Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
733 lines
23 KiB
733 lines
23 KiB
// Protocol Buffers - Google's data interchange format |
|
// Copyright 2014 Google Inc. All rights reserved. |
|
// https://developers.google.com/protocol-buffers/ |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
#include "protobuf.h" |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Class/module creation from msgdefs and enumdefs, respectively. |
|
// ----------------------------------------------------------------------------- |
|
|
|
void* Message_data(void* msg) { |
|
return ((uint8_t *)msg) + sizeof(MessageHeader); |
|
} |
|
|
|
void Message_mark(void* _self) { |
|
MessageHeader* self = (MessageHeader *)_self; |
|
layout_mark(self->descriptor->layout, Message_data(self)); |
|
} |
|
|
|
void Message_free(void* self) { |
|
stringsink* unknown = ((MessageHeader *)self)->unknown_fields; |
|
if (unknown != NULL) { |
|
stringsink_uninit(unknown); |
|
free(unknown); |
|
} |
|
xfree(self); |
|
} |
|
|
|
rb_data_type_t Message_type = { |
|
"Message", |
|
{ Message_mark, Message_free, NULL }, |
|
}; |
|
|
|
VALUE Message_alloc(VALUE klass) { |
|
VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); |
|
Descriptor* desc = ruby_to_Descriptor(descriptor); |
|
MessageHeader* msg = (MessageHeader*)ALLOC_N( |
|
uint8_t, sizeof(MessageHeader) + desc->layout->size); |
|
VALUE ret; |
|
|
|
memset(Message_data(msg), 0, desc->layout->size); |
|
|
|
// We wrap first so that everything in the message object is GC-rooted in case |
|
// a collection happens during object creation in layout_init(). |
|
ret = TypedData_Wrap_Struct(klass, &Message_type, msg); |
|
msg->descriptor = desc; |
|
rb_ivar_set(ret, descriptor_instancevar_interned, descriptor); |
|
|
|
msg->unknown_fields = NULL; |
|
|
|
layout_init(desc->layout, Message_data(msg)); |
|
|
|
return ret; |
|
} |
|
|
|
static const upb_fielddef* which_oneof_field(MessageHeader* self, const upb_oneofdef* o) { |
|
upb_oneof_iter it; |
|
size_t case_ofs; |
|
uint32_t oneof_case; |
|
const upb_fielddef* first_field; |
|
const upb_fielddef* f; |
|
|
|
// If no fields in the oneof, always nil. |
|
if (upb_oneofdef_numfields(o) == 0) { |
|
return NULL; |
|
} |
|
// Grab the first field in the oneof so we can get its layout info to find the |
|
// oneof_case field. |
|
upb_oneof_begin(&it, o); |
|
assert(!upb_oneof_done(&it)); |
|
first_field = upb_oneof_iter_field(&it); |
|
assert(upb_fielddef_containingoneof(first_field) != NULL); |
|
|
|
case_ofs = |
|
self->descriptor->layout-> |
|
fields[upb_fielddef_index(first_field)].case_offset; |
|
oneof_case = *((uint32_t*)((char*)Message_data(self) + case_ofs)); |
|
|
|
if (oneof_case == ONEOF_CASE_NONE) { |
|
return NULL; |
|
} |
|
|
|
// oneof_case is a field index, so find that field. |
|
f = upb_oneofdef_itof(o, oneof_case); |
|
assert(f != NULL); |
|
|
|
return f; |
|
} |
|
|
|
enum { |
|
METHOD_UNKNOWN = 0, |
|
METHOD_GETTER = 1, |
|
METHOD_SETTER = 2, |
|
METHOD_CLEAR = 3, |
|
METHOD_PRESENCE = 4 |
|
}; |
|
|
|
static int extract_method_call(VALUE method_name, MessageHeader* self, |
|
const upb_fielddef **f, const upb_oneofdef **o) { |
|
Check_Type(method_name, T_SYMBOL); |
|
|
|
VALUE method_str = rb_id2str(SYM2ID(method_name)); |
|
char* name = RSTRING_PTR(method_str); |
|
size_t name_len = RSTRING_LEN(method_str); |
|
int accessor_type; |
|
const upb_oneofdef* test_o; |
|
const upb_fielddef* test_f; |
|
|
|
if (name[name_len - 1] == '=') { |
|
accessor_type = METHOD_SETTER; |
|
name_len--; |
|
// We want to ensure if the proto has something named clear_foo or has_foo?, |
|
// we don't strip the prefix. |
|
} else if (strncmp("clear_", name, 6) == 0 && |
|
!upb_msgdef_lookupname(self->descriptor->msgdef, name, name_len, |
|
&test_f, &test_o)) { |
|
accessor_type = METHOD_CLEAR; |
|
name = name + 6; |
|
name_len = name_len - 6; |
|
} else if (strncmp("has_", name, 4) == 0 && name[name_len - 1] == '?' && |
|
!upb_msgdef_lookupname(self->descriptor->msgdef, name, name_len, |
|
&test_f, &test_o)) { |
|
accessor_type = METHOD_PRESENCE; |
|
name = name + 4; |
|
name_len = name_len - 5; |
|
} else { |
|
accessor_type = METHOD_GETTER; |
|
} |
|
|
|
// Verify the name corresponds to a oneof or field in this message. |
|
if (!upb_msgdef_lookupname(self->descriptor->msgdef, name, name_len, |
|
&test_f, &test_o)) { |
|
return METHOD_UNKNOWN; |
|
} |
|
|
|
// Method calls like 'has_foo?' are not allowed if field "foo" does not have |
|
// a hasbit (e.g. repeated fields or non-message type fields for proto3 |
|
// syntax). |
|
if (accessor_type == METHOD_PRESENCE && test_f != NULL && |
|
!upb_fielddef_haspresence(test_f)) { |
|
return METHOD_UNKNOWN; |
|
} |
|
|
|
*o = test_o; |
|
*f = test_f; |
|
return accessor_type; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* Message.method_missing(*args) |
|
* |
|
* Provides accessors and setters and methods to clear and check for presence of |
|
* message fields according to their field names. |
|
* |
|
* For any field whose name does not conflict with a built-in method, an |
|
* accessor is provided with the same name as the field, and a setter is |
|
* provided with the name of the field plus the '=' suffix. Thus, given a |
|
* message instance 'msg' with field 'foo', the following code is valid: |
|
* |
|
* msg.foo = 42 |
|
* puts msg.foo |
|
* |
|
* This method also provides read-only accessors for oneofs. If a oneof exists |
|
* with name 'my_oneof', then msg.my_oneof will return a Ruby symbol equal to |
|
* the name of the field in that oneof that is currently set, or nil if none. |
|
* |
|
* It also provides methods of the form 'clear_fieldname' to clear the value |
|
* of the field 'fieldname'. For basic data types, this will set the default |
|
* value of the field. |
|
* |
|
* Additionally, it provides methods of the form 'has_fieldname?', which returns |
|
* true if the field 'fieldname' is set in the message object, else false. For |
|
* 'proto3' syntax, calling this for a basic type field will result in an error. |
|
*/ |
|
VALUE Message_method_missing(int argc, VALUE* argv, VALUE _self) { |
|
MessageHeader* self; |
|
const upb_oneofdef* o; |
|
const upb_fielddef* f; |
|
|
|
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); |
|
if (argc < 1) { |
|
rb_raise(rb_eArgError, "Expected method name as first argument."); |
|
} |
|
|
|
int accessor_type = extract_method_call(argv[0], self, &f, &o); |
|
if (accessor_type == METHOD_UNKNOWN || (o == NULL && f == NULL) ) { |
|
return rb_call_super(argc, argv); |
|
} else if (accessor_type == METHOD_SETTER) { |
|
if (argc != 2) { |
|
rb_raise(rb_eArgError, "Expected 2 arguments, received %d", argc); |
|
} |
|
} else if (argc != 1) { |
|
rb_raise(rb_eArgError, "Expected 1 argument, received %d", argc); |
|
} |
|
|
|
// Return which of the oneof fields are set |
|
if (o != NULL) { |
|
if (accessor_type == METHOD_SETTER) { |
|
rb_raise(rb_eRuntimeError, "Oneof accessors are read-only."); |
|
} |
|
|
|
const upb_fielddef* oneof_field = which_oneof_field(self, o); |
|
if (accessor_type == METHOD_PRESENCE) { |
|
return oneof_field == NULL ? Qfalse : Qtrue; |
|
} else if (accessor_type == METHOD_CLEAR) { |
|
if (oneof_field != NULL) { |
|
layout_clear(self->descriptor->layout, Message_data(self), oneof_field); |
|
} |
|
return Qnil; |
|
} else { |
|
// METHOD_ACCESSOR |
|
return oneof_field == NULL ? Qnil : |
|
ID2SYM(rb_intern(upb_fielddef_name(oneof_field))); |
|
} |
|
// Otherwise we're operating on a single proto field |
|
} else if (accessor_type == METHOD_SETTER) { |
|
layout_set(self->descriptor->layout, Message_data(self), f, argv[1]); |
|
return Qnil; |
|
} else if (accessor_type == METHOD_CLEAR) { |
|
layout_clear(self->descriptor->layout, Message_data(self), f); |
|
return Qnil; |
|
} else if (accessor_type == METHOD_PRESENCE) { |
|
return layout_has(self->descriptor->layout, Message_data(self), f); |
|
} else { |
|
return layout_get(self->descriptor->layout, Message_data(self), f); |
|
} |
|
} |
|
|
|
|
|
VALUE Message_respond_to_missing(int argc, VALUE* argv, VALUE _self) { |
|
MessageHeader* self; |
|
const upb_oneofdef* o; |
|
const upb_fielddef* f; |
|
|
|
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); |
|
if (argc < 1) { |
|
rb_raise(rb_eArgError, "Expected method name as first argument."); |
|
} |
|
|
|
int accessor_type = extract_method_call(argv[0], self, &f, &o); |
|
if (accessor_type == METHOD_UNKNOWN) { |
|
return rb_call_super(argc, argv); |
|
} else if (o != NULL) { |
|
return accessor_type == METHOD_SETTER ? Qfalse : Qtrue; |
|
} else { |
|
return Qtrue; |
|
} |
|
} |
|
|
|
VALUE create_submsg_from_hash(const upb_fielddef *f, VALUE hash) { |
|
const upb_def *d = upb_fielddef_subdef(f); |
|
assert(d != NULL); |
|
|
|
VALUE descriptor = get_def_obj(d); |
|
VALUE msgclass = rb_funcall(descriptor, rb_intern("msgclass"), 0, NULL); |
|
|
|
VALUE args[1] = { hash }; |
|
return rb_class_new_instance(1, args, msgclass); |
|
} |
|
|
|
int Message_initialize_kwarg(VALUE key, VALUE val, VALUE _self) { |
|
MessageHeader* self; |
|
char *name; |
|
const upb_fielddef* f; |
|
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); |
|
|
|
if (TYPE(key) == T_STRING) { |
|
name = RSTRING_PTR(key); |
|
} else if (TYPE(key) == T_SYMBOL) { |
|
name = RSTRING_PTR(rb_id2str(SYM2ID(key))); |
|
} else { |
|
rb_raise(rb_eArgError, |
|
"Expected string or symbols as hash keys when initializing proto from hash."); |
|
} |
|
|
|
f = upb_msgdef_ntofz(self->descriptor->msgdef, name); |
|
if (f == NULL) { |
|
rb_raise(rb_eArgError, |
|
"Unknown field name '%s' in initialization map entry.", name); |
|
} |
|
|
|
if (TYPE(val) == T_NIL) { |
|
return 0; |
|
} |
|
|
|
if (is_map_field(f)) { |
|
VALUE map; |
|
|
|
if (TYPE(val) != T_HASH) { |
|
rb_raise(rb_eArgError, |
|
"Expected Hash object as initializer value for map field '%s'.", name); |
|
} |
|
map = layout_get(self->descriptor->layout, Message_data(self), f); |
|
Map_merge_into_self(map, val); |
|
} else if (upb_fielddef_label(f) == UPB_LABEL_REPEATED) { |
|
VALUE ary; |
|
|
|
if (TYPE(val) != T_ARRAY) { |
|
rb_raise(rb_eArgError, |
|
"Expected array as initializer value for repeated field '%s'.", name); |
|
} |
|
ary = layout_get(self->descriptor->layout, Message_data(self), f); |
|
for (int i = 0; i < RARRAY_LEN(val); i++) { |
|
VALUE entry = rb_ary_entry(val, i); |
|
if (TYPE(entry) == T_HASH && upb_fielddef_issubmsg(f)) { |
|
entry = create_submsg_from_hash(f, entry); |
|
} |
|
|
|
RepeatedField_push(ary, entry); |
|
} |
|
} else { |
|
if (TYPE(val) == T_HASH && upb_fielddef_issubmsg(f)) { |
|
val = create_submsg_from_hash(f, val); |
|
} |
|
|
|
layout_set(self->descriptor->layout, Message_data(self), f, val); |
|
} |
|
return 0; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* Message.new(kwargs) => new_message |
|
* |
|
* Creates a new instance of the given message class. Keyword arguments may be |
|
* provided with keywords corresponding to field names. |
|
* |
|
* Note that no literal Message class exists. Only concrete classes per message |
|
* type exist, as provided by the #msgclass method on Descriptors after they |
|
* have been added to a pool. The method definitions described here on the |
|
* Message class are provided on each concrete message class. |
|
*/ |
|
VALUE Message_initialize(int argc, VALUE* argv, VALUE _self) { |
|
VALUE hash_args; |
|
|
|
if (argc == 0) { |
|
return Qnil; |
|
} |
|
if (argc != 1) { |
|
rb_raise(rb_eArgError, "Expected 0 or 1 arguments."); |
|
} |
|
hash_args = argv[0]; |
|
if (TYPE(hash_args) != T_HASH) { |
|
rb_raise(rb_eArgError, "Expected hash arguments."); |
|
} |
|
|
|
rb_hash_foreach(hash_args, Message_initialize_kwarg, _self); |
|
return Qnil; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* Message.dup => new_message |
|
* |
|
* Performs a shallow copy of this message and returns the new copy. |
|
*/ |
|
VALUE Message_dup(VALUE _self) { |
|
MessageHeader* self; |
|
VALUE new_msg; |
|
MessageHeader* new_msg_self; |
|
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); |
|
|
|
new_msg = rb_class_new_instance(0, NULL, CLASS_OF(_self)); |
|
TypedData_Get_Struct(new_msg, MessageHeader, &Message_type, new_msg_self); |
|
|
|
layout_dup(self->descriptor->layout, |
|
Message_data(new_msg_self), |
|
Message_data(self)); |
|
|
|
return new_msg; |
|
} |
|
|
|
// Internal only; used by Google::Protobuf.deep_copy. |
|
VALUE Message_deep_copy(VALUE _self) { |
|
MessageHeader* self; |
|
MessageHeader* new_msg_self; |
|
VALUE new_msg; |
|
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); |
|
|
|
new_msg = rb_class_new_instance(0, NULL, CLASS_OF(_self)); |
|
TypedData_Get_Struct(new_msg, MessageHeader, &Message_type, new_msg_self); |
|
|
|
layout_deep_copy(self->descriptor->layout, |
|
Message_data(new_msg_self), |
|
Message_data(self)); |
|
|
|
return new_msg; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* Message.==(other) => boolean |
|
* |
|
* Performs a deep comparison of this message with another. Messages are equal |
|
* if they have the same type and if each field is equal according to the :== |
|
* method's semantics (a more efficient comparison may actually be done if the |
|
* field is of a primitive type). |
|
*/ |
|
VALUE Message_eq(VALUE _self, VALUE _other) { |
|
MessageHeader* self; |
|
MessageHeader* other; |
|
if (TYPE(_self) != TYPE(_other)) { |
|
return Qfalse; |
|
} |
|
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); |
|
TypedData_Get_Struct(_other, MessageHeader, &Message_type, other); |
|
|
|
if (self->descriptor != other->descriptor) { |
|
return Qfalse; |
|
} |
|
|
|
return layout_eq(self->descriptor->layout, |
|
Message_data(self), |
|
Message_data(other)); |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* Message.hash => hash_value |
|
* |
|
* Returns a hash value that represents this message's field values. |
|
*/ |
|
VALUE Message_hash(VALUE _self) { |
|
MessageHeader* self; |
|
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); |
|
|
|
return layout_hash(self->descriptor->layout, Message_data(self)); |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* Message.inspect => string |
|
* |
|
* Returns a human-readable string representing this message. It will be |
|
* formatted as "<MessageType: field1: value1, field2: value2, ...>". Each |
|
* field's value is represented according to its own #inspect method. |
|
*/ |
|
VALUE Message_inspect(VALUE _self) { |
|
MessageHeader* self; |
|
VALUE str; |
|
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); |
|
|
|
str = rb_str_new2("<"); |
|
str = rb_str_append(str, rb_str_new2(rb_class2name(CLASS_OF(_self)))); |
|
str = rb_str_cat2(str, ": "); |
|
str = rb_str_append(str, layout_inspect( |
|
self->descriptor->layout, Message_data(self))); |
|
str = rb_str_cat2(str, ">"); |
|
return str; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* Message.to_h => {} |
|
* |
|
* Returns the message as a Ruby Hash object, with keys as symbols. |
|
*/ |
|
VALUE Message_to_h(VALUE _self) { |
|
MessageHeader* self; |
|
VALUE hash; |
|
upb_msg_field_iter it; |
|
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); |
|
|
|
hash = rb_hash_new(); |
|
|
|
for (upb_msg_field_begin(&it, self->descriptor->msgdef); |
|
!upb_msg_field_done(&it); |
|
upb_msg_field_next(&it)) { |
|
const upb_fielddef* field = upb_msg_iter_field(&it); |
|
|
|
// For proto2, do not include fields which are not set. |
|
if (upb_msgdef_syntax(self->descriptor->msgdef) == UPB_SYNTAX_PROTO2 && |
|
field_contains_hasbit(self->descriptor->layout, field) && |
|
!layout_has(self->descriptor->layout, Message_data(self), field)) { |
|
continue; |
|
} |
|
|
|
VALUE msg_value = layout_get(self->descriptor->layout, Message_data(self), |
|
field); |
|
VALUE msg_key = ID2SYM(rb_intern(upb_fielddef_name(field))); |
|
if (is_map_field(field)) { |
|
msg_value = Map_to_h(msg_value); |
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
|
msg_value = RepeatedField_to_ary(msg_value); |
|
if (upb_msgdef_syntax(self->descriptor->msgdef) == UPB_SYNTAX_PROTO2 && |
|
RARRAY_LEN(msg_value) == 0) { |
|
continue; |
|
} |
|
|
|
if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) { |
|
for (int i = 0; i < RARRAY_LEN(msg_value); i++) { |
|
VALUE elem = rb_ary_entry(msg_value, i); |
|
rb_ary_store(msg_value, i, Message_to_h(elem)); |
|
} |
|
} |
|
|
|
} else if (msg_value != Qnil && |
|
upb_fielddef_type(field) == UPB_TYPE_MESSAGE) { |
|
msg_value = Message_to_h(msg_value); |
|
} |
|
rb_hash_aset(hash, msg_key, msg_value); |
|
} |
|
return hash; |
|
} |
|
|
|
|
|
|
|
/* |
|
* call-seq: |
|
* Message.[](index) => value |
|
* |
|
* Accesses a field's value by field name. The provided field name should be a |
|
* string. |
|
*/ |
|
VALUE Message_index(VALUE _self, VALUE field_name) { |
|
MessageHeader* self; |
|
const upb_fielddef* field; |
|
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); |
|
Check_Type(field_name, T_STRING); |
|
field = upb_msgdef_ntofz(self->descriptor->msgdef, RSTRING_PTR(field_name)); |
|
if (field == NULL) { |
|
return Qnil; |
|
} |
|
return layout_get(self->descriptor->layout, Message_data(self), field); |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* Message.[]=(index, value) |
|
* |
|
* Sets a field's value by field name. The provided field name should be a |
|
* string. |
|
*/ |
|
VALUE Message_index_set(VALUE _self, VALUE field_name, VALUE value) { |
|
MessageHeader* self; |
|
const upb_fielddef* field; |
|
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); |
|
Check_Type(field_name, T_STRING); |
|
field = upb_msgdef_ntofz(self->descriptor->msgdef, RSTRING_PTR(field_name)); |
|
if (field == NULL) { |
|
rb_raise(rb_eArgError, "Unknown field: %s", RSTRING_PTR(field_name)); |
|
} |
|
layout_set(self->descriptor->layout, Message_data(self), field, value); |
|
return Qnil; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* Message.descriptor => descriptor |
|
* |
|
* Class method that returns the Descriptor instance corresponding to this |
|
* message class's type. |
|
*/ |
|
VALUE Message_descriptor(VALUE klass) { |
|
return rb_ivar_get(klass, descriptor_instancevar_interned); |
|
} |
|
|
|
VALUE build_class_from_descriptor(Descriptor* desc) { |
|
const char *name; |
|
VALUE klass; |
|
|
|
if (desc->layout == NULL) { |
|
desc->layout = create_layout(desc->msgdef); |
|
} |
|
if (desc->fill_method == NULL) { |
|
desc->fill_method = new_fillmsg_decodermethod(desc, &desc->fill_method); |
|
} |
|
|
|
name = upb_msgdef_fullname(desc->msgdef); |
|
if (name == NULL) { |
|
rb_raise(rb_eRuntimeError, "Descriptor does not have assigned name."); |
|
} |
|
|
|
klass = rb_define_class_id( |
|
// Docs say this parameter is ignored. User will assign return value to |
|
// their own toplevel constant class name. |
|
rb_intern("Message"), |
|
rb_cObject); |
|
rb_ivar_set(klass, descriptor_instancevar_interned, |
|
get_def_obj(desc->msgdef)); |
|
rb_define_alloc_func(klass, Message_alloc); |
|
rb_require("google/protobuf/message_exts"); |
|
rb_include_module(klass, rb_eval_string("::Google::Protobuf::MessageExts")); |
|
rb_extend_object( |
|
klass, rb_eval_string("::Google::Protobuf::MessageExts::ClassMethods")); |
|
|
|
rb_define_method(klass, "method_missing", |
|
Message_method_missing, -1); |
|
rb_define_method(klass, "respond_to_missing?", |
|
Message_respond_to_missing, -1); |
|
rb_define_method(klass, "initialize", Message_initialize, -1); |
|
rb_define_method(klass, "dup", Message_dup, 0); |
|
// Also define #clone so that we don't inherit Object#clone. |
|
rb_define_method(klass, "clone", Message_dup, 0); |
|
rb_define_method(klass, "==", Message_eq, 1); |
|
rb_define_method(klass, "hash", Message_hash, 0); |
|
rb_define_method(klass, "to_h", Message_to_h, 0); |
|
rb_define_method(klass, "to_hash", Message_to_h, 0); |
|
rb_define_method(klass, "inspect", Message_inspect, 0); |
|
rb_define_method(klass, "[]", Message_index, 1); |
|
rb_define_method(klass, "[]=", Message_index_set, 2); |
|
rb_define_singleton_method(klass, "decode", Message_decode, 1); |
|
rb_define_singleton_method(klass, "encode", Message_encode, 1); |
|
rb_define_singleton_method(klass, "decode_json", Message_decode_json, 1); |
|
rb_define_singleton_method(klass, "encode_json", Message_encode_json, -1); |
|
rb_define_singleton_method(klass, "descriptor", Message_descriptor, 0); |
|
|
|
return klass; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* Enum.lookup(number) => name |
|
* |
|
* This module method, provided on each generated enum module, looks up an enum |
|
* value by number and returns its name as a Ruby symbol, or nil if not found. |
|
*/ |
|
VALUE enum_lookup(VALUE self, VALUE number) { |
|
int32_t num = NUM2INT(number); |
|
VALUE desc = rb_ivar_get(self, descriptor_instancevar_interned); |
|
EnumDescriptor* enumdesc = ruby_to_EnumDescriptor(desc); |
|
|
|
const char* name = upb_enumdef_iton(enumdesc->enumdef, num); |
|
if (name == NULL) { |
|
return Qnil; |
|
} else { |
|
return ID2SYM(rb_intern(name)); |
|
} |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* Enum.resolve(name) => number |
|
* |
|
* This module method, provided on each generated enum module, looks up an enum |
|
* value by name (as a Ruby symbol) and returns its name, or nil if not found. |
|
*/ |
|
VALUE enum_resolve(VALUE self, VALUE sym) { |
|
const char* name = rb_id2name(SYM2ID(sym)); |
|
VALUE desc = rb_ivar_get(self, descriptor_instancevar_interned); |
|
EnumDescriptor* enumdesc = ruby_to_EnumDescriptor(desc); |
|
|
|
int32_t num = 0; |
|
bool found = upb_enumdef_ntoiz(enumdesc->enumdef, name, &num); |
|
if (!found) { |
|
return Qnil; |
|
} else { |
|
return INT2NUM(num); |
|
} |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* Enum.descriptor |
|
* |
|
* This module method, provided on each generated enum module, returns the |
|
* EnumDescriptor corresponding to this enum type. |
|
*/ |
|
VALUE enum_descriptor(VALUE self) { |
|
return rb_ivar_get(self, descriptor_instancevar_interned); |
|
} |
|
|
|
VALUE build_module_from_enumdesc(EnumDescriptor* enumdesc) { |
|
VALUE mod = rb_define_module_id( |
|
rb_intern(upb_enumdef_fullname(enumdesc->enumdef))); |
|
|
|
upb_enum_iter it; |
|
for (upb_enum_begin(&it, enumdesc->enumdef); |
|
!upb_enum_done(&it); |
|
upb_enum_next(&it)) { |
|
const char* name = upb_enum_iter_name(&it); |
|
int32_t value = upb_enum_iter_number(&it); |
|
if (name[0] < 'A' || name[0] > 'Z') { |
|
rb_warn("Enum value '%s' does not start with an uppercase letter " |
|
"as is required for Ruby constants.", |
|
name); |
|
} |
|
rb_define_const(mod, name, INT2NUM(value)); |
|
} |
|
|
|
rb_define_singleton_method(mod, "lookup", enum_lookup, 1); |
|
rb_define_singleton_method(mod, "resolve", enum_resolve, 1); |
|
rb_define_singleton_method(mod, "descriptor", enum_descriptor, 0); |
|
rb_ivar_set(mod, descriptor_instancevar_interned, |
|
get_def_obj(enumdesc->enumdef)); |
|
|
|
return mod; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* Google::Protobuf.deep_copy(obj) => copy_of_obj |
|
* |
|
* Performs a deep copy of a RepeatedField instance, a Map instance, or a |
|
* message object, recursively copying its members. |
|
*/ |
|
VALUE Google_Protobuf_deep_copy(VALUE self, VALUE obj) { |
|
VALUE klass = CLASS_OF(obj); |
|
if (klass == cRepeatedField) { |
|
return RepeatedField_deep_copy(obj); |
|
} else if (klass == cMap) { |
|
return Map_deep_copy(obj); |
|
} else { |
|
return Message_deep_copy(obj); |
|
} |
|
}
|
|
|