inttable_iter *i) { |
|
UPB_ASSERT(i->array_part); |
|
return i->t->array[i->index]; |
|
} |
|
|
|
void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t) { |
|
i->t = t; |
|
i->index = -1; |
|
i->array_part = true; |
|
upb_inttable_next(i); |
|
} |
|
|
|
void upb_inttable_next(upb_inttable_iter *iter) { |
|
const upb_inttable *t = iter->t; |
|
if (iter->array_part) { |
|
while (++iter->index < t->array_size) { |
|
if (upb_arrhas(int_arrent(iter))) { |
|
return; |
|
} |
|
} |
|
iter->array_part = false; |
|
iter->index = begin(&t->t); |
|
} else { |
|
iter->index = next(&t->t, iter->index); |
|
} |
|
} |
|
|
|
bool upb_inttable_done(const upb_inttable_iter *i) { |
|
if (!i->t) return true; |
|
if (i->array_part) { |
|
return i->index >= i->t->array_size || |
|
!upb_arrhas(int_arrent(i)); |
|
} else { |
|
return i->index >= upb_table_size(&i->t->t) || |
|
upb_tabent_isempty(int_tabent(i)); |
|
} |
|
} |
|
|
|
uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i) { |
|
UPB_ASSERT(!upb_inttable_done(i)); |
|
return i->array_part ? i->index : int_tabent(i)->key; |
|
} |
|
|
|
upb_value upb_inttable_iter_value(const upb_inttable_iter *i) { |
|
UPB_ASSERT(!upb_inttable_done(i)); |
|
return _upb_value_val( |
|
i->array_part ? i->t->array[i->index].val : int_tabent(i)->val.val); |
|
} |
|
|
|
void upb_inttable_iter_setdone(upb_inttable_iter *i) { |
|
i->t = NULL; |
|
i->index = SIZE_MAX; |
|
i->array_part = false; |
|
} |
|
|
|
bool upb_inttable_iter_isequal(const upb_inttable_iter *i1, |
|
const upb_inttable_iter *i2) { |
|
if (upb_inttable_done(i1) && upb_inttable_done(i2)) |
|
return true; |
|
return i1->t == i2->t && i1->index == i2->index && |
|
i1->array_part == i2->array_part; |
|
} |
|
|
|
#if defined(UPB_UNALIGNED_READS_OK) || defined(__s390x__) |
|
/* ----------------------------------------------------------------------------- |
|
* MurmurHash2, by Austin Appleby (released as public domain). |
|
* Reformatted and C99-ified by Joshua Haberman. |
|
* Note - This code makes a few assumptions about how your machine behaves - |
|
* 1. We can read a 4-byte value from any address without crashing |
|
* 2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t |
|
* And it has a few limitations - |
|
* 1. It will not work incrementally. |
|
* 2. It will not produce the same results on little-endian and big-endian |
|
* machines. */ |
|
uint32_t upb_murmur_hash2(const void *key, size_t len, uint32_t seed) { |
|
/* 'm' and 'r' are mixing constants generated offline. |
|
* They're not really 'magic', they just happen to work well. */ |
|
const uint32_t m = 0x5bd1e995; |
|
const int32_t r = 24; |
|
|
|
/* Initialize the hash to a 'random' value */ |
|
uint32_t h = seed ^ len; |
|
|
|
/* Mix 4 bytes at a time into the hash */ |
|
const uint8_t * data = (const uint8_t *)key; |
|
while(len >= 4) { |
|
uint32_t k = *(uint32_t *)data; |
|
|
|
k *= m; |
|
k ^= k >> r; |
|
k *= m; |
|
|
|
h *= m; |
|
h ^= k; |
|
|
|
data += 4; |
|
len -= 4; |
|
} |
|
|
|
/* Handle the last few bytes of the input array */ |
|
switch(len) { |
|
case 3: h ^= data[2] << 16; |
|
case 2: h ^= data[1] << 8; |
|
case 1: h ^= data[0]; h *= m; |
|
}; |
|
|
|
/* Do a few final mixes of the hash to ensure the last few |
|
* bytes are well-incorporated. */ |
|
h ^= h >> 13; |
|
h *= m; |
|
h ^= h >> 15; |
|
|
|
return h; |
|
} |
|
|
|
#else /* !UPB_UNALIGNED_READS_OK */ |
|
|
|
/* ----------------------------------------------------------------------------- |
|
* MurmurHashAligned2, by Austin Appleby |
|
* Same algorithm as MurmurHash2, but only does aligned reads - should be safer |
|
* on certain platforms. |
|
* Performance will be lower than MurmurHash2 */ |
|
|
|
#define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; } |
|
|
|
uint32_t upb_murmur_hash2(const void * key, size_t len, uint32_t seed) { |
|
const uint32_t m = 0x5bd1e995; |
|
const int32_t r = 24; |
|
const uint8_t * data = (const uint8_t *)key; |
|
uint32_t h = (uint32_t)(seed ^ len); |
|
uint8_t align = (uintptr_t)data & 3; |
|
|
|
if(align && (len >= 4)) { |
|
/* Pre-load the temp registers */ |
|
uint32_t t = 0, d = 0; |
|
int32_t sl; |
|
int32_t sr; |
|
|
|
switch(align) { |
|
case 1: t |= data[2] << 16; |
|
case 2: t |= data[1] << 8; |
|
case 3: t |= data[0]; |
|
} |
|
|
|
t <<= (8 * align); |
|
|
|
data += 4-align; |
|
len -= 4-align; |
|
|
|
sl = 8 * (4-align); |
|
sr = 8 * align; |
|
|
|
/* Mix */ |
|
|
|
while(len >= 4) { |
|
uint32_t k; |
|
|
|
d = *(uint32_t *)data; |
|
t = (t >> sr) | (d << sl); |
|
|
|
k = t; |
|
|
|
MIX(h,k,m); |
|
|
|
t = d; |
|
|
|
data += 4; |
|
len -= 4; |
|
} |
|
|
|
/* Handle leftover data in temp registers */ |
|
|
|
d = 0; |
|
|
|
if(len >= align) { |
|
uint32_t k; |
|
|
|
switch(align) { |
|
case 3: d |= data[2] << 16; |
|
case 2: d |= data[1] << 8; |
|
case 1: d |= data[0]; |
|
} |
|
|
|
k = (t >> sr) | (d << sl); |
|
MIX(h,k,m); |
|
|
|
data += align; |
|
len -= align; |
|
|
|
/* ---------- |
|
* Handle tail bytes */ |
|
|
|
switch(len) { |
|
case 3: h ^= data[2] << 16; |
|
case 2: h ^= data[1] << 8; |
|
case 1: h ^= data[0]; h *= m; |
|
}; |
|
} else { |
|
switch(len) { |
|
case 3: d |= data[2] << 16; |
|
case 2: d |= data[1] << 8; |
|
case 1: d |= data[0]; |
|
case 0: h ^= (t >> sr) | (d << sl); h *= m; |
|
} |
|
} |
|
|
|
h ^= h >> 13; |
|
h *= m; |
|
h ^= h >> 15; |
|
|
|
return h; |
|
} else { |
|
while(len >= 4) { |
|
uint32_t k = *(uint32_t *)data; |
|
|
|
MIX(h,k,m); |
|
|
|
data += 4; |
|
len -= 4; |
|
} |
|
|
|
/* ---------- |
|
* Handle tail bytes */ |
|
|
|
switch(len) { |
|
case 3: h ^= data[2] << 16; |
|
case 2: h ^= data[1] << 8; |
|
case 1: h ^= data[0]; h *= m; |
|
}; |
|
|
|
h ^= h >> 13; |
|
h *= m; |
|
h ^= h >> 15; |
|
|
|
return h; |
|
} |
|
} |
|
#undef MIX |
|
|
|
#endif /* UPB_UNALIGNED_READS_OK */
|
|
|