Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

651 lines
27 KiB

/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2010-2012 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* A upb_handlers is like a virtual table for a upb_msgdef. Each field of the
* message can have associated functions that will be called when we are
* parsing or visiting a stream of data. This is similar to how handlers work
* in SAX (the Simple API for XML).
*
* The handlers have no idea where the data is coming from, so a single set of
* handlers could be used with two completely different data sources (for
* example, a parser and a visitor over in-memory objects). This decoupling is
* the most important feature of upb, because it allows parsers and serializers
* to be highly reusable.
*
* This is a mixed C/C++ interface that offers a full API to both languages.
* See the top-level README for more information.
*/
#ifndef UPB_HANDLERS_H
#define UPB_HANDLERS_H
#include "upb/def.h"
#ifdef __cplusplus
struct upb_frametype;
namespace upb {
typedef upb_frametype FrameType;
class Handlers;
template <class T> class Handler;
template <class T> struct CanonicalType;
} // namespace upb
typedef upb::FrameType upb_frametype;
typedef upb::Handlers upb_handlers;
#else
struct upb_frametype;
struct upb_handlers;
struct upb_sinkframe;
typedef struct upb_frametype upb_frametype;
typedef struct upb_handlers upb_handlers;
typedef struct upb_sinkframe upb_sinkframe;
#endif
typedef struct {
void (*func)();
const void *data;
} upb_handlers_tabent;
// All the different types of handlers that can be registered.
// Only needed for the advanced functions in upb::Handlers.
typedef enum {
UPB_HANDLER_INT32,
UPB_HANDLER_INT64,
UPB_HANDLER_UINT32,
UPB_HANDLER_UINT64,
UPB_HANDLER_FLOAT,
UPB_HANDLER_DOUBLE,
UPB_HANDLER_BOOL,
UPB_HANDLER_STARTSTR,
UPB_HANDLER_STRING,
UPB_HANDLER_ENDSTR,
UPB_HANDLER_STARTSUBMSG,
UPB_HANDLER_ENDSUBMSG,
UPB_HANDLER_STARTSEQ,
UPB_HANDLER_ENDSEQ,
} upb_handlertype_t;
#define UPB_HANDLER_MAX (UPB_HANDLER_ENDSEQ+1)
#define UPB_BREAK NULL
// A convenient definition for when no closure is needed.
extern char _upb_noclosure;
#define UPB_NO_CLOSURE &_upb_noclosure
// A selector refers to a specific field handler in the Handlers object
// (for example: the STARTSUBMSG handler for field "field15").
typedef int32_t upb_selector_t;
// Message-level callbacks have static selectors.
#define UPB_STARTMSG_SELECTOR 0
#define UPB_ENDMSG_SELECTOR 1
#define UPB_STATIC_SELECTOR_COUNT 2
#ifdef __cplusplus
// A upb::Handlers object represents the set of handlers associated with a
// message in the graph of messages. You can think of it as a big virtual
// table with functions corresponding to all the events that can fire while
// parsing or visiting a message of a specific type.
//
// Any handlers that are not set behave as if they had successfully consumed
// the value. Any unset Start* handlers will propagate their closure to the
// inner frame.
//
// The easiest way to create the *Handler objects needed by the Set* methods is
// with the UpbBind() and UpbMakeHandler() macros; see below.
class upb::Handlers {
public:
typedef upb_selector_t Selector;
typedef upb_handlertype_t Type;
typedef Handler<void *(*)(void *, const void *)> StartFieldHandler;
typedef Handler<bool (*)(void *, const void *)> EndFieldHandler;
typedef Handler<bool (*)(void *, const void *)> StartMessageHandler;
typedef Handler<bool (*)(void *, const void *, Status*)> EndMessageHandler;
typedef Handler<void *(*)(void *, const void *, size_t)> StartStringHandler;
typedef Handler<size_t(*)(void *, const void *, const char *, size_t)>
StringHandler;
template <class T> struct ValueHandler {
typedef Handler<bool(*)(void *, const void *, T)> H;
};
typedef ValueHandler<upb_int32_t>::H Int32Handler;
typedef ValueHandler<upb_int64_t>::H Int64Handler;
typedef ValueHandler<upb_uint32_t>::H UInt32Handler;
typedef ValueHandler<upb_uint64_t>::H UInt64Handler;
typedef ValueHandler<float>::H FloatHandler;
typedef ValueHandler<double>::H DoubleHandler;
typedef ValueHandler<bool>::H BoolHandler;
// Any function pointer can be converted to this and converted back to its
// correct type.
typedef void GenericFunction();
typedef void HandlersCallback(void *closure, upb_handlers *h);
// Returns a new handlers object for the given frozen msgdef that will use
// the given FrameType as its top-level state (can be NULL, for now). A
// single ref on the returned object will belong to the given owner.
// Returns NULL if memory allocation failed.
static Handlers* New(const MessageDef* m,
const FrameType* ft,
const void *owner);
// Convenience function for registering a graph of handlers that mirrors the
// graph of msgdefs for some message. For "m" and all its children a new set
// of handlers will be created and the given callback will be invoked,
// allowing the client to register handlers for this message. Note that any
// subhandlers set by the callback will be overwritten. A single ref on the
// returned object will belong to the given owner.
static const Handlers* NewFrozen(const MessageDef *m,
const FrameType* ft,
const void *owner,
HandlersCallback *callback, void *closure);
// Functionality from upb::RefCounted.
bool IsFrozen() const;
void Ref(const void* owner) const;
void Unref(const void* owner) const;
void DonateRef(const void *from, const void *to) const;
void CheckRef(const void *owner) const;
// All handler registration functions return bool to indicate success or
// failure; details about failures are stored in this status object. If a
// failure does occur, it must be cleared before the Handlers are frozen,
// otherwise the freeze() operation will fail. The functions may *only* be
// used while the Handlers are mutable.
const Status* status();
void ClearError();
// Top-level frame type.
const FrameType* frame_type() const;
// Freezes the given set of handlers. You may not freeze a handler without
// also freezing any handlers they point to. In the future we may want to
// require that all fields of the submessage have had subhandlers set for
// them.
static bool Freeze(Handlers*const* handlers, int n, Status* s);
// Returns the msgdef associated with this handlers object.
const MessageDef* message_def() const;
// Sets the startmsg handler for the message, which is defined as follows:
//
// bool startmsg(MyType* closure) {
// // Called when the message begins. Returns true if processing should
// // continue.
// return true;
// }
bool SetStartMessageHandler(const StartMessageHandler& handler);
// Sets the endmsg handler for the message, which is defined as follows:
//
// bool endmsg(MyType* closure, upb_status *status) {
// // Called when processing of this message ends, whether in success or
// // failure. "status" indicates the final status of processing, and
// // can also be modified in-place to update the final status.
// }
bool SetEndMessageHandler(const EndMessageHandler& handler);
// Sets the value handler for the given field, which is defined as follows
// (this is for an int32 field; other field types will pass their native
// C/C++ type for "val"):
//
// bool OnValue(MyClosure* c, const MyHandlerData* d, int32_t val) {
// // Called when the field's value is encountered. "d" contains
// // whatever data was bound to this field when it was registered.
// // Returns true if processing should continue.
// return true;
// }
//
// handers->SetInt32Handler(f, UpbBind(OnValue, new MyHandlerData(...)));
//
// The value type must exactly match f->type().
// For example, a handler that takes an int32_t parameter may only be used for
// fields of type UPB_TYPE_INT32 and UPB_TYPE_ENUM.
//
// Returns false if the handler failed to register; in this case the cleanup
// handler (if any) will be called immediately.
bool SetInt32Handler (const FieldDef* f, const Int32Handler& h);
bool SetInt64Handler (const FieldDef* f, const Int64Handler& h);
bool SetUInt32Handler(const FieldDef* f, const UInt32Handler& h);
bool SetUInt64Handler(const FieldDef* f, const UInt64Handler& h);
bool SetFloatHandler (const FieldDef* f, const FloatHandler& h);
bool SetDoubleHandler(const FieldDef* f, const DoubleHandler& h);
bool SetBoolHandler (const FieldDef* f, const BoolHandler& h);
// Like the previous, but templated on the type on the value (ie. int32).
// This is mostly useful to call from other templates. To call this you must
// specify the template parameter explicitly, ie:
// h->SetValueHandler<T>(f, UpbBind(MyHandler<T>, MyData));
template <class T>
bool SetValueHandler(
const FieldDef *f,
const typename ValueHandler<typename CanonicalType<T>::Type>::H& handler);
// Sets handlers for a string field, which are defined as follows:
//
// MySubClosure* startstr(MyClosure* c, const MyHandlerData* d,
// size_t size_hint) {
// // Called when a string value begins. The return value indicates the
// // closure for the string. "size_hint" indicates the size of the
// // string if it is known, however if the string is length-delimited
// // and the end-of-string is not available size_hint will be zero.
// // This case is indistinguishable from the case where the size is
// // known to be zero.
// //
// // TODO(haberman): is it important to distinguish these cases?
// // If we had ssize_t as a type we could make -1 "unknown", but
// // ssize_t is POSIX (not ANSI) and therefore less portable.
// // In practice I suspect it won't be important to distinguish.
// return closure;
// }
//
// size_t str(MyClosure* closure, const MyHandlerData* d,
// const char *str, size_t len) {
// // Called for each buffer of string data; the multiple physical buffers
// // are all part of the same logical string. The return value indicates
// // how many bytes were consumed. If this number is less than "len",
// // this will also indicate that processing should be halted for now,
// // like returning false or UPB_BREAK from any other callback. If
// // number is greater than "len", the excess bytes will be skipped over
// // and not passed to the callback.
// return len;
// }
//
// bool endstr(MyClosure* c, const MyHandlerData* d) {
// // Called when a string value ends. Return value indicates whether
// // processing should continue.
// return true;
// }
bool SetStartStringHandler(const FieldDef* f, const StartStringHandler& h);
bool SetStringHandler(const FieldDef* f, const StringHandler& h);
bool SetEndStringHandler(const FieldDef* f, const EndFieldHandler& h);
// Sets the startseq handler, which is defined as follows:
//
// MySubClosure *startseq(MyClosure* c, const MyHandlerData* d) {
// // Called when a sequence (repeated field) begins. The returned
// // pointer indicates the closure for the sequence (or UPB_BREAK
// // to interrupt processing).
// return closure;
// }
//
// h->SetStartSequenceHandler(f, UpbBind(startseq, new MyHandlerData(...)));
//
// Returns "false" if "f" does not belong to this message or is not a
// repeated field.
bool SetStartSequenceHandler(const FieldDef* f, const StartFieldHandler& h);
// Sets the startsubmsg handler for the given field, which is defined as
// follows:
//
// MySubClosure* startsubmsg(MyClosure* c, const MyHandlerData* d) {
// // Called when a submessage begins. The returned pointer indicates the
// // closure for the sequence (or UPB_BREAK to interrupt processing).
// return closure;
// }
//
// h->SetStartSubMessageHandler(f, UpbBind(startsubmsg,
// new MyHandlerData(...)));
//
// Returns "false" if "f" does not belong to this message or is not a
// submessage/group field.
bool SetStartSubMessageHandler(const FieldDef* f, const StartFieldHandler& h);
// Sets the endsubmsg handler for the given field, which is defined as
// follows:
//
// bool endsubmsg(MyClosure* c, const MyHandlerData* d) {
// // Called when a submessage ends. Returns true to continue processing.
// return true;
// }
//
// Returns "false" if "f" does not belong to this message or is not a
// submessage/group field.
bool SetEndSubMessageHandler(const FieldDef *f, const EndFieldHandler &h);
// Starts the endsubseq handler for the given field, which is defined as
// follows:
//
// bool endseq(MyClosure* c, const MyHandlerData* d) {
// // Called when a sequence ends. Returns true continue processing.
// return true;
// }
//
// Returns "false" if "f" does not belong to this message or is not a
// repeated field.
bool SetEndSequenceHandler(const FieldDef* f, const EndFieldHandler& h);
// Sets or gets the object that specifies handlers for the given field, which
// must be a submessage or group. Returns NULL if no handlers are set.
bool SetSubHandlers(const FieldDef* f, const Handlers* sub);
const Handlers* GetSubHandlers(const FieldDef* f) const;
// Equivalent to GetSubHandlers, but takes the STARTSUBMSG selector for the
// field.
const Handlers* GetSubHandlers(Selector startsubmsg) const;
// A selector refers to a specific field handler in the Handlers object
// (for example: the STARTSUBMSG handler for field "field15").
// On success, returns true and stores the selector in "s".
// If the FieldDef or Type are invalid, returns false.
// The returned selector is ONLY valid for Handlers whose MessageDef
// contains this FieldDef.
static bool GetSelector(const FieldDef* f, Type type, Selector* s);
// Given a START selector of any kind, returns the corresponding END selector.
static Selector GetEndSelector(Selector start_selector);
// Returns the function pointer for this handler. It is the client's
// responsibility to cast to the correct function type before calling it.
GenericFunction* GetHandler(Selector selector);
// Returns the handler data that was registered with this handler.
const void* GetHandlerData(Selector selector);
// Could add any of the following functions as-needed, with some minor
// implementation changes:
//
// const FieldDef* GetFieldDef(Selector selector);
// static bool IsSequence(Selector selector);
private:
UPB_DISALLOW_POD_OPS(Handlers);
#else
struct upb_handlers {
#endif
upb_refcounted base;
const upb_msgdef *msg;
const upb_frametype *ft;
upb_status *status_; // Used only when mutable.
struct {
void *ptr;
void (*cleanup)(void*);
} *cleanup;
size_t cleanup_len, cleanup_size;
upb_handlers_tabent table[1]; // Dynamically-sized field handler array.
};
#ifdef __cplusplus
namespace upb {
// Convenience macros for creating a Handler object that is wrapped with a
// type-safe wrapper function that converts the "void*" parameters/returns
// of the underlying C API into nice C++ function.
//
// Sample usage:
// bool OnValue(MyClosure* c, const MyHandlerData* d, int32_t val) {
// // do stuff ...
// return true;
// }
//
// // Handler that doesn't need any data bound to it.
// bool OnValue(MyClosure* c, int32_t val) {
// // do stuff ...
// return true;
// }
//
// // Takes ownership of the MyHandlerData.
// handlers->SetInt32Handler(f1, UpbBind(OnValue, new MyHandlerData(...)));
// handlers->SetInt32Handler(f2, UpbMakeHandler(OnValue));
#ifdef UPB_CXX11
// In C++11, the "template" disambiguator can appear even outside templates,
// so all calls can safely use this pair of macros.
#define UpbMakeHandler(f) \
upb::MakeHandler(upb::MatchWrapper(f).template Wrapper<f>)
// We have to be careful to only evaluate "d" once.
#define UpbBind(f, d) \
upb::BindHandler(upb::MatchWrapper(f).template Wrapper<f>, f, (d))
#else
// Prior to C++11, the "template" disambiguator may only appear inside a
// template, so the regular macro must not use "template"
#define UpbMakeHandler(f) \
upb::MakeHandler(upb::MatchWrapper(f).Wrapper<f>)
#define UpbBind(f, d) \
upb::BindHandler(upb::MatchWrapper(f).Wrapper<f>, f, (d))
#endif // UPB_CXX11
// This macro must be used in C++98 for calls from inside a template. But we
// define this variant in all cases; code that wants to be compatible with both
// C++98 and C++11 should always use this macro when calling from a template.
#define UpbMakeHandlerT(f) \
upb::MakeHandler(upb::MatchWrapper(f).template Wrapper<f>)
#define UpbBindT(f, d) \
upb::BindHandler(upb::MatchWrapper(f).template Wrapper<f>, f, (d))
// Handler: a struct that contains the (handler, data, deleter) tuple that is
// used to register all handlers. Users can Make() these directly but it's
// more convenient to use the UpbMakeHandler/UpbBind macros above.
template <class T> class Handler {
public:
// The underlying, handler function signature that upb uses internally.
typedef T FuncPtr;
// Creates a Handler object with the given function, data, and cleanup func.
//
// This is like a constructor but we don't want to expose the actual
// constructor publicly because letting users construct them leads to hairy
// ownership issues:
//
// Int32Handler handler(MyFunc, new MyData, MyCleanup);
//
// // What should happen to ownership of MyData?
// handlers->SetInt32Handler(f, handler);
// handlers2->SetInt32Handler(f, handler);
//
// To avoid this ownership question we prevent the Handler objects from
// being constructed, copied, or assigned. They are only available as the
// return value of this Make() function, and they must be registered exactly
// once before the temporary object is destroyed. This allows the Handler
// object to be the *unique* owner of the passed-in data.
static Handler<T> Make(FuncPtr h, void* hd, void (*fr)(void*)) {
return Handler<T>(h, hd, fr);
}
~Handler() { assert(registered_); }
private:
friend class Handlers;
Handler(FuncPtr h, void *d, void (*c)(void *))
: handler_(h), data_(d), cleanup_(c), registered_(false) {}
Handler(const Handler&);
void operator=(const Handler&);
FuncPtr handler_;
void *data_;
void (*cleanup_)(void*);
mutable bool registered_;
// Noisy friend declarations; these are all of the "Bind" functions,
// two for each type of handler. They need to be friends so that
// they can call the copy constructor to return a temporary.
friend Handlers::EndMessageHandler MakeHandler(
bool (*wrapper)(void *, const void *, Status *));
template <class T1>
friend typename Handlers::ValueHandler<T1>::H MakeHandler(
bool (*wrapper)(void *, const void *, T1));
template <class C, class D, class T1, class T2>
friend typename Handlers::ValueHandler<T1>::H BindHandler(
bool (*wrapper)(void *, const void *, T1), bool (*h)(C *, const D *, T2),
D *data);
friend Handlers::StartFieldHandler MakeHandler(
void *(*wrapper)(void *, const void *));
template <class R, class C, class D>
friend Handlers::StartFieldHandler BindHandler(
void *(*wrapper)(void *, const void *), R *(*h)(C *, const D *), D *data);
friend Handlers::EndFieldHandler MakeHandler(bool (*wrapper)(void *,
const void *));
template <class C, class D>
friend Handlers::EndFieldHandler BindHandler(bool (*wrapper)(void *,
const void *),
bool (*h)(C *, const D *),
D *data);
friend Handlers::StringHandler MakeHandler(
size_t (*wrapper)(void *, const void *, const char *, size_t));
template <class C, class D>
friend Handlers::StringHandler BindHandler(
size_t (*wrapper)(void *, const void *, const char *, size_t),
size_t (*h)(C *, const D *, const char *, size_t), D *data);
friend Handlers::StartStringHandler MakeHandler(void *(*wrapper)(void *,
const void *,
size_t));
template <class R, class C, class D>
friend Handlers::StartStringHandler BindHandler(
void *(*wrapper)(void *, const void *, size_t),
R *(*h)(C *, const D *, size_t), D *data);
};
} // namespace upb
extern "C" {
#endif // __cplusplus
// Native C API.
typedef void upb_handlers_callback(void *closure, upb_handlers *h);
typedef void upb_handlerfree(void *d);
typedef void upb_func();
typedef bool upb_startmsg_handler(void *c, const void*);
typedef bool upb_endmsg_handler(void *c, const void *, upb_status *status);
typedef void* upb_startfield_handler(void *c, const void *hd);
typedef bool upb_endfield_handler(void *c, const void *hd);
typedef bool upb_int32_handler(void *c, const void *hd, int32_t val);
typedef bool upb_int64_handler(void *c, const void *hd, int64_t val);
typedef bool upb_uint32_handler(void *c, const void *hd, uint32_t val);
typedef bool upb_uint64_handler(void *c, const void *hd, uint64_t val);
typedef bool upb_float_handler(void *c, const void *hd, float val);
typedef bool upb_double_handler(void *c, const void *hd, double val);
typedef bool upb_bool_handler(void *c, const void *hd, bool val);
typedef void* upb_startstr_handler(void *c, const void *hd, size_t size_hint);
typedef size_t upb_string_handler(void *c, const void *hd, const char *buf,
size_t n);
upb_handlers *upb_handlers_new(const upb_msgdef *m,
const upb_frametype *ft,
const void *owner);
const upb_handlers *upb_handlers_newfrozen(const upb_msgdef *m,
const upb_frametype *ft,
const void *owner,
upb_handlers_callback *callback,
void *closure);
// From upb_refcounted.
bool upb_handlers_isfrozen(const upb_handlers *h);
void upb_handlers_ref(const upb_handlers *h, const void *owner);
void upb_handlers_unref(const upb_handlers *h, const void *owner);
void upb_handlers_donateref(const upb_handlers *h, const void *from,
const void *to);
void upb_handlers_checkref(const upb_handlers *h, const void *owner);
const upb_status *upb_handlers_status(upb_handlers *h);
void upb_handlers_clearerr(upb_handlers *h);
const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h);
const upb_frametype *upb_handlers_frametype(const upb_handlers *h);
bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handler *handler,
void *d, upb_handlerfree *fr);
bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handler *handler,
void *d, upb_handlerfree *fr);
bool upb_handlers_setint32(upb_handlers *h, const upb_fielddef *f,
upb_int32_handler *handler, void *d,
upb_handlerfree *fr);
bool upb_handlers_setint64(upb_handlers *h, const upb_fielddef *f,
upb_int64_handler *handler, void *d,
upb_handlerfree *fr);
bool upb_handlers_setuint32(upb_handlers *h, const upb_fielddef *f,
upb_uint32_handler *handler, void *d,
upb_handlerfree *fr);
bool upb_handlers_setuint64(upb_handlers *h, const upb_fielddef *f,
upb_uint64_handler *handler, void *d,
upb_handlerfree *fr);
bool upb_handlers_setfloat(upb_handlers *h, const upb_fielddef *f,
upb_float_handler *handler, void *d,
upb_handlerfree *fr);
bool upb_handlers_setdouble(upb_handlers *h, const upb_fielddef *f,
upb_double_handler *handler, void *d,
upb_handlerfree *fr);
bool upb_handlers_setbool(upb_handlers *h, const upb_fielddef *f,
upb_bool_handler *handler, void *d,
upb_handlerfree *fr);
bool upb_handlers_setstartstr(upb_handlers *h, const upb_fielddef *f,
upb_startstr_handler *handler, void *d,
upb_handlerfree *fr);
bool upb_handlers_setstring(upb_handlers *h, const upb_fielddef *f,
upb_string_handler *handler, void *d,
upb_handlerfree *fr);
bool upb_handlers_setendstr(upb_handlers *h, const upb_fielddef *f,
upb_endfield_handler *handler, void *d,
upb_handlerfree *fr);
bool upb_handlers_setstartseq(upb_handlers *h, const upb_fielddef *f,
upb_startfield_handler *handler, void *d,
upb_handlerfree *fr);
bool upb_handlers_setstartsubmsg(upb_handlers *h, const upb_fielddef *f,
upb_startfield_handler *handler, void *d,
upb_handlerfree *fr);
bool upb_handlers_setendsubmsg(upb_handlers *h, const upb_fielddef *f,
upb_endfield_handler *handler, void *d,
upb_handlerfree *fr);
bool upb_handlers_setendseq(upb_handlers *h, const upb_fielddef *f,
upb_endfield_handler *handler, void *d,
upb_handlerfree *fr);
bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f,
const upb_handlers *sub);
const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h,
const upb_fielddef *f);
const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h,
upb_selector_t sel);
upb_func *upb_handlers_gethandler(const upb_handlers *h, upb_selector_t s);
const void *upb_handlers_gethandlerdata(const upb_handlers *h,
upb_selector_t s);
// "Static" methods
bool upb_handlers_freeze(upb_handlers *const *handlers, int n, upb_status *s);
upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f);
bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type,
upb_selector_t *s);
UPB_INLINE upb_selector_t upb_handlers_getendselector(upb_selector_t start) {
return start + 1;
}
// Internal-only.
uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f);
uint32_t upb_handlers_selectorcount(const upb_fielddef *f);
#ifdef __cplusplus
} // extern "C"
#endif
#include "upb/handlers-inl.h"
#endif // UPB_HANDLERS_H