Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

453 lines
16 KiB

/*
* pbstream - a stream-oriented implementation of protocol buffers.
*
* Copyright (c) 2008 Joshua Haberman. See LICENSE for details.
*/
#include <limits.h>
#include <string.h>
#include "pbstream.h"
/* Branch prediction hints for GCC. */
#ifdef __GNUC__
#define likely(x) __builtin_expect((x),1)
#define unlikely(x) __builtin_expect((x),0)
#else
#define likely(x)
#define unlikely(x)
#endif
/* An array, indexed by pbstream_type, that indicates what wire type is
* expected for the given pbstream type. */
static enum pbstream_wire_type expected_wire_type[] = {
PBSTREAM_WIRE_TYPE_64BIT, // PBSTREAM_TYPE_DOUBLE,
PBSTREAM_WIRE_TYPE_32BIT, // PBSTREAM_TYPE_FLOAT,
PBSTREAM_WIRE_TYPE_VARINT, // PBSTREAM_TYPE_INT32,
PBSTREAM_WIRE_TYPE_VARINT, // PBSTREAM_TYPE_INT64,
PBSTREAM_WIRE_TYPE_VARINT, // PBSTREAM_TYPE_UINT32,
PBSTREAM_WIRE_TYPE_VARINT, // PBSTREAM_TYPE_UINT64,
PBSTREAM_WIRE_TYPE_VARINT, // PBSTREAM_TYPE_SINT32,
PBSTREAM_WIRE_TYPE_VARINT, // PBSTREAM_TYPE_SINT64,
PBSTREAM_WIRE_TYPE_32BIT, // PBSTREAM_TYPE_FIXED32,
PBSTREAM_WIRE_TYPE_64BIT, // PBSTREAM_TYPE_FIXED64,
PBSTREAM_WIRE_TYPE_32BIT, // PBSTREAM_TYPE_SFIXED32,
PBSTREAM_WIRE_TYPE_64BIT, // PBSTREAM_TYPE_SFIXED64,
PBSTREAM_WIRE_TYPE_VARINT, // PBSTREAM_TYPE_BOOL,
PBSTREAM_WIRE_TYPE_STRING, // PBSTREAM_TYPE_STRING,
PBSTREAM_WIRE_TYPE_STRING, // PBSTREAM_TYPE_BYTES,
PBSTREAM_WIRE_TYPE_VARINT, // PBSTREAM_TYPE_ENUM,
PBSTREAM_WIRE_TYPE_STRING, // PBSTREAM_TYPE_MESSAGE
};
/* Reads a varint starting at buf (but not past end), storing the result
* in out_value. Returns whether the operation was successful. */
enum pbstream_status get_varint(char **buf, char *end, uint64_t *out_value)
{
*out_value = 0;
int bitpos = 0;
char *b = *buf;
/* Because we don't check for buffer overrun inside the loop, we require
* that callers use a buffer that is overallocated by at least 9 bytes
* (the maximum we can overrun before the bitpos check catches the problem). */
for(; *b & 0x80 && bitpos < 64; bitpos += 7, b++)
*out_value |= (*b & 0x7F) << bitpos;
if(unlikely(bitpos >= 64)) {
return PBSTREAM_ERROR_UNTERMINATED_VARINT;
}
if(unlikely(b > end)) {
return PBSTREAM_STATUS_INCOMPLETE;
}
*out_value |= (*b & 0x7F) << bitpos;
*buf = b;
return PBSTREAM_STATUS_OK;
}
/* TODO: the little-endian versions of these functions don't respect alignment.
* While it's hard to believe that this could be less efficient than the
* alternative (the big endian implementation), this deserves some tests and
* measurements to be sure. */
enum pbstream_status get_32_le(char **buf, char *end, uint32_t *out_value)
{
char *b = *buf;
char *int32_end = b+4;
if(unlikely(int32_end > end))
return PBSTREAM_STATUS_INCOMPLETE;
#if __BYTE_ORDER == __LITTLE_ENDIAN
*out_value = *(uint32_t*)b;
#else
*out_value = b[0] | (b[1] << 8) | (b[2] << 16) | (b[3] << 24);
#endif
*buf = int32_end;
return PBSTREAM_STATUS_OK;
}
bool get_64_le(char **buf, char *end, uint64_t *out_value)
{
char *b = *buf;
char *int64_end = b+8;
if(unlikely(int64_end > end))
return PBSTREAM_STATUS_INCOMPLETE;
#if __BYTE_ORDER == __LITTLE_ENDIAN
*out_value = *(uint64_t*)buf;
#else
*out_value = (b[0]) | (b[1] << 8 ) | (b[2] << 16) | (b[3] << 24) |
(b[4] << 32) | (b[5] << 40) | (b[6] << 48) | (b[7] << 56);
#endif
*buf = int64_end;
return PBSTREAM_STATUS_OK;
}
int32_t zigzag_decode_32(uint64_t n)
{
return (n >> 1) ^ -(int32_t)(n & 1);
}
int64_t zigzag_decode_64(uint64_t n)
{
return (n >> 1) ^ (int64_t)(n & 1);
}
/* Parses the next field-number/wire-value pair from the stream of bytes
* starting at *buf, without reading past end. Stores the parsed and wire
* value in *field_number and *wire_value, respectively.
*
* Returns a status indicating whether the operation was successful. If the
* return status is STATUS_INCOMPLETE, returns the number of additional bytes
* requred in *need_more_bytes. Updates *buf to point past the end of the
* parsed data if the operation was successful.
*/
enum pbstream_status pbstream_parse_wire_value(char **buf, char *end,
pbstream_field_number_t *field_number,
struct pbstream_wire_value *wire_value,
int *need_more_bytes)
{
char *b = *buf; /* Our local buf pointer -- only update buf if we succeed. */
#define DECODE(dest, func) \
do { \
enum pbstream_status status = func(&b, end, &dest); \
if(unlikely(status != PBSTREAM_STATUS_OK)) { \
*need_more_bytes = 0; /* This only arises below in this function. */ \
return status; \
} \
} while (0)
uint64_t key;
DECODE(key, get_varint);
*field_number = key >> 3;
wire_value->type = key & 0x07;
switch(wire_value->type)
{
case PBSTREAM_WIRE_TYPE_VARINT:
DECODE(wire_value->v.varint, get_varint);
break;
case PBSTREAM_WIRE_TYPE_64BIT:
DECODE(wire_value->v._64bit, get_64_le);
break;
case PBSTREAM_WIRE_TYPE_STRING:
{
uint64_t string_len;
DECODE(string_len, get_varint);
if (string_len > INT_MAX) {
/* TODO: notice this and fail. */
}
wire_value->v.string.len = (int)string_len;
if(b + wire_value->v.string.len > end) {
*need_more_bytes = b + wire_value->v.string.len - end;
return PBSTREAM_STATUS_INCOMPLETE;
}
wire_value->v.string.data = b;
b += wire_value->v.string.len;
break;
}
case PBSTREAM_WIRE_TYPE_START_GROUP:
case PBSTREAM_WIRE_TYPE_END_GROUP:
/* TODO (though these are deprecated, so not high priority). */
break;
case PBSTREAM_WIRE_TYPE_32BIT:
DECODE(wire_value->v._32bit, get_32_le);
break;
}
*buf = b;
return true;
}
/* Translates from a wire value to a .proto value. The caller should have
* already checked that the wire_value is of the correct type. The pbstream
* type must not be PBSTREAM_TYPE_MESSAGE. This operation always succeeds. */
void pbstream_translate_field(struct pbstream_wire_value *wire_value,
enum pbstream_type type,
struct pbstream_value *out_value)
{
out_value->type = type;
switch(type) {
case PBSTREAM_TYPE_DOUBLE:
memcpy(&out_value->v._double, &wire_value->v._64bit, sizeof(double));
break;
case PBSTREAM_TYPE_FLOAT:
memcpy(&out_value->v._float, &wire_value->v._32bit, sizeof(float));
break;
case PBSTREAM_TYPE_INT32:
out_value->v.int32 = (int32_t)wire_value->v.varint;
break;
case PBSTREAM_TYPE_INT64:
out_value->v.int64 = (int64_t)zigzag_decode_64(wire_value->v.varint);
break;
case PBSTREAM_TYPE_UINT32:
out_value->v.uint32 = (uint32_t)wire_value->v.varint;
break;
case PBSTREAM_TYPE_UINT64:
out_value->v.uint64 = (uint64_t)wire_value->v.varint;
break;
case PBSTREAM_TYPE_SINT32:
out_value->v.int32 = zigzag_decode_32(wire_value->v.varint);
break;
case PBSTREAM_TYPE_SINT64:
out_value->v.int64 = zigzag_decode_64(wire_value->v.varint);
break;
case PBSTREAM_TYPE_FIXED32:
out_value->v.int32 = wire_value->v._32bit;
break;
case PBSTREAM_TYPE_FIXED64:
out_value->v.int64 = wire_value->v._64bit;
break;
case PBSTREAM_TYPE_SFIXED32:
out_value->v.int32 = (int32_t)wire_value->v._32bit;
break;
case PBSTREAM_TYPE_SFIXED64:
out_value->v.int64 = (int64_t)wire_value->v._64bit;
break;
case PBSTREAM_TYPE_BOOL:
out_value->v._bool = (bool)wire_value->v.varint;
break;
case PBSTREAM_TYPE_STRING:
out_value->v.string.data = wire_value->v.string.data;
out_value->v.string.len = wire_value->v.string.len;
/* TODO: validate UTF-8? */
break;
case PBSTREAM_TYPE_BYTES:
out_value->v.bytes.data = wire_value->v.string.data;
out_value->v.bytes.len = wire_value->v.string.len;
break;
case PBSTREAM_TYPE_ENUM:
out_value->v._enum = (bool)wire_value->v.varint;
break;
case PBSTREAM_TYPE_MESSAGE:
/* Should never happen. */
break;
}
}
/* Given a wire value that was just parsed and a matching field descriptor,
* processes the given value and performs the appropriate actions. These
* actions include:
* - checking that the wire type is as expected
* - converting the wire type to a .proto type
* - entering a sub-message, if that is in fact what this field implies.
*
* This function also calls user callbacks pertaining to any of the above at
* the appropriate times. */
void process_value(struct pbstream_parse_state *s,
struct pbstream_wire_value *wire_value,
struct pbstream_field_descriptor *field_descriptor)
{
/* Check that the wire type is appropriate for this .proto type. */
if(unlikely(wire_value->type != expected_wire_type[field_descriptor->type])) {
/* Report the type mismatch error. */
if(s->callbacks.error_callback) {
/* TODO: a nice formatted message. */
s->callbacks.error_callback(PBSTREAM_ERROR_MISMATCHED_TYPE, NULL,
s->offset, false);
}
/* Report the wire value we parsed as an unknown value. */
if(s->callbacks.unknown_value_callback) {
s->callbacks.unknown_value_callback(field_descriptor->field_number, wire_value,
s->user_data);
}
return;
}
if(field_descriptor->type == PBSTREAM_TYPE_MESSAGE) {
/* We're entering a sub-message. */
if(s->callbacks.begin_message_callback) {
s->callbacks.begin_message_callback(field_descriptor->d.message, s->user_data);
}
/* Push and initialize a new stack frame. */
RESIZE_DYNARRAY(s->stack, s->stack_len+1);
struct pbstream_parse_stack_frame *frame = DYNARRAY_GET_TOP(s->stack);
frame->message_descriptor = field_descriptor->d.message;
frame->end_offset = 0; /* TODO: set this correctly. */
int num_seen_fields = frame->message_descriptor->num_seen_fields;
INIT_DYNARRAY(frame->seen_fields, num_seen_fields, num_seen_fields);
}
else {
/* This is a scalar value. */
struct pbstream_value value;
pbstream_translate_field(wire_value, field_descriptor->type, &value);
if(s->callbacks.value_callback) {
s->callbacks.value_callback(field_descriptor, value, s->user_data);
}
}
}
struct pbstream_field_descriptor *find_field_descriptor_by_number(
struct pbstream_message_descriptor* message_descriptor,
pbstream_field_number_t field_number)
{
/* Currently a linear search -- could be optimized to do a binary search,
* hash table lookup, or any other number of clever things you might imagine. */
for (int i = 0; i < message_descriptor->fields_len; i++)
if (message_descriptor->fields[i].field_number == field_number)
return &message_descriptor->fields[i];
return NULL;
}
/* Parses and processes the next value from *buf (but not past end), returning
* a status indicating whether the operation succeeded, and calling appropriate
* callbacks. If more data is needed to parse the last partial field, returns
* how many more bytes are needed in need_more_bytes. Updates *buf to point
* past the parsed value if the operation succeeds. */
enum pbstream_status pbstream_parse_field(struct pbstream_parse_state *s,
char **buf, char *end,
int *need_more_bytes)
{
struct pbstream_parse_stack_frame *frame = DYNARRAY_GET_TOP(s->stack);
struct pbstream_message_descriptor *message_descriptor = frame->message_descriptor;
pbstream_field_number_t field_number;
struct pbstream_wire_value wire_value;
enum pbstream_status status;
/* Decode the raw wire data. */
status = pbstream_parse_wire_value(buf, end, &field_number, &wire_value,
need_more_bytes);
if(unlikely(status != PBSTREAM_STATUS_OK)) {
if(status == PBSTREAM_ERROR_UNTERMINATED_VARINT && s->callbacks.error_callback) {
/* TODO: a nice formatted message. */
s->callbacks.error_callback(PBSTREAM_ERROR_UNTERMINATED_VARINT, NULL,
s->offset, true);
}
s->fatal_error = true;
return status;
}
/* Find the corresponding field definition from the .proto file. */
struct pbstream_field_descriptor *field_descriptor;
field_descriptor = find_field_descriptor_by_number(message_descriptor, field_number);
if(likely(field_descriptor != NULL)) {
if(field_descriptor->seen_field_num > 0) {
/* Check that this field has not been seen before (unless it's a repeated field) */
if(frame->seen_fields[field_descriptor->seen_field_num] &&
field_descriptor->cardinality != PBSTREAM_CARDINALITY_REPEATED) {
if(s->callbacks.error_callback) {
s->callbacks.error_callback(PBSTREAM_ERROR_DUPLICATE_FIELD, NULL,
s->offset, false);
}
return PBSTREAM_STATUS_ERROR;
}
/* Mark the field as seen. */
frame->seen_fields[field_descriptor->seen_field_num] = true;
}
process_value(s, &wire_value, field_descriptor);
} else {
/* This field was not defined in the .proto file. */
if(s->callbacks.unknown_value_callback) {
s->callbacks.unknown_value_callback(field_number, &wire_value, s->user_data);
}
}
return PBSTREAM_STATUS_OK;
}
/* Process actions associated with the end of a submessage. This includes:
* - emittin default values for all optional elements (either explicit
* defaults or implicit defaults).
* - emitting errors for any required fields that were not seen.
* - calling the user's callback.
* - popping the stack frame. */
void process_submessage_end(struct pbstream_parse_state *s)
{
/* TODO: emit default values for optional elements. either explicit defaults
* (specified in the .proto file) or implicit defaults (which are specified
* in the pbstream definition, by type. */
/* TODO: emit errors for required fields that were not seen. */
/* Process the end of message by calling the user's callback and popping
* our stack frame. */
if(s->callbacks.end_message_callback) {
s->callbacks.end_message_callback(s->user_data);
}
/* Pop the stack frame associated with this submessage. */
RESIZE_DYNARRAY(s->stack, s->stack_len-1);
}
/* The user-exposed parsing function -- see the header file for documentation. */
enum pbstream_status pbstream_parse(struct pbstream_parse_state *s,
char *buf_start, int buf_len,
int *consumed_bytes, int *need_more_bytes)
{
char *buf = buf_start;
char *end = buf_start + buf_len;
int buf_start_offset = s->offset;
enum pbstream_status status = PBSTREAM_STATUS_OK;
while(buf < end) {
/* Check for a submessage ending. */
while(s->offset >= DYNARRAY_GET_TOP(s->stack)->end_offset) {
/* A submessage should end exactly at a field boundary. If we find that
* the submessage length indicated an end in the middle of a field, that
* is an error that indicates data corruption, and we refuse to proceed. */
if(unlikely(s->offset != DYNARRAY_GET_TOP(s->stack)->end_offset)) {
if(s->callbacks.error_callback) {
s->callbacks.error_callback(PBSTREAM_ERROR_BAD_SUBMESSAGE_END, NULL,
s->offset, true);
}
s->fatal_error = true;
break;
}
process_submessage_end(s);
}
status = pbstream_parse_field(s, &buf, end, need_more_bytes);
if(status != PBSTREAM_STATUS_OK)
break;
s->offset = buf_start_offset + (buf - buf_start);
}
return status;
}