Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

502 lines
16 KiB

/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2008-2009 Joshua Haberman. See LICENSE for details.
*/
#include "upb_parse.h"
#include <inttypes.h>
#include <stddef.h>
#include <stdlib.h>
#include "upb_def.h"
/* Functions to read wire values. *********************************************/
// These functions are internal to the parser, but might be moved into an
// internal header file if we at some point in the future opt to do code
// generation, because the generated code would want to inline these functions.
// The same applies to the functions to read .proto values below.
uint8_t *upb_get_v_uint64_t_full(uint8_t *buf, uint8_t *end, uint64_t *val,
struct upb_status *status);
// Gets a varint (wire type: UPB_WIRE_TYPE_VARINT).
INLINE uint8_t *upb_get_v_uint64_t(uint8_t *buf, uint8_t *end, uint64_t *val,
struct upb_status *status)
{
// We inline this common case (1-byte varints), if that fails we dispatch to
// the full (non-inlined) version.
if((*buf & 0x80) == 0) {
*val = *buf & 0x7f;
return buf + 1;
} else {
return upb_get_v_uint64_t_full(buf, end, val, status);
}
}
// Gets a varint -- called when we only need 32 bits of it.
INLINE uint8_t *upb_get_v_uint32_t(uint8_t *buf, uint8_t *end,
uint32_t *val, struct upb_status *status)
{
uint64_t val64;
uint8_t *ret = upb_get_v_uint64_t(buf, end, &val64, status);
*val = (uint32_t)val64; // Discard the high bits.
return ret;
}
// Gets a fixed-length 32-bit integer (wire type: UPB_WIRE_TYPE_32BIT).
INLINE uint8_t *upb_get_f_uint32_t(uint8_t *buf, uint8_t *end,
uint32_t *val, struct upb_status *status)
{
uint8_t *uint32_end = buf + sizeof(uint32_t);
if(uint32_end > end) {
status->code = UPB_STATUS_NEED_MORE_DATA;
return end;
}
#if UPB_UNALIGNED_READS_OK
*val = *(uint32_t*)buf;
#else
#define SHL(val, bits) ((uint32_t)val << bits)
*val = SHL(buf[0], 0) | SHL(buf[1], 8) | SHL(buf[2], 16) | SHL(buf[3], 24);
#undef SHL
#endif
return uint32_end;
}
// Gets a fixed-length 64-bit integer (wire type: UPB_WIRE_TYPE_64BIT).
INLINE uint8_t *upb_get_f_uint64_t(uint8_t *buf, uint8_t *end,
uint64_t *val, struct upb_status *status)
{
uint8_t *uint64_end = buf + sizeof(uint64_t);
if(uint64_end > end) {
status->code = UPB_STATUS_NEED_MORE_DATA;
return end;
}
#if UPB_UNALIGNED_READS_OK
*val = *(uint64_t*)buf;
#else
#define SHL(val, bits) ((uint64_t)val << bits)
*val = SHL(buf[0], 0) | SHL(buf[1], 8) | SHL(buf[2], 16) | SHL(buf[3], 24) |
SHL(buf[4], 32) | SHL(buf[5], 40) | SHL(buf[6], 48) | SHL(buf[7], 56);
#undef SHL
#endif
return uint64_end;
}
INLINE uint8_t *upb_skip_v_uint64_t(uint8_t *buf, uint8_t *end,
struct upb_status *status)
{
uint8_t *const maxend = buf + 10;
uint8_t last = 0x80;
for(; buf < (uint8_t*)end && (last & 0x80); buf++)
last = *buf;
if(buf >= end && buf <= maxend && (last & 0x80)) {
status->code = UPB_STATUS_NEED_MORE_DATA;
buf = end;
} else if(buf > maxend) {
status->code = UPB_ERROR_UNTERMINATED_VARINT;
buf = end;
}
return buf;
}
INLINE uint8_t *upb_skip_f_uint32_t(uint8_t *buf, uint8_t *end,
struct upb_status *status)
{
uint8_t *uint32_end = buf + sizeof(uint32_t);
if(uint32_end > end) {
status->code = UPB_STATUS_NEED_MORE_DATA;
return end;
}
return uint32_end;
}
INLINE uint8_t *upb_skip_f_uint64_t(uint8_t *buf, uint8_t *end,
struct upb_status *status)
{
uint8_t *uint64_end = buf + sizeof(uint64_t);
if(uint64_end > end) {
status->code = UPB_STATUS_NEED_MORE_DATA;
return end;
}
return uint64_end;
}
/* Functions to read .proto values. *******************************************/
// Performs zig-zag decoding, which is used by sint32 and sint64.
INLINE int32_t upb_zzdec_32(uint32_t n) { return (n >> 1) ^ -(int32_t)(n & 1); }
INLINE int64_t upb_zzdec_64(uint64_t n) { return (n >> 1) ^ -(int64_t)(n & 1); }
// Use macros to define a set of two functions for each .proto type:
//
// // Reads and converts a .proto value from buf, placing it in d.
// // "end" indicates the end of the current buffer (if the buffer does
// // not contain the entire value UPB_STATUS_NEED_MORE_DATA is returned).
// // On success, a pointer will be returned to the first byte that was
// // not consumed.
// uint8_t *upb_get_INT32(uint8_t *buf, uint8_t *end, int32_t *d,
// struct upb_status *status);
//
// // Given an already read wire value s (source), convert it to a .proto
// // value and return it.
// int32_t upb_wvtov_INT32(uint32_t s);
//
// These are the most efficient functions to call if you want to decode a value
// for a known type.
#define WVTOV(type, wire_t, val_t) \
INLINE val_t upb_wvtov_ ## type(wire_t s)
#define GET(type, v_or_f, wire_t, val_t, member_name) \
INLINE uint8_t *upb_get_ ## type(uint8_t *buf, uint8_t *end, val_t *d, \
struct upb_status *status) { \
wire_t tmp = 0; \
uint8_t *ret = upb_get_ ## v_or_f ## _ ## wire_t(buf, end, &tmp, status); \
*d = upb_wvtov_ ## type(tmp); \
return ret; \
}
#define T(type, v_or_f, wire_t, val_t, member_name) \
WVTOV(type, wire_t, val_t); /* prototype for GET below */ \
GET(type, v_or_f, wire_t, val_t, member_name) \
WVTOV(type, wire_t, val_t)
T(INT32, v, uint32_t, int32_t, int32) { return (int32_t)s; }
T(INT64, v, uint64_t, int64_t, int64) { return (int64_t)s; }
T(UINT32, v, uint32_t, uint32_t, uint32) { return s; }
T(UINT64, v, uint64_t, uint64_t, uint64) { return s; }
T(SINT32, v, uint32_t, int32_t, int32) { return upb_zzdec_32(s); }
T(SINT64, v, uint64_t, int64_t, int64) { return upb_zzdec_64(s); }
T(FIXED32, f, uint32_t, uint32_t, uint32) { return s; }
T(FIXED64, f, uint64_t, uint64_t, uint64) { return s; }
T(SFIXED32, f, uint32_t, int32_t, int32) { return (int32_t)s; }
T(SFIXED64, f, uint64_t, int64_t, int64) { return (int64_t)s; }
T(BOOL, v, uint32_t, bool, _bool) { return (bool)s; }
T(ENUM, v, uint32_t, int32_t, int32) { return (int32_t)s; }
T(DOUBLE, f, uint64_t, double, _double) {
union upb_value v;
v.uint64 = s;
return v._double;
}
T(FLOAT, f, uint32_t, float, _float) {
union upb_value v;
v.uint32 = s;
return v._float;
}
#undef WVTOV
#undef GET
#undef T
// Parses a tag, places the result in *tag.
INLINE uint8_t *parse_tag(uint8_t *buf, uint8_t *end, struct upb_tag *tag,
struct upb_status *status)
{
uint32_t tag_int;
uint8_t *ret = upb_get_v_uint32_t(buf, end, &tag_int, status);
tag->wire_type = (upb_wire_type_t)(tag_int & 0x07);
tag->field_number = tag_int >> 3;
return ret;
}
/**
* Parses a 64-bit varint that is known to be >= 2 bytes (the inline version
* handles 1 and 2 byte varints).
*/
uint8_t *upb_get_v_uint64_t_full(uint8_t *buf, uint8_t *end, uint64_t *val,
struct upb_status *status)
{
uint8_t *const maxend = buf + 10;
uint8_t last = 0x80;
*val = 0;
int bitpos;
for(bitpos = 0; buf < (uint8_t*)end && (last & 0x80); buf++, bitpos += 7)
*val |= ((uint64_t)((last = *buf) & 0x7F)) << bitpos;
if(buf >= end && buf <= maxend && (last & 0x80)) {
upb_seterr(status, UPB_STATUS_NEED_MORE_DATA,
"Provided data ended in the middle of a varint.\n");
buf = end;
} else if(buf > maxend) {
upb_seterr(status, UPB_ERROR_UNTERMINATED_VARINT,
"Varint was unterminated after 10 bytes.\n");
buf = end;
}
return buf;
}
uint8_t *upb_parse_wire_value(uint8_t *buf, uint8_t *end, upb_wire_type_t wt,
union upb_wire_value *wv,
struct upb_status *status)
{
switch(wt) {
case UPB_WIRE_TYPE_VARINT:
return upb_get_v_uint64_t(buf, end, &wv->varint, status);
case UPB_WIRE_TYPE_64BIT:
return upb_get_f_uint64_t(buf, end, &wv->_64bit, status);
case UPB_WIRE_TYPE_32BIT:
return upb_get_f_uint32_t(buf, end, &wv->_32bit, status);
default:
status->code = UPB_STATUS_ERROR; // Doesn't handle delimited, groups.
return end;
}
}
/**
* Advances buf past the current wire value (of type wt), saving the result in
* outbuf.
*/
static uint8_t *skip_wire_value(uint8_t *buf, uint8_t *end, upb_wire_type_t wt,
struct upb_status *status)
{
switch(wt) {
case UPB_WIRE_TYPE_VARINT:
return upb_skip_v_uint64_t(buf, end, status);
case UPB_WIRE_TYPE_64BIT:
return upb_skip_f_uint64_t(buf, end, status);
case UPB_WIRE_TYPE_32BIT:
return upb_skip_f_uint32_t(buf, end, status);
case UPB_WIRE_TYPE_START_GROUP:
// TODO: skip to matching end group.
case UPB_WIRE_TYPE_END_GROUP:
return buf;
default:
status->code = UPB_STATUS_ERROR;
return end;
}
}
uint8_t *upb_parse_value(uint8_t *buf, uint8_t *end, upb_field_type_t ft,
union upb_value_ptr v, struct upb_status *status)
{
#define CASE(t, member_name) \
case UPB_TYPENUM(t): return upb_get_ ## t(buf, end, v.member_name, status);
switch(ft) {
CASE(DOUBLE, _double)
CASE(FLOAT, _float)
CASE(INT32, int32)
CASE(INT64, int64)
CASE(UINT32, uint32)
CASE(UINT64, uint64)
CASE(SINT32, int32)
CASE(SINT64, int64)
CASE(FIXED32, uint32)
CASE(FIXED64, uint64)
CASE(SFIXED32, int32)
CASE(SFIXED64, int64)
CASE(BOOL, _bool)
CASE(ENUM, int32)
default: return end;
}
#undef CASE
}
struct upb_cbparser_frame {
struct upb_msgdef *msgdef;
size_t end_offset; // For groups, 0.
};
struct upb_cbparser {
// Immutable state of the parser.
struct upb_msgdef *toplevel_msgdef;
upb_value_cb value_cb;
upb_str_cb str_cb;
upb_start_cb start_cb;
upb_end_cb end_cb;
// State pertaining to a particular parse (resettable).
// Stack entries store the offset where the submsg ends (for groups, 0).
struct upb_cbparser_frame stack[UPB_MAX_NESTING], *top, *limit;
size_t completed_offset;
void *udata;
};
struct upb_cbparser *upb_cbparser_new(struct upb_msgdef *msgdef,
upb_value_cb valuecb, upb_str_cb strcb,
upb_start_cb startcb, upb_end_cb endcb)
{
struct upb_cbparser *p = malloc(sizeof(struct upb_cbparser));
p->toplevel_msgdef = msgdef;
p->value_cb = valuecb;
p->str_cb = strcb;
p->start_cb = startcb;
p->end_cb = endcb;
p->limit = &p->stack[UPB_MAX_NESTING];
return p;
}
void upb_cbparser_free(struct upb_cbparser *p)
{
free(p);
}
void upb_cbparser_reset(struct upb_cbparser *p, void *udata)
{
p->top = p->stack;
p->completed_offset = 0;
p->udata = udata;
p->top->msgdef = p->toplevel_msgdef;
// The top-level message is not delimited (we can keep receiving data for it
// indefinitely), so we treat it like a group.
p->top->end_offset = 0;
}
static void *get_msgend(struct upb_cbparser *p, uint8_t *start)
{
if(p->top->end_offset > 0)
return start + (p->top->end_offset - p->completed_offset);
else
return (void*)UINTPTR_MAX; // group.
}
static bool isgroup(void *submsg_end)
{
return submsg_end == (void*)UINTPTR_MAX;
}
extern upb_wire_type_t upb_expected_wire_types[];
// Returns true if wt is the correct on-the-wire type for ft.
INLINE bool upb_check_type(upb_wire_type_t wt, upb_field_type_t ft) {
// This doesn't currently support packed arrays.
return upb_type_info[ft].expected_wire_type == wt;
}
/**
* Pushes a new stack frame for a submessage with the given len (which will
* be zero if the submessage is a group).
*/
static uint8_t *push(struct upb_cbparser *p, uint8_t *start,
uint32_t submsg_len, struct upb_fielddef *f,
struct upb_status *status)
{
p->top++;
if(p->top >= p->limit) {
upb_seterr(status, UPB_STATUS_ERROR,
"Nesting exceeded maximum (%d levels)\n",
UPB_MAX_NESTING);
return NULL;
}
struct upb_cbparser_frame *frame = p->top;
frame->end_offset = p->completed_offset + submsg_len;
frame->msgdef = f->ref.msg;
if(p->start_cb) p->start_cb(p->udata, f);
return get_msgend(p, start);
}
/**
* Pops a stack frame, returning a pointer for where the next submsg should
* end (or a pointer that is out of range for a group).
*/
static void *pop(struct upb_cbparser *p, uint8_t *start)
{
if(p->end_cb) p->end_cb(p->udata);
p->top--;
return get_msgend(p, start);
}
size_t upb_cbparser_parse(struct upb_cbparser *p, void *_buf, size_t len,
struct upb_status *status)
{
// buf is our current offset, moves from start to end.
uint8_t *buf = _buf;
uint8_t *const start = buf; // ptr equivalent of p->completed_offset
uint8_t *end = buf + len;
// When we have fully parsed a tag/value pair, we advance this.
uint8_t *completed = buf;
uint8_t *submsg_end = get_msgend(p, start);
struct upb_msgdef *msgdef = p->top->msgdef;
bool keep_going = true;
// Make local copies so optimizer knows they won't change.
upb_str_cb str_cb = p->str_cb;
upb_value_cb value_cb = p->value_cb;
void *udata = p->udata;
// We need to check the status of operations that can fail, but we do so as
// late as possible to avoid introducing branches that have to wait on
// (status->code) which must be loaded from memory.
#define CHECK_STATUS() do { if(!upb_ok(status)) goto err; } while(0)
// Main loop: parse a tag, find the appropriate fielddef.
while(keep_going && buf < end) {
struct upb_tag tag;
buf = parse_tag(buf, end, &tag, status);
if(tag.wire_type == UPB_WIRE_TYPE_END_GROUP) {
CHECK_STATUS();
if(!isgroup(submsg_end)) {
upb_seterr(status, UPB_STATUS_ERROR, "End group seen but current "
"message is not a group, byte offset: %zd",
p->completed_offset + (completed - start));
goto err;
}
submsg_end = pop(p, start);
msgdef = p->top->msgdef;
completed = buf;
continue;
}
struct upb_fielddef *f = upb_msg_fieldbynum(msgdef, tag.field_number);
if(tag.wire_type == UPB_WIRE_TYPE_DELIMITED) {
int32_t delim_len;
buf = upb_get_INT32(buf, end, &delim_len, status);
CHECK_STATUS();
uint8_t *delim_end = buf + delim_len;
if(f && f->type == UPB_TYPENUM(MESSAGE)) {
submsg_end = push(p, start, delim_end - start, f, status);
msgdef = p->top->msgdef;
} else {
if(f && upb_isstringtype(f->type)) {
size_t avail_len = UPB_MIN(delim_end, end) - buf;
keep_going =
str_cb(udata, msgdef, f, buf, avail_len, delim_end - buf);
} // else { TODO: packed arrays }
// If field was not found, it is skipped silently.
buf = delim_end; // Could be >end.
}
} else {
//if(!f || !upb_check_type(tag.wire_type, f->type)) {
// buf = skip_wire_value(buf, end, tag.wire_type, status);
if (f->type == UPB_TYPENUM(GROUP)) {
submsg_end = push(p, start, 0, f, status);
msgdef = p->top->msgdef;
} else {
union upb_value val;
buf = upb_parse_value(buf, end, f->type, upb_value_addrof(&val),
status);
keep_going = value_cb(udata, msgdef, f, val);
}
}
CHECK_STATUS();
while(buf >= submsg_end) {
if(buf > submsg_end) {
upb_seterr(status, UPB_STATUS_ERROR, "Expected submsg end offset "
"did not lie on a tag/value boundary.");
goto err;
}
submsg_end = pop(p, start);
msgdef = p->top->msgdef;
}
// while(buf < p->packed_end) { TODO: packed arrays }
completed = buf;
}
size_t read;
err:
read = (char*)completed - (char*)start;
p->completed_offset += read;
return read;
}