Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
11990 lines
395 KiB
11990 lines
395 KiB
// Amalgamated source file |
|
#include "upb.h" |
|
|
|
|
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
typedef struct { |
|
size_t len; |
|
char str[1]; /* Null-terminated string data follows. */ |
|
} str_t; |
|
|
|
static str_t *newstr(const char *data, size_t len) { |
|
str_t *ret = malloc(sizeof(*ret) + len); |
|
if (!ret) return NULL; |
|
ret->len = len; |
|
memcpy(ret->str, data, len); |
|
ret->str[len] = '\0'; |
|
return ret; |
|
} |
|
|
|
static void freestr(str_t *s) { free(s); } |
|
|
|
/* isalpha() etc. from <ctype.h> are locale-dependent, which we don't want. */ |
|
static bool upb_isbetween(char c, char low, char high) { |
|
return c >= low && c <= high; |
|
} |
|
|
|
static bool upb_isletter(char c) { |
|
return upb_isbetween(c, 'A', 'Z') || upb_isbetween(c, 'a', 'z') || c == '_'; |
|
} |
|
|
|
static bool upb_isalphanum(char c) { |
|
return upb_isletter(c) || upb_isbetween(c, '0', '9'); |
|
} |
|
|
|
static bool upb_isident(const char *str, size_t len, bool full, upb_status *s) { |
|
bool start = true; |
|
size_t i; |
|
for (i = 0; i < len; i++) { |
|
char c = str[i]; |
|
if (c == '.') { |
|
if (start || !full) { |
|
upb_status_seterrf(s, "invalid name: unexpected '.' (%s)", str); |
|
return false; |
|
} |
|
start = true; |
|
} else if (start) { |
|
if (!upb_isletter(c)) { |
|
upb_status_seterrf( |
|
s, "invalid name: path components must start with a letter (%s)", |
|
str); |
|
return false; |
|
} |
|
start = false; |
|
} else { |
|
if (!upb_isalphanum(c)) { |
|
upb_status_seterrf(s, "invalid name: non-alphanumeric character (%s)", |
|
str); |
|
return false; |
|
} |
|
} |
|
} |
|
return !start; |
|
} |
|
|
|
|
|
/* upb_def ********************************************************************/ |
|
|
|
upb_deftype_t upb_def_type(const upb_def *d) { return d->type; } |
|
|
|
const char *upb_def_fullname(const upb_def *d) { return d->fullname; } |
|
|
|
bool upb_def_setfullname(upb_def *def, const char *fullname, upb_status *s) { |
|
assert(!upb_def_isfrozen(def)); |
|
if (!upb_isident(fullname, strlen(fullname), true, s)) return false; |
|
free((void*)def->fullname); |
|
def->fullname = upb_strdup(fullname); |
|
return true; |
|
} |
|
|
|
upb_def *upb_def_dup(const upb_def *def, const void *o) { |
|
switch (def->type) { |
|
case UPB_DEF_MSG: |
|
return upb_msgdef_upcast_mutable( |
|
upb_msgdef_dup(upb_downcast_msgdef(def), o)); |
|
case UPB_DEF_FIELD: |
|
return upb_fielddef_upcast_mutable( |
|
upb_fielddef_dup(upb_downcast_fielddef(def), o)); |
|
case UPB_DEF_ENUM: |
|
return upb_enumdef_upcast_mutable( |
|
upb_enumdef_dup(upb_downcast_enumdef(def), o)); |
|
default: assert(false); return NULL; |
|
} |
|
} |
|
|
|
static bool upb_def_init(upb_def *def, upb_deftype_t type, |
|
const struct upb_refcounted_vtbl *vtbl, |
|
const void *owner) { |
|
if (!upb_refcounted_init(upb_def_upcast_mutable(def), vtbl, owner)) return false; |
|
def->type = type; |
|
def->fullname = NULL; |
|
def->came_from_user = false; |
|
return true; |
|
} |
|
|
|
static void upb_def_uninit(upb_def *def) { |
|
free((void*)def->fullname); |
|
} |
|
|
|
static const char *msgdef_name(const upb_msgdef *m) { |
|
const char *name = upb_def_fullname(upb_msgdef_upcast(m)); |
|
return name ? name : "(anonymous)"; |
|
} |
|
|
|
static bool upb_validate_field(upb_fielddef *f, upb_status *s) { |
|
if (upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == 0) { |
|
upb_status_seterrmsg(s, "fielddef must have name and number set"); |
|
return false; |
|
} |
|
|
|
if (!f->type_is_set_) { |
|
upb_status_seterrmsg(s, "fielddef type was not initialized"); |
|
return false; |
|
} |
|
|
|
if (upb_fielddef_lazy(f) && |
|
upb_fielddef_descriptortype(f) != UPB_DESCRIPTOR_TYPE_MESSAGE) { |
|
upb_status_seterrmsg(s, |
|
"only length-delimited submessage fields may be lazy"); |
|
return false; |
|
} |
|
|
|
if (upb_fielddef_hassubdef(f)) { |
|
const upb_def *subdef; |
|
|
|
if (f->subdef_is_symbolic) { |
|
upb_status_seterrf(s, "field '%s.%s' has not been resolved", |
|
msgdef_name(f->msg.def), upb_fielddef_name(f)); |
|
return false; |
|
} |
|
|
|
subdef = upb_fielddef_subdef(f); |
|
if (subdef == NULL) { |
|
upb_status_seterrf(s, "field %s.%s is missing required subdef", |
|
msgdef_name(f->msg.def), upb_fielddef_name(f)); |
|
return false; |
|
} |
|
|
|
if (!upb_def_isfrozen(subdef) && !subdef->came_from_user) { |
|
upb_status_seterrf(s, |
|
"subdef of field %s.%s is not frozen or being frozen", |
|
msgdef_name(f->msg.def), upb_fielddef_name(f)); |
|
return false; |
|
} |
|
} |
|
|
|
if (upb_fielddef_type(f) == UPB_TYPE_ENUM) { |
|
bool has_default_name = upb_fielddef_enumhasdefaultstr(f); |
|
bool has_default_number = upb_fielddef_enumhasdefaultint32(f); |
|
|
|
/* Previously verified by upb_validate_enumdef(). */ |
|
assert(upb_enumdef_numvals(upb_fielddef_enumsubdef(f)) > 0); |
|
|
|
/* We've already validated that we have an associated enumdef and that it |
|
* has at least one member, so at least one of these should be true. |
|
* Because if the user didn't set anything, we'll pick up the enum's |
|
* default, but if the user *did* set something we should at least pick up |
|
* the one they set (int32 or string). */ |
|
assert(has_default_name || has_default_number); |
|
|
|
if (!has_default_name) { |
|
upb_status_seterrf(s, |
|
"enum default for field %s.%s (%d) is not in the enum", |
|
msgdef_name(f->msg.def), upb_fielddef_name(f), |
|
upb_fielddef_defaultint32(f)); |
|
return false; |
|
} |
|
|
|
if (!has_default_number) { |
|
upb_status_seterrf(s, |
|
"enum default for field %s.%s (%s) is not in the enum", |
|
msgdef_name(f->msg.def), upb_fielddef_name(f), |
|
upb_fielddef_defaultstr(f, NULL)); |
|
return false; |
|
} |
|
|
|
/* Lift the effective numeric default into the field's default slot, in case |
|
* we were only getting it "by reference" from the enumdef. */ |
|
upb_fielddef_setdefaultint32(f, upb_fielddef_defaultint32(f)); |
|
} |
|
|
|
/* Ensure that MapEntry submessages only appear as repeated fields, not |
|
* optional/required (singular) fields. */ |
|
if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE && |
|
upb_fielddef_msgsubdef(f) != NULL) { |
|
const upb_msgdef *subdef = upb_fielddef_msgsubdef(f); |
|
if (upb_msgdef_mapentry(subdef) && !upb_fielddef_isseq(f)) { |
|
upb_status_seterrf(s, |
|
"Field %s refers to mapentry message but is not " |
|
"a repeated field", |
|
upb_fielddef_name(f) ? upb_fielddef_name(f) : |
|
"(unnamed)"); |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static bool upb_validate_enumdef(const upb_enumdef *e, upb_status *s) { |
|
if (upb_enumdef_numvals(e) == 0) { |
|
upb_status_seterrf(s, "enum %s has no members (must have at least one)", |
|
upb_enumdef_fullname(e)); |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/* All submessage fields are lower than all other fields. |
|
* Secondly, fields are increasing in order. */ |
|
uint32_t field_rank(const upb_fielddef *f) { |
|
uint32_t ret = upb_fielddef_number(f); |
|
const uint32_t high_bit = 1 << 30; |
|
assert(ret < high_bit); |
|
if (!upb_fielddef_issubmsg(f)) |
|
ret |= high_bit; |
|
return ret; |
|
} |
|
|
|
int cmp_fields(const void *p1, const void *p2) { |
|
const upb_fielddef *f1 = *(upb_fielddef*const*)p1; |
|
const upb_fielddef *f2 = *(upb_fielddef*const*)p2; |
|
return field_rank(f1) - field_rank(f2); |
|
} |
|
|
|
static bool assign_msg_indices(upb_msgdef *m, upb_status *s) { |
|
/* Sort fields. upb internally relies on UPB_TYPE_MESSAGE fields having the |
|
* lowest indexes, but we do not publicly guarantee this. */ |
|
upb_msg_field_iter j; |
|
int i; |
|
uint32_t selector; |
|
int n = upb_msgdef_numfields(m); |
|
upb_fielddef **fields = malloc(n * sizeof(*fields)); |
|
if (!fields) return false; |
|
|
|
m->submsg_field_count = 0; |
|
for(i = 0, upb_msg_field_begin(&j, m); |
|
!upb_msg_field_done(&j); |
|
upb_msg_field_next(&j), i++) { |
|
upb_fielddef *f = upb_msg_iter_field(&j); |
|
assert(f->msg.def == m); |
|
if (!upb_validate_field(f, s)) { |
|
free(fields); |
|
return false; |
|
} |
|
if (upb_fielddef_issubmsg(f)) { |
|
m->submsg_field_count++; |
|
} |
|
fields[i] = f; |
|
} |
|
|
|
qsort(fields, n, sizeof(*fields), cmp_fields); |
|
|
|
selector = UPB_STATIC_SELECTOR_COUNT + m->submsg_field_count; |
|
for (i = 0; i < n; i++) { |
|
upb_fielddef *f = fields[i]; |
|
f->index_ = i; |
|
f->selector_base = selector + upb_handlers_selectorbaseoffset(f); |
|
selector += upb_handlers_selectorcount(f); |
|
} |
|
m->selector_count = selector; |
|
|
|
#ifndef NDEBUG |
|
{ |
|
/* Verify that all selectors for the message are distinct. */ |
|
#define TRY(type) \ |
|
if (upb_handlers_getselector(f, type, &sel)) upb_inttable_insert(&t, sel, v); |
|
|
|
upb_inttable t; |
|
upb_value v; |
|
upb_selector_t sel; |
|
|
|
upb_inttable_init(&t, UPB_CTYPE_BOOL); |
|
v = upb_value_bool(true); |
|
upb_inttable_insert(&t, UPB_STARTMSG_SELECTOR, v); |
|
upb_inttable_insert(&t, UPB_ENDMSG_SELECTOR, v); |
|
for(upb_msg_field_begin(&j, m); |
|
!upb_msg_field_done(&j); |
|
upb_msg_field_next(&j)) { |
|
upb_fielddef *f = upb_msg_iter_field(&j); |
|
/* These calls will assert-fail in upb_table if the value already |
|
* exists. */ |
|
TRY(UPB_HANDLER_INT32); |
|
TRY(UPB_HANDLER_INT64) |
|
TRY(UPB_HANDLER_UINT32) |
|
TRY(UPB_HANDLER_UINT64) |
|
TRY(UPB_HANDLER_FLOAT) |
|
TRY(UPB_HANDLER_DOUBLE) |
|
TRY(UPB_HANDLER_BOOL) |
|
TRY(UPB_HANDLER_STARTSTR) |
|
TRY(UPB_HANDLER_STRING) |
|
TRY(UPB_HANDLER_ENDSTR) |
|
TRY(UPB_HANDLER_STARTSUBMSG) |
|
TRY(UPB_HANDLER_ENDSUBMSG) |
|
TRY(UPB_HANDLER_STARTSEQ) |
|
TRY(UPB_HANDLER_ENDSEQ) |
|
} |
|
upb_inttable_uninit(&t); |
|
} |
|
#undef TRY |
|
#endif |
|
|
|
free(fields); |
|
return true; |
|
} |
|
|
|
bool upb_def_freeze(upb_def *const* defs, int n, upb_status *s) { |
|
int i; |
|
int maxdepth; |
|
bool ret; |
|
upb_status_clear(s); |
|
|
|
/* First perform validation, in two passes so we can check that we have a |
|
* transitive closure without needing to search. */ |
|
for (i = 0; i < n; i++) { |
|
upb_def *def = defs[i]; |
|
if (upb_def_isfrozen(def)) { |
|
/* Could relax this requirement if it's annoying. */ |
|
upb_status_seterrmsg(s, "def is already frozen"); |
|
goto err; |
|
} else if (def->type == UPB_DEF_FIELD) { |
|
upb_status_seterrmsg(s, "standalone fielddefs can not be frozen"); |
|
goto err; |
|
} else if (def->type == UPB_DEF_ENUM) { |
|
if (!upb_validate_enumdef(upb_dyncast_enumdef(def), s)) { |
|
goto err; |
|
} |
|
} else { |
|
/* Set now to detect transitive closure in the second pass. */ |
|
def->came_from_user = true; |
|
} |
|
} |
|
|
|
/* Second pass of validation. Also assign selector bases and indexes, and |
|
* compact tables. */ |
|
for (i = 0; i < n; i++) { |
|
upb_msgdef *m = upb_dyncast_msgdef_mutable(defs[i]); |
|
upb_enumdef *e = upb_dyncast_enumdef_mutable(defs[i]); |
|
if (m) { |
|
upb_inttable_compact(&m->itof); |
|
if (!assign_msg_indices(m, s)) { |
|
goto err; |
|
} |
|
} else if (e) { |
|
upb_inttable_compact(&e->iton); |
|
} |
|
} |
|
|
|
/* Def graph contains FieldDefs between each MessageDef, so double the |
|
* limit. */ |
|
maxdepth = UPB_MAX_MESSAGE_DEPTH * 2; |
|
|
|
/* Validation all passed; freeze the defs. */ |
|
ret = upb_refcounted_freeze((upb_refcounted * const *)defs, n, s, maxdepth); |
|
assert(!(s && ret != upb_ok(s))); |
|
return ret; |
|
|
|
err: |
|
for (i = 0; i < n; i++) { |
|
defs[i]->came_from_user = false; |
|
} |
|
assert(!(s && upb_ok(s))); |
|
return false; |
|
} |
|
|
|
|
|
/* upb_enumdef ****************************************************************/ |
|
|
|
static void upb_enumdef_free(upb_refcounted *r) { |
|
upb_enumdef *e = (upb_enumdef*)r; |
|
upb_inttable_iter i; |
|
upb_inttable_begin(&i, &e->iton); |
|
for( ; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
/* To clean up the upb_strdup() from upb_enumdef_addval(). */ |
|
free(upb_value_getcstr(upb_inttable_iter_value(&i))); |
|
} |
|
upb_strtable_uninit(&e->ntoi); |
|
upb_inttable_uninit(&e->iton); |
|
upb_def_uninit(upb_enumdef_upcast_mutable(e)); |
|
free(e); |
|
} |
|
|
|
upb_enumdef *upb_enumdef_new(const void *owner) { |
|
static const struct upb_refcounted_vtbl vtbl = {NULL, &upb_enumdef_free}; |
|
upb_enumdef *e = malloc(sizeof(*e)); |
|
if (!e) return NULL; |
|
if (!upb_def_init(upb_enumdef_upcast_mutable(e), UPB_DEF_ENUM, &vtbl, owner)) |
|
goto err2; |
|
if (!upb_strtable_init(&e->ntoi, UPB_CTYPE_INT32)) goto err2; |
|
if (!upb_inttable_init(&e->iton, UPB_CTYPE_CSTR)) goto err1; |
|
return e; |
|
|
|
err1: |
|
upb_strtable_uninit(&e->ntoi); |
|
err2: |
|
free(e); |
|
return NULL; |
|
} |
|
|
|
upb_enumdef *upb_enumdef_dup(const upb_enumdef *e, const void *owner) { |
|
upb_enum_iter i; |
|
upb_enumdef *new_e = upb_enumdef_new(owner); |
|
if (!new_e) return NULL; |
|
for(upb_enum_begin(&i, e); !upb_enum_done(&i); upb_enum_next(&i)) { |
|
bool success = upb_enumdef_addval( |
|
new_e, upb_enum_iter_name(&i),upb_enum_iter_number(&i), NULL); |
|
if (!success) { |
|
upb_enumdef_unref(new_e, owner); |
|
return NULL; |
|
} |
|
} |
|
return new_e; |
|
} |
|
|
|
bool upb_enumdef_freeze(upb_enumdef *e, upb_status *status) { |
|
upb_def *d = upb_enumdef_upcast_mutable(e); |
|
return upb_def_freeze(&d, 1, status); |
|
} |
|
|
|
const char *upb_enumdef_fullname(const upb_enumdef *e) { |
|
return upb_def_fullname(upb_enumdef_upcast(e)); |
|
} |
|
|
|
bool upb_enumdef_setfullname(upb_enumdef *e, const char *fullname, |
|
upb_status *s) { |
|
return upb_def_setfullname(upb_enumdef_upcast_mutable(e), fullname, s); |
|
} |
|
|
|
bool upb_enumdef_addval(upb_enumdef *e, const char *name, int32_t num, |
|
upb_status *status) { |
|
if (!upb_isident(name, strlen(name), false, status)) { |
|
return false; |
|
} |
|
if (upb_enumdef_ntoiz(e, name, NULL)) { |
|
upb_status_seterrf(status, "name '%s' is already defined", name); |
|
return false; |
|
} |
|
if (!upb_strtable_insert(&e->ntoi, name, upb_value_int32(num))) { |
|
upb_status_seterrmsg(status, "out of memory"); |
|
return false; |
|
} |
|
if (!upb_inttable_lookup(&e->iton, num, NULL) && |
|
!upb_inttable_insert(&e->iton, num, upb_value_cstr(upb_strdup(name)))) { |
|
upb_status_seterrmsg(status, "out of memory"); |
|
upb_strtable_remove(&e->ntoi, name, NULL); |
|
return false; |
|
} |
|
if (upb_enumdef_numvals(e) == 1) { |
|
bool ok = upb_enumdef_setdefault(e, num, NULL); |
|
UPB_ASSERT_VAR(ok, ok); |
|
} |
|
return true; |
|
} |
|
|
|
int32_t upb_enumdef_default(const upb_enumdef *e) { |
|
assert(upb_enumdef_iton(e, e->defaultval)); |
|
return e->defaultval; |
|
} |
|
|
|
bool upb_enumdef_setdefault(upb_enumdef *e, int32_t val, upb_status *s) { |
|
assert(!upb_enumdef_isfrozen(e)); |
|
if (!upb_enumdef_iton(e, val)) { |
|
upb_status_seterrf(s, "number '%d' is not in the enum.", val); |
|
return false; |
|
} |
|
e->defaultval = val; |
|
return true; |
|
} |
|
|
|
int upb_enumdef_numvals(const upb_enumdef *e) { |
|
return upb_strtable_count(&e->ntoi); |
|
} |
|
|
|
void upb_enum_begin(upb_enum_iter *i, const upb_enumdef *e) { |
|
/* We iterate over the ntoi table, to account for duplicate numbers. */ |
|
upb_strtable_begin(i, &e->ntoi); |
|
} |
|
|
|
void upb_enum_next(upb_enum_iter *iter) { upb_strtable_next(iter); } |
|
bool upb_enum_done(upb_enum_iter *iter) { return upb_strtable_done(iter); } |
|
|
|
bool upb_enumdef_ntoi(const upb_enumdef *def, const char *name, |
|
size_t len, int32_t *num) { |
|
upb_value v; |
|
if (!upb_strtable_lookup2(&def->ntoi, name, len, &v)) { |
|
return false; |
|
} |
|
if (num) *num = upb_value_getint32(v); |
|
return true; |
|
} |
|
|
|
const char *upb_enumdef_iton(const upb_enumdef *def, int32_t num) { |
|
upb_value v; |
|
return upb_inttable_lookup32(&def->iton, num, &v) ? |
|
upb_value_getcstr(v) : NULL; |
|
} |
|
|
|
const char *upb_enum_iter_name(upb_enum_iter *iter) { |
|
return upb_strtable_iter_key(iter); |
|
} |
|
|
|
int32_t upb_enum_iter_number(upb_enum_iter *iter) { |
|
return upb_value_getint32(upb_strtable_iter_value(iter)); |
|
} |
|
|
|
|
|
/* upb_fielddef ***************************************************************/ |
|
|
|
static void upb_fielddef_init_default(upb_fielddef *f); |
|
|
|
static void upb_fielddef_uninit_default(upb_fielddef *f) { |
|
if (f->type_is_set_ && f->default_is_string && f->defaultval.bytes) |
|
freestr(f->defaultval.bytes); |
|
} |
|
|
|
static void visitfield(const upb_refcounted *r, upb_refcounted_visit *visit, |
|
void *closure) { |
|
const upb_fielddef *f = (const upb_fielddef*)r; |
|
if (upb_fielddef_containingtype(f)) { |
|
visit(r, upb_msgdef_upcast2(upb_fielddef_containingtype(f)), closure); |
|
} |
|
if (upb_fielddef_containingoneof(f)) { |
|
visit(r, upb_oneofdef_upcast2(upb_fielddef_containingoneof(f)), closure); |
|
} |
|
if (upb_fielddef_subdef(f)) { |
|
visit(r, upb_def_upcast(upb_fielddef_subdef(f)), closure); |
|
} |
|
} |
|
|
|
static void freefield(upb_refcounted *r) { |
|
upb_fielddef *f = (upb_fielddef*)r; |
|
upb_fielddef_uninit_default(f); |
|
if (f->subdef_is_symbolic) |
|
free(f->sub.name); |
|
upb_def_uninit(upb_fielddef_upcast_mutable(f)); |
|
free(f); |
|
} |
|
|
|
static const char *enumdefaultstr(const upb_fielddef *f) { |
|
const upb_enumdef *e; |
|
assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM); |
|
e = upb_fielddef_enumsubdef(f); |
|
if (f->default_is_string && f->defaultval.bytes) { |
|
/* Default was explicitly set as a string. */ |
|
str_t *s = f->defaultval.bytes; |
|
return s->str; |
|
} else if (e) { |
|
if (!f->default_is_string) { |
|
/* Default was explicitly set as an integer; look it up in enumdef. */ |
|
const char *name = upb_enumdef_iton(e, f->defaultval.sint); |
|
if (name) { |
|
return name; |
|
} |
|
} else { |
|
/* Default is completely unset; pull enumdef default. */ |
|
if (upb_enumdef_numvals(e) > 0) { |
|
const char *name = upb_enumdef_iton(e, upb_enumdef_default(e)); |
|
assert(name); |
|
return name; |
|
} |
|
} |
|
} |
|
return NULL; |
|
} |
|
|
|
static bool enumdefaultint32(const upb_fielddef *f, int32_t *val) { |
|
const upb_enumdef *e; |
|
assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM); |
|
e = upb_fielddef_enumsubdef(f); |
|
if (!f->default_is_string) { |
|
/* Default was explicitly set as an integer. */ |
|
*val = f->defaultval.sint; |
|
return true; |
|
} else if (e) { |
|
if (f->defaultval.bytes) { |
|
/* Default was explicitly set as a str; try to lookup corresponding int. */ |
|
str_t *s = f->defaultval.bytes; |
|
if (upb_enumdef_ntoiz(e, s->str, val)) { |
|
return true; |
|
} |
|
} else { |
|
/* Default is unset; try to pull in enumdef default. */ |
|
if (upb_enumdef_numvals(e) > 0) { |
|
*val = upb_enumdef_default(e); |
|
return true; |
|
} |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
upb_fielddef *upb_fielddef_new(const void *o) { |
|
static const struct upb_refcounted_vtbl vtbl = {visitfield, freefield}; |
|
upb_fielddef *f = malloc(sizeof(*f)); |
|
if (!f) return NULL; |
|
if (!upb_def_init(upb_fielddef_upcast_mutable(f), UPB_DEF_FIELD, &vtbl, o)) { |
|
free(f); |
|
return NULL; |
|
} |
|
f->msg.def = NULL; |
|
f->sub.def = NULL; |
|
f->oneof = NULL; |
|
f->subdef_is_symbolic = false; |
|
f->msg_is_symbolic = false; |
|
f->label_ = UPB_LABEL_OPTIONAL; |
|
f->type_ = UPB_TYPE_INT32; |
|
f->number_ = 0; |
|
f->type_is_set_ = false; |
|
f->tagdelim = false; |
|
f->is_extension_ = false; |
|
f->lazy_ = false; |
|
f->packed_ = true; |
|
|
|
/* For the moment we default this to UPB_INTFMT_VARIABLE, since it will work |
|
* with all integer types and is in some since more "default" since the most |
|
* normal-looking proto2 types int32/int64/uint32/uint64 use variable. |
|
* |
|
* Other options to consider: |
|
* - there is no default; users must set this manually (like type). |
|
* - default signed integers to UPB_INTFMT_ZIGZAG, since it's more likely to |
|
* be an optimal default for signed integers. */ |
|
f->intfmt = UPB_INTFMT_VARIABLE; |
|
return f; |
|
} |
|
|
|
upb_fielddef *upb_fielddef_dup(const upb_fielddef *f, const void *owner) { |
|
const char *srcname; |
|
upb_fielddef *newf = upb_fielddef_new(owner); |
|
if (!newf) return NULL; |
|
upb_fielddef_settype(newf, upb_fielddef_type(f)); |
|
upb_fielddef_setlabel(newf, upb_fielddef_label(f)); |
|
upb_fielddef_setnumber(newf, upb_fielddef_number(f), NULL); |
|
upb_fielddef_setname(newf, upb_fielddef_name(f), NULL); |
|
if (f->default_is_string && f->defaultval.bytes) { |
|
str_t *s = f->defaultval.bytes; |
|
upb_fielddef_setdefaultstr(newf, s->str, s->len, NULL); |
|
} else { |
|
newf->default_is_string = f->default_is_string; |
|
newf->defaultval = f->defaultval; |
|
} |
|
|
|
if (f->subdef_is_symbolic) { |
|
srcname = f->sub.name; /* Might be NULL. */ |
|
} else { |
|
srcname = f->sub.def ? upb_def_fullname(f->sub.def) : NULL; |
|
} |
|
if (srcname) { |
|
char *newname = malloc(strlen(f->sub.def->fullname) + 2); |
|
if (!newname) { |
|
upb_fielddef_unref(newf, owner); |
|
return NULL; |
|
} |
|
strcpy(newname, "."); |
|
strcat(newname, f->sub.def->fullname); |
|
upb_fielddef_setsubdefname(newf, newname, NULL); |
|
free(newname); |
|
} |
|
|
|
return newf; |
|
} |
|
|
|
bool upb_fielddef_typeisset(const upb_fielddef *f) { |
|
return f->type_is_set_; |
|
} |
|
|
|
upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f) { |
|
assert(f->type_is_set_); |
|
return f->type_; |
|
} |
|
|
|
uint32_t upb_fielddef_index(const upb_fielddef *f) { |
|
return f->index_; |
|
} |
|
|
|
upb_label_t upb_fielddef_label(const upb_fielddef *f) { |
|
return f->label_; |
|
} |
|
|
|
upb_intfmt_t upb_fielddef_intfmt(const upb_fielddef *f) { |
|
return f->intfmt; |
|
} |
|
|
|
bool upb_fielddef_istagdelim(const upb_fielddef *f) { |
|
return f->tagdelim; |
|
} |
|
|
|
uint32_t upb_fielddef_number(const upb_fielddef *f) { |
|
return f->number_; |
|
} |
|
|
|
bool upb_fielddef_isextension(const upb_fielddef *f) { |
|
return f->is_extension_; |
|
} |
|
|
|
bool upb_fielddef_lazy(const upb_fielddef *f) { |
|
return f->lazy_; |
|
} |
|
|
|
bool upb_fielddef_packed(const upb_fielddef *f) { |
|
return f->packed_; |
|
} |
|
|
|
const char *upb_fielddef_name(const upb_fielddef *f) { |
|
return upb_def_fullname(upb_fielddef_upcast(f)); |
|
} |
|
|
|
const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f) { |
|
return f->msg_is_symbolic ? NULL : f->msg.def; |
|
} |
|
|
|
const upb_oneofdef *upb_fielddef_containingoneof(const upb_fielddef *f) { |
|
return f->oneof; |
|
} |
|
|
|
upb_msgdef *upb_fielddef_containingtype_mutable(upb_fielddef *f) { |
|
return (upb_msgdef*)upb_fielddef_containingtype(f); |
|
} |
|
|
|
const char *upb_fielddef_containingtypename(upb_fielddef *f) { |
|
return f->msg_is_symbolic ? f->msg.name : NULL; |
|
} |
|
|
|
static void release_containingtype(upb_fielddef *f) { |
|
if (f->msg_is_symbolic) free(f->msg.name); |
|
} |
|
|
|
bool upb_fielddef_setcontainingtypename(upb_fielddef *f, const char *name, |
|
upb_status *s) { |
|
assert(!upb_fielddef_isfrozen(f)); |
|
if (upb_fielddef_containingtype(f)) { |
|
upb_status_seterrmsg(s, "field has already been added to a message."); |
|
return false; |
|
} |
|
/* TODO: validate name (upb_isident() doesn't quite work atm because this name |
|
* may have a leading "."). */ |
|
release_containingtype(f); |
|
f->msg.name = upb_strdup(name); |
|
f->msg_is_symbolic = true; |
|
return true; |
|
} |
|
|
|
bool upb_fielddef_setname(upb_fielddef *f, const char *name, upb_status *s) { |
|
if (upb_fielddef_containingtype(f) || upb_fielddef_containingoneof(f)) { |
|
upb_status_seterrmsg(s, "Already added to message or oneof"); |
|
return false; |
|
} |
|
return upb_def_setfullname(upb_fielddef_upcast_mutable(f), name, s); |
|
} |
|
|
|
static void chkdefaulttype(const upb_fielddef *f, upb_fieldtype_t type) { |
|
UPB_UNUSED(f); |
|
UPB_UNUSED(type); |
|
assert(f->type_is_set_ && upb_fielddef_type(f) == type); |
|
} |
|
|
|
int64_t upb_fielddef_defaultint64(const upb_fielddef *f) { |
|
chkdefaulttype(f, UPB_TYPE_INT64); |
|
return f->defaultval.sint; |
|
} |
|
|
|
int32_t upb_fielddef_defaultint32(const upb_fielddef *f) { |
|
if (f->type_is_set_ && upb_fielddef_type(f) == UPB_TYPE_ENUM) { |
|
int32_t val; |
|
bool ok = enumdefaultint32(f, &val); |
|
UPB_ASSERT_VAR(ok, ok); |
|
return val; |
|
} else { |
|
chkdefaulttype(f, UPB_TYPE_INT32); |
|
return f->defaultval.sint; |
|
} |
|
} |
|
|
|
uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f) { |
|
chkdefaulttype(f, UPB_TYPE_UINT64); |
|
return f->defaultval.uint; |
|
} |
|
|
|
uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f) { |
|
chkdefaulttype(f, UPB_TYPE_UINT32); |
|
return f->defaultval.uint; |
|
} |
|
|
|
bool upb_fielddef_defaultbool(const upb_fielddef *f) { |
|
chkdefaulttype(f, UPB_TYPE_BOOL); |
|
return f->defaultval.uint; |
|
} |
|
|
|
float upb_fielddef_defaultfloat(const upb_fielddef *f) { |
|
chkdefaulttype(f, UPB_TYPE_FLOAT); |
|
return f->defaultval.flt; |
|
} |
|
|
|
double upb_fielddef_defaultdouble(const upb_fielddef *f) { |
|
chkdefaulttype(f, UPB_TYPE_DOUBLE); |
|
return f->defaultval.dbl; |
|
} |
|
|
|
const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len) { |
|
assert(f->type_is_set_); |
|
assert(upb_fielddef_type(f) == UPB_TYPE_STRING || |
|
upb_fielddef_type(f) == UPB_TYPE_BYTES || |
|
upb_fielddef_type(f) == UPB_TYPE_ENUM); |
|
|
|
if (upb_fielddef_type(f) == UPB_TYPE_ENUM) { |
|
const char *ret = enumdefaultstr(f); |
|
assert(ret); |
|
/* Enum defaults can't have embedded NULLs. */ |
|
if (len) *len = strlen(ret); |
|
return ret; |
|
} |
|
|
|
if (f->default_is_string) { |
|
str_t *str = f->defaultval.bytes; |
|
if (len) *len = str->len; |
|
return str->str; |
|
} |
|
|
|
return NULL; |
|
} |
|
|
|
static void upb_fielddef_init_default(upb_fielddef *f) { |
|
f->default_is_string = false; |
|
switch (upb_fielddef_type(f)) { |
|
case UPB_TYPE_DOUBLE: f->defaultval.dbl = 0; break; |
|
case UPB_TYPE_FLOAT: f->defaultval.flt = 0; break; |
|
case UPB_TYPE_INT32: |
|
case UPB_TYPE_INT64: f->defaultval.sint = 0; break; |
|
case UPB_TYPE_UINT64: |
|
case UPB_TYPE_UINT32: |
|
case UPB_TYPE_BOOL: f->defaultval.uint = 0; break; |
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: |
|
f->defaultval.bytes = newstr("", 0); |
|
f->default_is_string = true; |
|
break; |
|
case UPB_TYPE_MESSAGE: break; |
|
case UPB_TYPE_ENUM: |
|
/* This is our special sentinel that indicates "not set" for an enum. */ |
|
f->default_is_string = true; |
|
f->defaultval.bytes = NULL; |
|
break; |
|
} |
|
} |
|
|
|
const upb_def *upb_fielddef_subdef(const upb_fielddef *f) { |
|
return f->subdef_is_symbolic ? NULL : f->sub.def; |
|
} |
|
|
|
const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f) { |
|
const upb_def *def = upb_fielddef_subdef(f); |
|
return def ? upb_dyncast_msgdef(def) : NULL; |
|
} |
|
|
|
const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f) { |
|
const upb_def *def = upb_fielddef_subdef(f); |
|
return def ? upb_dyncast_enumdef(def) : NULL; |
|
} |
|
|
|
upb_def *upb_fielddef_subdef_mutable(upb_fielddef *f) { |
|
return (upb_def*)upb_fielddef_subdef(f); |
|
} |
|
|
|
const char *upb_fielddef_subdefname(const upb_fielddef *f) { |
|
if (f->subdef_is_symbolic) { |
|
return f->sub.name; |
|
} else if (f->sub.def) { |
|
return upb_def_fullname(f->sub.def); |
|
} else { |
|
return NULL; |
|
} |
|
} |
|
|
|
bool upb_fielddef_setnumber(upb_fielddef *f, uint32_t number, upb_status *s) { |
|
if (upb_fielddef_containingtype(f)) { |
|
upb_status_seterrmsg( |
|
s, "cannot change field number after adding to a message"); |
|
return false; |
|
} |
|
if (number == 0 || number > UPB_MAX_FIELDNUMBER) { |
|
upb_status_seterrf(s, "invalid field number (%u)", number); |
|
return false; |
|
} |
|
f->number_ = number; |
|
return true; |
|
} |
|
|
|
void upb_fielddef_settype(upb_fielddef *f, upb_fieldtype_t type) { |
|
assert(!upb_fielddef_isfrozen(f)); |
|
assert(upb_fielddef_checktype(type)); |
|
upb_fielddef_uninit_default(f); |
|
f->type_ = type; |
|
f->type_is_set_ = true; |
|
upb_fielddef_init_default(f); |
|
} |
|
|
|
void upb_fielddef_setdescriptortype(upb_fielddef *f, int type) { |
|
assert(!upb_fielddef_isfrozen(f)); |
|
switch (type) { |
|
case UPB_DESCRIPTOR_TYPE_DOUBLE: |
|
upb_fielddef_settype(f, UPB_TYPE_DOUBLE); |
|
break; |
|
case UPB_DESCRIPTOR_TYPE_FLOAT: |
|
upb_fielddef_settype(f, UPB_TYPE_FLOAT); |
|
break; |
|
case UPB_DESCRIPTOR_TYPE_INT64: |
|
case UPB_DESCRIPTOR_TYPE_SFIXED64: |
|
case UPB_DESCRIPTOR_TYPE_SINT64: |
|
upb_fielddef_settype(f, UPB_TYPE_INT64); |
|
break; |
|
case UPB_DESCRIPTOR_TYPE_UINT64: |
|
case UPB_DESCRIPTOR_TYPE_FIXED64: |
|
upb_fielddef_settype(f, UPB_TYPE_UINT64); |
|
break; |
|
case UPB_DESCRIPTOR_TYPE_INT32: |
|
case UPB_DESCRIPTOR_TYPE_SFIXED32: |
|
case UPB_DESCRIPTOR_TYPE_SINT32: |
|
upb_fielddef_settype(f, UPB_TYPE_INT32); |
|
break; |
|
case UPB_DESCRIPTOR_TYPE_UINT32: |
|
case UPB_DESCRIPTOR_TYPE_FIXED32: |
|
upb_fielddef_settype(f, UPB_TYPE_UINT32); |
|
break; |
|
case UPB_DESCRIPTOR_TYPE_BOOL: |
|
upb_fielddef_settype(f, UPB_TYPE_BOOL); |
|
break; |
|
case UPB_DESCRIPTOR_TYPE_STRING: |
|
upb_fielddef_settype(f, UPB_TYPE_STRING); |
|
break; |
|
case UPB_DESCRIPTOR_TYPE_BYTES: |
|
upb_fielddef_settype(f, UPB_TYPE_BYTES); |
|
break; |
|
case UPB_DESCRIPTOR_TYPE_GROUP: |
|
case UPB_DESCRIPTOR_TYPE_MESSAGE: |
|
upb_fielddef_settype(f, UPB_TYPE_MESSAGE); |
|
break; |
|
case UPB_DESCRIPTOR_TYPE_ENUM: |
|
upb_fielddef_settype(f, UPB_TYPE_ENUM); |
|
break; |
|
default: assert(false); |
|
} |
|
|
|
if (type == UPB_DESCRIPTOR_TYPE_FIXED64 || |
|
type == UPB_DESCRIPTOR_TYPE_FIXED32 || |
|
type == UPB_DESCRIPTOR_TYPE_SFIXED64 || |
|
type == UPB_DESCRIPTOR_TYPE_SFIXED32) { |
|
upb_fielddef_setintfmt(f, UPB_INTFMT_FIXED); |
|
} else if (type == UPB_DESCRIPTOR_TYPE_SINT64 || |
|
type == UPB_DESCRIPTOR_TYPE_SINT32) { |
|
upb_fielddef_setintfmt(f, UPB_INTFMT_ZIGZAG); |
|
} else { |
|
upb_fielddef_setintfmt(f, UPB_INTFMT_VARIABLE); |
|
} |
|
|
|
upb_fielddef_settagdelim(f, type == UPB_DESCRIPTOR_TYPE_GROUP); |
|
} |
|
|
|
upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f) { |
|
switch (upb_fielddef_type(f)) { |
|
case UPB_TYPE_FLOAT: return UPB_DESCRIPTOR_TYPE_FLOAT; |
|
case UPB_TYPE_DOUBLE: return UPB_DESCRIPTOR_TYPE_DOUBLE; |
|
case UPB_TYPE_BOOL: return UPB_DESCRIPTOR_TYPE_BOOL; |
|
case UPB_TYPE_STRING: return UPB_DESCRIPTOR_TYPE_STRING; |
|
case UPB_TYPE_BYTES: return UPB_DESCRIPTOR_TYPE_BYTES; |
|
case UPB_TYPE_ENUM: return UPB_DESCRIPTOR_TYPE_ENUM; |
|
case UPB_TYPE_INT32: |
|
switch (upb_fielddef_intfmt(f)) { |
|
case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_INT32; |
|
case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_SFIXED32; |
|
case UPB_INTFMT_ZIGZAG: return UPB_DESCRIPTOR_TYPE_SINT32; |
|
} |
|
case UPB_TYPE_INT64: |
|
switch (upb_fielddef_intfmt(f)) { |
|
case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_INT64; |
|
case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_SFIXED64; |
|
case UPB_INTFMT_ZIGZAG: return UPB_DESCRIPTOR_TYPE_SINT64; |
|
} |
|
case UPB_TYPE_UINT32: |
|
switch (upb_fielddef_intfmt(f)) { |
|
case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_UINT32; |
|
case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_FIXED32; |
|
case UPB_INTFMT_ZIGZAG: return -1; |
|
} |
|
case UPB_TYPE_UINT64: |
|
switch (upb_fielddef_intfmt(f)) { |
|
case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_UINT64; |
|
case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_FIXED64; |
|
case UPB_INTFMT_ZIGZAG: return -1; |
|
} |
|
case UPB_TYPE_MESSAGE: |
|
return upb_fielddef_istagdelim(f) ? |
|
UPB_DESCRIPTOR_TYPE_GROUP : UPB_DESCRIPTOR_TYPE_MESSAGE; |
|
} |
|
return 0; |
|
} |
|
|
|
void upb_fielddef_setisextension(upb_fielddef *f, bool is_extension) { |
|
assert(!upb_fielddef_isfrozen(f)); |
|
f->is_extension_ = is_extension; |
|
} |
|
|
|
void upb_fielddef_setlazy(upb_fielddef *f, bool lazy) { |
|
assert(!upb_fielddef_isfrozen(f)); |
|
f->lazy_ = lazy; |
|
} |
|
|
|
void upb_fielddef_setpacked(upb_fielddef *f, bool packed) { |
|
assert(!upb_fielddef_isfrozen(f)); |
|
f->packed_ = packed; |
|
} |
|
|
|
void upb_fielddef_setlabel(upb_fielddef *f, upb_label_t label) { |
|
assert(!upb_fielddef_isfrozen(f)); |
|
assert(upb_fielddef_checklabel(label)); |
|
f->label_ = label; |
|
} |
|
|
|
void upb_fielddef_setintfmt(upb_fielddef *f, upb_intfmt_t fmt) { |
|
assert(!upb_fielddef_isfrozen(f)); |
|
assert(upb_fielddef_checkintfmt(fmt)); |
|
f->intfmt = fmt; |
|
} |
|
|
|
void upb_fielddef_settagdelim(upb_fielddef *f, bool tag_delim) { |
|
assert(!upb_fielddef_isfrozen(f)); |
|
f->tagdelim = tag_delim; |
|
f->tagdelim = tag_delim; |
|
} |
|
|
|
static bool checksetdefault(upb_fielddef *f, upb_fieldtype_t type) { |
|
if (!f->type_is_set_ || upb_fielddef_isfrozen(f) || |
|
upb_fielddef_type(f) != type) { |
|
assert(false); |
|
return false; |
|
} |
|
if (f->default_is_string) { |
|
str_t *s = f->defaultval.bytes; |
|
assert(s || type == UPB_TYPE_ENUM); |
|
if (s) freestr(s); |
|
} |
|
f->default_is_string = false; |
|
return true; |
|
} |
|
|
|
void upb_fielddef_setdefaultint64(upb_fielddef *f, int64_t value) { |
|
if (checksetdefault(f, UPB_TYPE_INT64)) |
|
f->defaultval.sint = value; |
|
} |
|
|
|
void upb_fielddef_setdefaultint32(upb_fielddef *f, int32_t value) { |
|
if ((upb_fielddef_type(f) == UPB_TYPE_ENUM && |
|
checksetdefault(f, UPB_TYPE_ENUM)) || |
|
checksetdefault(f, UPB_TYPE_INT32)) { |
|
f->defaultval.sint = value; |
|
} |
|
} |
|
|
|
void upb_fielddef_setdefaultuint64(upb_fielddef *f, uint64_t value) { |
|
if (checksetdefault(f, UPB_TYPE_UINT64)) |
|
f->defaultval.uint = value; |
|
} |
|
|
|
void upb_fielddef_setdefaultuint32(upb_fielddef *f, uint32_t value) { |
|
if (checksetdefault(f, UPB_TYPE_UINT32)) |
|
f->defaultval.uint = value; |
|
} |
|
|
|
void upb_fielddef_setdefaultbool(upb_fielddef *f, bool value) { |
|
if (checksetdefault(f, UPB_TYPE_BOOL)) |
|
f->defaultval.uint = value; |
|
} |
|
|
|
void upb_fielddef_setdefaultfloat(upb_fielddef *f, float value) { |
|
if (checksetdefault(f, UPB_TYPE_FLOAT)) |
|
f->defaultval.flt = value; |
|
} |
|
|
|
void upb_fielddef_setdefaultdouble(upb_fielddef *f, double value) { |
|
if (checksetdefault(f, UPB_TYPE_DOUBLE)) |
|
f->defaultval.dbl = value; |
|
} |
|
|
|
bool upb_fielddef_setdefaultstr(upb_fielddef *f, const void *str, size_t len, |
|
upb_status *s) { |
|
str_t *str2; |
|
assert(upb_fielddef_isstring(f) || f->type_ == UPB_TYPE_ENUM); |
|
if (f->type_ == UPB_TYPE_ENUM && !upb_isident(str, len, false, s)) |
|
return false; |
|
|
|
if (f->default_is_string) { |
|
str_t *s = f->defaultval.bytes; |
|
assert(s || f->type_ == UPB_TYPE_ENUM); |
|
if (s) freestr(s); |
|
} else { |
|
assert(f->type_ == UPB_TYPE_ENUM); |
|
} |
|
|
|
str2 = newstr(str, len); |
|
f->defaultval.bytes = str2; |
|
f->default_is_string = true; |
|
return true; |
|
} |
|
|
|
void upb_fielddef_setdefaultcstr(upb_fielddef *f, const char *str, |
|
upb_status *s) { |
|
assert(f->type_is_set_); |
|
upb_fielddef_setdefaultstr(f, str, str ? strlen(str) : 0, s); |
|
} |
|
|
|
bool upb_fielddef_enumhasdefaultint32(const upb_fielddef *f) { |
|
int32_t val; |
|
assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM); |
|
return enumdefaultint32(f, &val); |
|
} |
|
|
|
bool upb_fielddef_enumhasdefaultstr(const upb_fielddef *f) { |
|
assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM); |
|
return enumdefaultstr(f) != NULL; |
|
} |
|
|
|
static bool upb_subdef_typecheck(upb_fielddef *f, const upb_def *subdef, |
|
upb_status *s) { |
|
if (f->type_ == UPB_TYPE_MESSAGE) { |
|
if (upb_dyncast_msgdef(subdef)) return true; |
|
upb_status_seterrmsg(s, "invalid subdef type for this submessage field"); |
|
return false; |
|
} else if (f->type_ == UPB_TYPE_ENUM) { |
|
if (upb_dyncast_enumdef(subdef)) return true; |
|
upb_status_seterrmsg(s, "invalid subdef type for this enum field"); |
|
return false; |
|
} else { |
|
upb_status_seterrmsg(s, "only message and enum fields can have a subdef"); |
|
return false; |
|
} |
|
} |
|
|
|
static void release_subdef(upb_fielddef *f) { |
|
if (f->subdef_is_symbolic) { |
|
free(f->sub.name); |
|
} else if (f->sub.def) { |
|
upb_unref2(f->sub.def, f); |
|
} |
|
} |
|
|
|
bool upb_fielddef_setsubdef(upb_fielddef *f, const upb_def *subdef, |
|
upb_status *s) { |
|
assert(!upb_fielddef_isfrozen(f)); |
|
assert(upb_fielddef_hassubdef(f)); |
|
if (subdef && !upb_subdef_typecheck(f, subdef, s)) return false; |
|
release_subdef(f); |
|
f->sub.def = subdef; |
|
f->subdef_is_symbolic = false; |
|
if (f->sub.def) upb_ref2(f->sub.def, f); |
|
return true; |
|
} |
|
|
|
bool upb_fielddef_setmsgsubdef(upb_fielddef *f, const upb_msgdef *subdef, |
|
upb_status *s) { |
|
return upb_fielddef_setsubdef(f, upb_msgdef_upcast(subdef), s); |
|
} |
|
|
|
bool upb_fielddef_setenumsubdef(upb_fielddef *f, const upb_enumdef *subdef, |
|
upb_status *s) { |
|
return upb_fielddef_setsubdef(f, upb_enumdef_upcast(subdef), s); |
|
} |
|
|
|
bool upb_fielddef_setsubdefname(upb_fielddef *f, const char *name, |
|
upb_status *s) { |
|
assert(!upb_fielddef_isfrozen(f)); |
|
if (!upb_fielddef_hassubdef(f)) { |
|
upb_status_seterrmsg(s, "field type does not accept a subdef"); |
|
return false; |
|
} |
|
/* TODO: validate name (upb_isident() doesn't quite work atm because this name |
|
* may have a leading "."). */ |
|
release_subdef(f); |
|
f->sub.name = upb_strdup(name); |
|
f->subdef_is_symbolic = true; |
|
return true; |
|
} |
|
|
|
bool upb_fielddef_issubmsg(const upb_fielddef *f) { |
|
return upb_fielddef_type(f) == UPB_TYPE_MESSAGE; |
|
} |
|
|
|
bool upb_fielddef_isstring(const upb_fielddef *f) { |
|
return upb_fielddef_type(f) == UPB_TYPE_STRING || |
|
upb_fielddef_type(f) == UPB_TYPE_BYTES; |
|
} |
|
|
|
bool upb_fielddef_isseq(const upb_fielddef *f) { |
|
return upb_fielddef_label(f) == UPB_LABEL_REPEATED; |
|
} |
|
|
|
bool upb_fielddef_isprimitive(const upb_fielddef *f) { |
|
return !upb_fielddef_isstring(f) && !upb_fielddef_issubmsg(f); |
|
} |
|
|
|
bool upb_fielddef_ismap(const upb_fielddef *f) { |
|
return upb_fielddef_isseq(f) && upb_fielddef_issubmsg(f) && |
|
upb_msgdef_mapentry(upb_fielddef_msgsubdef(f)); |
|
} |
|
|
|
bool upb_fielddef_hassubdef(const upb_fielddef *f) { |
|
return upb_fielddef_issubmsg(f) || upb_fielddef_type(f) == UPB_TYPE_ENUM; |
|
} |
|
|
|
static bool between(int32_t x, int32_t low, int32_t high) { |
|
return x >= low && x <= high; |
|
} |
|
|
|
bool upb_fielddef_checklabel(int32_t label) { return between(label, 1, 3); } |
|
bool upb_fielddef_checktype(int32_t type) { return between(type, 1, 11); } |
|
bool upb_fielddef_checkintfmt(int32_t fmt) { return between(fmt, 1, 3); } |
|
|
|
bool upb_fielddef_checkdescriptortype(int32_t type) { |
|
return between(type, 1, 18); |
|
} |
|
|
|
/* upb_msgdef *****************************************************************/ |
|
|
|
static void visitmsg(const upb_refcounted *r, upb_refcounted_visit *visit, |
|
void *closure) { |
|
upb_msg_oneof_iter o; |
|
const upb_msgdef *m = (const upb_msgdef*)r; |
|
upb_msg_field_iter i; |
|
for(upb_msg_field_begin(&i, m); |
|
!upb_msg_field_done(&i); |
|
upb_msg_field_next(&i)) { |
|
upb_fielddef *f = upb_msg_iter_field(&i); |
|
visit(r, upb_fielddef_upcast2(f), closure); |
|
} |
|
for(upb_msg_oneof_begin(&o, m); |
|
!upb_msg_oneof_done(&o); |
|
upb_msg_oneof_next(&o)) { |
|
upb_oneofdef *f = upb_msg_iter_oneof(&o); |
|
visit(r, upb_oneofdef_upcast2(f), closure); |
|
} |
|
} |
|
|
|
static void freemsg(upb_refcounted *r) { |
|
upb_msgdef *m = (upb_msgdef*)r; |
|
upb_strtable_uninit(&m->ntoo); |
|
upb_strtable_uninit(&m->ntof); |
|
upb_inttable_uninit(&m->itof); |
|
upb_def_uninit(upb_msgdef_upcast_mutable(m)); |
|
free(m); |
|
} |
|
|
|
upb_msgdef *upb_msgdef_new(const void *owner) { |
|
static const struct upb_refcounted_vtbl vtbl = {visitmsg, freemsg}; |
|
upb_msgdef *m = malloc(sizeof(*m)); |
|
if (!m) return NULL; |
|
if (!upb_def_init(upb_msgdef_upcast_mutable(m), UPB_DEF_MSG, &vtbl, owner)) |
|
goto err2; |
|
if (!upb_inttable_init(&m->itof, UPB_CTYPE_PTR)) goto err3; |
|
if (!upb_strtable_init(&m->ntof, UPB_CTYPE_PTR)) goto err2; |
|
if (!upb_strtable_init(&m->ntoo, UPB_CTYPE_PTR)) goto err1; |
|
m->map_entry = false; |
|
return m; |
|
|
|
err1: |
|
upb_strtable_uninit(&m->ntof); |
|
err2: |
|
upb_inttable_uninit(&m->itof); |
|
err3: |
|
free(m); |
|
return NULL; |
|
} |
|
|
|
upb_msgdef *upb_msgdef_dup(const upb_msgdef *m, const void *owner) { |
|
bool ok; |
|
upb_msg_field_iter i; |
|
upb_msg_oneof_iter o; |
|
|
|
upb_msgdef *newm = upb_msgdef_new(owner); |
|
if (!newm) return NULL; |
|
ok = upb_def_setfullname(upb_msgdef_upcast_mutable(newm), |
|
upb_def_fullname(upb_msgdef_upcast(m)), |
|
NULL); |
|
newm->map_entry = m->map_entry; |
|
UPB_ASSERT_VAR(ok, ok); |
|
for(upb_msg_field_begin(&i, m); |
|
!upb_msg_field_done(&i); |
|
upb_msg_field_next(&i)) { |
|
upb_fielddef *f = upb_fielddef_dup(upb_msg_iter_field(&i), &f); |
|
/* Fields in oneofs are dup'd below. */ |
|
if (upb_fielddef_containingoneof(f)) continue; |
|
if (!f || !upb_msgdef_addfield(newm, f, &f, NULL)) { |
|
upb_msgdef_unref(newm, owner); |
|
return NULL; |
|
} |
|
} |
|
for(upb_msg_oneof_begin(&o, m); |
|
!upb_msg_oneof_done(&o); |
|
upb_msg_oneof_next(&o)) { |
|
upb_oneofdef *f = upb_oneofdef_dup(upb_msg_iter_oneof(&o), &f); |
|
if (!f || !upb_msgdef_addoneof(newm, f, &f, NULL)) { |
|
upb_msgdef_unref(newm, owner); |
|
return NULL; |
|
} |
|
} |
|
return newm; |
|
} |
|
|
|
bool upb_msgdef_freeze(upb_msgdef *m, upb_status *status) { |
|
upb_def *d = upb_msgdef_upcast_mutable(m); |
|
return upb_def_freeze(&d, 1, status); |
|
} |
|
|
|
const char *upb_msgdef_fullname(const upb_msgdef *m) { |
|
return upb_def_fullname(upb_msgdef_upcast(m)); |
|
} |
|
|
|
bool upb_msgdef_setfullname(upb_msgdef *m, const char *fullname, |
|
upb_status *s) { |
|
return upb_def_setfullname(upb_msgdef_upcast_mutable(m), fullname, s); |
|
} |
|
|
|
/* Helper: check that the field |f| is safe to add to msgdef |m|. Set an error |
|
* on status |s| and return false if not. */ |
|
static bool check_field_add(const upb_msgdef *m, const upb_fielddef *f, |
|
upb_status *s) { |
|
if (upb_fielddef_containingtype(f) != NULL) { |
|
upb_status_seterrmsg(s, "fielddef already belongs to a message"); |
|
return false; |
|
} else if (upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == 0) { |
|
upb_status_seterrmsg(s, "field name or number were not set"); |
|
return false; |
|
} else if (upb_msgdef_ntofz(m, upb_fielddef_name(f)) || |
|
upb_msgdef_itof(m, upb_fielddef_number(f))) { |
|
upb_status_seterrmsg(s, "duplicate field name or number for field"); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
static void add_field(upb_msgdef *m, upb_fielddef *f, const void *ref_donor) { |
|
release_containingtype(f); |
|
f->msg.def = m; |
|
f->msg_is_symbolic = false; |
|
upb_inttable_insert(&m->itof, upb_fielddef_number(f), upb_value_ptr(f)); |
|
upb_strtable_insert(&m->ntof, upb_fielddef_name(f), upb_value_ptr(f)); |
|
upb_ref2(f, m); |
|
upb_ref2(m, f); |
|
if (ref_donor) upb_fielddef_unref(f, ref_donor); |
|
} |
|
|
|
bool upb_msgdef_addfield(upb_msgdef *m, upb_fielddef *f, const void *ref_donor, |
|
upb_status *s) { |
|
/* TODO: extensions need to have a separate namespace, because proto2 allows a |
|
* top-level extension (ie. one not in any package) to have the same name as a |
|
* field from the message. |
|
* |
|
* This also implies that there needs to be a separate lookup-by-name method |
|
* for extensions. It seems desirable for iteration to return both extensions |
|
* and non-extensions though. |
|
* |
|
* We also need to validate that the field number is in an extension range iff |
|
* it is an extension. |
|
* |
|
* This method is idempotent. Check if |f| is already part of this msgdef and |
|
* return immediately if so. */ |
|
if (upb_fielddef_containingtype(f) == m) { |
|
return true; |
|
} |
|
|
|
/* Check constraints for all fields before performing any action. */ |
|
if (!check_field_add(m, f, s)) { |
|
return false; |
|
} else if (upb_fielddef_containingoneof(f) != NULL) { |
|
/* Fields in a oneof can only be added by adding the oneof to the msgdef. */ |
|
upb_status_seterrmsg(s, "fielddef is part of a oneof"); |
|
return false; |
|
} |
|
|
|
/* Constraint checks ok, perform the action. */ |
|
add_field(m, f, ref_donor); |
|
return true; |
|
} |
|
|
|
bool upb_msgdef_addoneof(upb_msgdef *m, upb_oneofdef *o, const void *ref_donor, |
|
upb_status *s) { |
|
upb_oneof_iter it; |
|
|
|
/* Check various conditions that would prevent this oneof from being added. */ |
|
if (upb_oneofdef_containingtype(o)) { |
|
upb_status_seterrmsg(s, "oneofdef already belongs to a message"); |
|
return false; |
|
} else if (upb_oneofdef_name(o) == NULL) { |
|
upb_status_seterrmsg(s, "oneofdef name was not set"); |
|
return false; |
|
} else if (upb_msgdef_ntooz(m, upb_oneofdef_name(o))) { |
|
upb_status_seterrmsg(s, "duplicate oneof name"); |
|
return false; |
|
} |
|
|
|
/* Check that all of the oneof's fields do not conflict with names or numbers |
|
* of fields already in the message. */ |
|
for (upb_oneof_begin(&it, o); !upb_oneof_done(&it); upb_oneof_next(&it)) { |
|
const upb_fielddef *f = upb_oneof_iter_field(&it); |
|
if (!check_field_add(m, f, s)) { |
|
return false; |
|
} |
|
} |
|
|
|
/* Everything checks out -- commit now. */ |
|
|
|
/* Add oneof itself first. */ |
|
o->parent = m; |
|
upb_strtable_insert(&m->ntoo, upb_oneofdef_name(o), upb_value_ptr(o)); |
|
upb_ref2(o, m); |
|
upb_ref2(m, o); |
|
|
|
/* Add each field of the oneof directly to the msgdef. */ |
|
for (upb_oneof_begin(&it, o); !upb_oneof_done(&it); upb_oneof_next(&it)) { |
|
upb_fielddef *f = upb_oneof_iter_field(&it); |
|
add_field(m, f, NULL); |
|
} |
|
|
|
if (ref_donor) upb_oneofdef_unref(o, ref_donor); |
|
|
|
return true; |
|
} |
|
|
|
const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i) { |
|
upb_value val; |
|
return upb_inttable_lookup32(&m->itof, i, &val) ? |
|
upb_value_getptr(val) : NULL; |
|
} |
|
|
|
const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name, |
|
size_t len) { |
|
upb_value val; |
|
return upb_strtable_lookup2(&m->ntof, name, len, &val) ? |
|
upb_value_getptr(val) : NULL; |
|
} |
|
|
|
const upb_oneofdef *upb_msgdef_ntoo(const upb_msgdef *m, const char *name, |
|
size_t len) { |
|
upb_value val; |
|
return upb_strtable_lookup2(&m->ntoo, name, len, &val) ? |
|
upb_value_getptr(val) : NULL; |
|
} |
|
|
|
int upb_msgdef_numfields(const upb_msgdef *m) { |
|
return upb_strtable_count(&m->ntof); |
|
} |
|
|
|
int upb_msgdef_numoneofs(const upb_msgdef *m) { |
|
return upb_strtable_count(&m->ntoo); |
|
} |
|
|
|
void upb_msgdef_setmapentry(upb_msgdef *m, bool map_entry) { |
|
assert(!upb_msgdef_isfrozen(m)); |
|
m->map_entry = map_entry; |
|
} |
|
|
|
bool upb_msgdef_mapentry(const upb_msgdef *m) { |
|
return m->map_entry; |
|
} |
|
|
|
void upb_msg_field_begin(upb_msg_field_iter *iter, const upb_msgdef *m) { |
|
upb_inttable_begin(iter, &m->itof); |
|
} |
|
|
|
void upb_msg_field_next(upb_msg_field_iter *iter) { upb_inttable_next(iter); } |
|
|
|
bool upb_msg_field_done(const upb_msg_field_iter *iter) { |
|
return upb_inttable_done(iter); |
|
} |
|
|
|
upb_fielddef *upb_msg_iter_field(const upb_msg_field_iter *iter) { |
|
return (upb_fielddef*)upb_value_getptr(upb_inttable_iter_value(iter)); |
|
} |
|
|
|
void upb_msg_field_iter_setdone(upb_msg_field_iter *iter) { |
|
upb_inttable_iter_setdone(iter); |
|
} |
|
|
|
void upb_msg_oneof_begin(upb_msg_oneof_iter *iter, const upb_msgdef *m) { |
|
upb_strtable_begin(iter, &m->ntoo); |
|
} |
|
|
|
void upb_msg_oneof_next(upb_msg_oneof_iter *iter) { upb_strtable_next(iter); } |
|
|
|
bool upb_msg_oneof_done(const upb_msg_oneof_iter *iter) { |
|
return upb_strtable_done(iter); |
|
} |
|
|
|
upb_oneofdef *upb_msg_iter_oneof(const upb_msg_oneof_iter *iter) { |
|
return (upb_oneofdef*)upb_value_getptr(upb_strtable_iter_value(iter)); |
|
} |
|
|
|
void upb_msg_oneof_iter_setdone(upb_msg_oneof_iter *iter) { |
|
upb_strtable_iter_setdone(iter); |
|
} |
|
|
|
/* upb_oneofdef ***************************************************************/ |
|
|
|
static void visitoneof(const upb_refcounted *r, upb_refcounted_visit *visit, |
|
void *closure) { |
|
const upb_oneofdef *o = (const upb_oneofdef*)r; |
|
upb_oneof_iter i; |
|
for (upb_oneof_begin(&i, o); !upb_oneof_done(&i); upb_oneof_next(&i)) { |
|
const upb_fielddef *f = upb_oneof_iter_field(&i); |
|
visit(r, upb_fielddef_upcast2(f), closure); |
|
} |
|
if (o->parent) { |
|
visit(r, upb_msgdef_upcast2(o->parent), closure); |
|
} |
|
} |
|
|
|
static void freeoneof(upb_refcounted *r) { |
|
upb_oneofdef *o = (upb_oneofdef*)r; |
|
upb_strtable_uninit(&o->ntof); |
|
upb_inttable_uninit(&o->itof); |
|
upb_def_uninit(upb_oneofdef_upcast_mutable(o)); |
|
free(o); |
|
} |
|
|
|
upb_oneofdef *upb_oneofdef_new(const void *owner) { |
|
static const struct upb_refcounted_vtbl vtbl = {visitoneof, freeoneof}; |
|
upb_oneofdef *o = malloc(sizeof(*o)); |
|
o->parent = NULL; |
|
if (!o) return NULL; |
|
if (!upb_def_init(upb_oneofdef_upcast_mutable(o), UPB_DEF_ONEOF, &vtbl, |
|
owner)) |
|
goto err2; |
|
if (!upb_inttable_init(&o->itof, UPB_CTYPE_PTR)) goto err2; |
|
if (!upb_strtable_init(&o->ntof, UPB_CTYPE_PTR)) goto err1; |
|
return o; |
|
|
|
err1: |
|
upb_inttable_uninit(&o->itof); |
|
err2: |
|
free(o); |
|
return NULL; |
|
} |
|
|
|
upb_oneofdef *upb_oneofdef_dup(const upb_oneofdef *o, const void *owner) { |
|
bool ok; |
|
upb_oneof_iter i; |
|
upb_oneofdef *newo = upb_oneofdef_new(owner); |
|
if (!newo) return NULL; |
|
ok = upb_def_setfullname(upb_oneofdef_upcast_mutable(newo), |
|
upb_def_fullname(upb_oneofdef_upcast(o)), NULL); |
|
UPB_ASSERT_VAR(ok, ok); |
|
for (upb_oneof_begin(&i, o); !upb_oneof_done(&i); upb_oneof_next(&i)) { |
|
upb_fielddef *f = upb_fielddef_dup(upb_oneof_iter_field(&i), &f); |
|
if (!f || !upb_oneofdef_addfield(newo, f, &f, NULL)) { |
|
upb_oneofdef_unref(newo, owner); |
|
return NULL; |
|
} |
|
} |
|
return newo; |
|
} |
|
|
|
const char *upb_oneofdef_name(const upb_oneofdef *o) { |
|
return upb_def_fullname(upb_oneofdef_upcast(o)); |
|
} |
|
|
|
bool upb_oneofdef_setname(upb_oneofdef *o, const char *fullname, |
|
upb_status *s) { |
|
if (upb_oneofdef_containingtype(o)) { |
|
upb_status_seterrmsg(s, "oneof already added to a message"); |
|
return false; |
|
} |
|
return upb_def_setfullname(upb_oneofdef_upcast_mutable(o), fullname, s); |
|
} |
|
|
|
const upb_msgdef *upb_oneofdef_containingtype(const upb_oneofdef *o) { |
|
return o->parent; |
|
} |
|
|
|
int upb_oneofdef_numfields(const upb_oneofdef *o) { |
|
return upb_strtable_count(&o->ntof); |
|
} |
|
|
|
bool upb_oneofdef_addfield(upb_oneofdef *o, upb_fielddef *f, |
|
const void *ref_donor, |
|
upb_status *s) { |
|
assert(!upb_oneofdef_isfrozen(o)); |
|
assert(!o->parent || !upb_msgdef_isfrozen(o->parent)); |
|
|
|
/* This method is idempotent. Check if |f| is already part of this oneofdef |
|
* and return immediately if so. */ |
|
if (upb_fielddef_containingoneof(f) == o) { |
|
return true; |
|
} |
|
|
|
/* The field must have an OPTIONAL label. */ |
|
if (upb_fielddef_label(f) != UPB_LABEL_OPTIONAL) { |
|
upb_status_seterrmsg(s, "fields in oneof must have OPTIONAL label"); |
|
return false; |
|
} |
|
|
|
/* Check that no field with this name or number exists already in the oneof. |
|
* Also check that the field is not already part of a oneof. */ |
|
if (upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == 0) { |
|
upb_status_seterrmsg(s, "field name or number were not set"); |
|
return false; |
|
} else if (upb_oneofdef_itof(o, upb_fielddef_number(f)) || |
|
upb_oneofdef_ntofz(o, upb_fielddef_name(f))) { |
|
upb_status_seterrmsg(s, "duplicate field name or number"); |
|
return false; |
|
} else if (upb_fielddef_containingoneof(f) != NULL) { |
|
upb_status_seterrmsg(s, "fielddef already belongs to a oneof"); |
|
return false; |
|
} |
|
|
|
/* We allow adding a field to the oneof either if the field is not part of a |
|
* msgdef, or if it is and we are also part of the same msgdef. */ |
|
if (o->parent == NULL) { |
|
/* If we're not in a msgdef, the field cannot be either. Otherwise we would |
|
* need to magically add this oneof to a msgdef to remain consistent, which |
|
* is surprising behavior. */ |
|
if (upb_fielddef_containingtype(f) != NULL) { |
|
upb_status_seterrmsg(s, "fielddef already belongs to a message, but " |
|
"oneof does not"); |
|
return false; |
|
} |
|
} else { |
|
/* If we're in a msgdef, the user can add fields that either aren't in any |
|
* msgdef (in which case they're added to our msgdef) or already a part of |
|
* our msgdef. */ |
|
if (upb_fielddef_containingtype(f) != NULL && |
|
upb_fielddef_containingtype(f) != o->parent) { |
|
upb_status_seterrmsg(s, "fielddef belongs to a different message " |
|
"than oneof"); |
|
return false; |
|
} |
|
} |
|
|
|
/* Commit phase. First add the field to our parent msgdef, if any, because |
|
* that may fail; then add the field to our own tables. */ |
|
|
|
if (o->parent != NULL && upb_fielddef_containingtype(f) == NULL) { |
|
if (!upb_msgdef_addfield((upb_msgdef*)o->parent, f, NULL, s)) { |
|
return false; |
|
} |
|
} |
|
|
|
release_containingtype(f); |
|
f->oneof = o; |
|
upb_inttable_insert(&o->itof, upb_fielddef_number(f), upb_value_ptr(f)); |
|
upb_strtable_insert(&o->ntof, upb_fielddef_name(f), upb_value_ptr(f)); |
|
upb_ref2(f, o); |
|
upb_ref2(o, f); |
|
if (ref_donor) upb_fielddef_unref(f, ref_donor); |
|
|
|
return true; |
|
} |
|
|
|
const upb_fielddef *upb_oneofdef_ntof(const upb_oneofdef *o, |
|
const char *name, size_t length) { |
|
upb_value val; |
|
return upb_strtable_lookup2(&o->ntof, name, length, &val) ? |
|
upb_value_getptr(val) : NULL; |
|
} |
|
|
|
const upb_fielddef *upb_oneofdef_itof(const upb_oneofdef *o, uint32_t num) { |
|
upb_value val; |
|
return upb_inttable_lookup32(&o->itof, num, &val) ? |
|
upb_value_getptr(val) : NULL; |
|
} |
|
|
|
void upb_oneof_begin(upb_oneof_iter *iter, const upb_oneofdef *o) { |
|
upb_inttable_begin(iter, &o->itof); |
|
} |
|
|
|
void upb_oneof_next(upb_oneof_iter *iter) { |
|
upb_inttable_next(iter); |
|
} |
|
|
|
bool upb_oneof_done(upb_oneof_iter *iter) { |
|
return upb_inttable_done(iter); |
|
} |
|
|
|
upb_fielddef *upb_oneof_iter_field(const upb_oneof_iter *iter) { |
|
return (upb_fielddef*)upb_value_getptr(upb_inttable_iter_value(iter)); |
|
} |
|
|
|
void upb_oneof_iter_setdone(upb_oneof_iter *iter) { |
|
upb_inttable_iter_setdone(iter); |
|
} |
|
|
|
|
|
#include <stdlib.h> |
|
#include <stdio.h> |
|
#include <string.h> |
|
|
|
typedef struct cleanup_ent { |
|
upb_cleanup_func *cleanup; |
|
void *ud; |
|
struct cleanup_ent *next; |
|
} cleanup_ent; |
|
|
|
static void *seeded_alloc(void *ud, void *ptr, size_t oldsize, size_t size); |
|
|
|
/* Default allocator **********************************************************/ |
|
|
|
/* Just use realloc, keeping all allocated blocks in a linked list to destroy at |
|
* the end. */ |
|
|
|
typedef struct mem_block { |
|
/* List is doubly-linked, because in cases where realloc() moves an existing |
|
* block, we need to be able to remove the old pointer from the list |
|
* efficiently. */ |
|
struct mem_block *prev, *next; |
|
#ifndef NDEBUG |
|
size_t size; /* Doesn't include mem_block structure. */ |
|
#endif |
|
} mem_block; |
|
|
|
typedef struct { |
|
mem_block *head; |
|
} default_alloc_ud; |
|
|
|
static void *default_alloc(void *_ud, void *ptr, size_t oldsize, size_t size) { |
|
default_alloc_ud *ud = _ud; |
|
mem_block *from, *block; |
|
void *ret; |
|
UPB_UNUSED(oldsize); |
|
|
|
from = ptr ? (void*)((char*)ptr - sizeof(mem_block)) : NULL; |
|
|
|
#ifndef NDEBUG |
|
if (from) { |
|
assert(oldsize <= from->size); |
|
} |
|
#endif |
|
|
|
/* TODO(haberman): we probably need to provide even better alignment here, |
|
* like 16-byte alignment of the returned data pointer. */ |
|
block = realloc(from, size + sizeof(mem_block)); |
|
if (!block) return NULL; |
|
ret = (char*)block + sizeof(*block); |
|
|
|
#ifndef NDEBUG |
|
block->size = size; |
|
#endif |
|
|
|
if (from) { |
|
if (block != from) { |
|
/* The block was moved, so pointers in next and prev blocks must be |
|
* updated to its new location. */ |
|
if (block->next) block->next->prev = block; |
|
if (block->prev) block->prev->next = block; |
|
if (ud->head == from) ud->head = block; |
|
} |
|
} else { |
|
/* Insert at head of linked list. */ |
|
block->prev = NULL; |
|
block->next = ud->head; |
|
if (block->next) block->next->prev = block; |
|
ud->head = block; |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
static void default_alloc_cleanup(void *_ud) { |
|
default_alloc_ud *ud = _ud; |
|
mem_block *block = ud->head; |
|
|
|
while (block) { |
|
void *to_free = block; |
|
block = block->next; |
|
free(to_free); |
|
} |
|
} |
|
|
|
|
|
/* Standard error functions ***************************************************/ |
|
|
|
static bool default_err(void *ud, const upb_status *status) { |
|
UPB_UNUSED(ud); |
|
UPB_UNUSED(status); |
|
return false; |
|
} |
|
|
|
static bool write_err_to(void *ud, const upb_status *status) { |
|
upb_status *copy_to = ud; |
|
upb_status_copy(copy_to, status); |
|
return false; |
|
} |
|
|
|
|
|
/* upb_env ********************************************************************/ |
|
|
|
void upb_env_init(upb_env *e) { |
|
default_alloc_ud *ud = (default_alloc_ud*)&e->default_alloc_ud; |
|
e->ok_ = true; |
|
e->bytes_allocated = 0; |
|
e->cleanup_head = NULL; |
|
|
|
ud->head = NULL; |
|
|
|
/* Set default functions. */ |
|
upb_env_setallocfunc(e, default_alloc, ud); |
|
upb_env_seterrorfunc(e, default_err, NULL); |
|
} |
|
|
|
void upb_env_uninit(upb_env *e) { |
|
cleanup_ent *ent = e->cleanup_head; |
|
|
|
while (ent) { |
|
ent->cleanup(ent->ud); |
|
ent = ent->next; |
|
} |
|
|
|
/* Must do this after running cleanup functions, because this will delete |
|
the memory we store our cleanup entries in! */ |
|
if (e->alloc == default_alloc) { |
|
default_alloc_cleanup(e->alloc_ud); |
|
} |
|
} |
|
|
|
UPB_FORCEINLINE void upb_env_setallocfunc(upb_env *e, upb_alloc_func *alloc, |
|
void *ud) { |
|
e->alloc = alloc; |
|
e->alloc_ud = ud; |
|
} |
|
|
|
UPB_FORCEINLINE void upb_env_seterrorfunc(upb_env *e, upb_error_func *func, |
|
void *ud) { |
|
e->err = func; |
|
e->err_ud = ud; |
|
} |
|
|
|
void upb_env_reporterrorsto(upb_env *e, upb_status *status) { |
|
e->err = write_err_to; |
|
e->err_ud = status; |
|
} |
|
|
|
bool upb_env_ok(const upb_env *e) { |
|
return e->ok_; |
|
} |
|
|
|
bool upb_env_reporterror(upb_env *e, const upb_status *status) { |
|
e->ok_ = false; |
|
return e->err(e->err_ud, status); |
|
} |
|
|
|
bool upb_env_addcleanup(upb_env *e, upb_cleanup_func *func, void *ud) { |
|
cleanup_ent *ent = upb_env_malloc(e, sizeof(cleanup_ent)); |
|
if (!ent) return false; |
|
|
|
ent->cleanup = func; |
|
ent->ud = ud; |
|
ent->next = e->cleanup_head; |
|
e->cleanup_head = ent; |
|
|
|
return true; |
|
} |
|
|
|
void *upb_env_malloc(upb_env *e, size_t size) { |
|
e->bytes_allocated += size; |
|
if (e->alloc == seeded_alloc) { |
|
/* This is equivalent to the next branch, but allows inlining for a |
|
* measurable perf benefit. */ |
|
return seeded_alloc(e->alloc_ud, NULL, 0, size); |
|
} else { |
|
return e->alloc(e->alloc_ud, NULL, 0, size); |
|
} |
|
} |
|
|
|
void *upb_env_realloc(upb_env *e, void *ptr, size_t oldsize, size_t size) { |
|
char *ret; |
|
assert(oldsize <= size); |
|
ret = e->alloc(e->alloc_ud, ptr, oldsize, size); |
|
|
|
#ifndef NDEBUG |
|
/* Overwrite non-preserved memory to ensure callers are passing the oldsize |
|
* that they truly require. */ |
|
memset(ret + oldsize, 0xff, size - oldsize); |
|
#endif |
|
|
|
return ret; |
|
} |
|
|
|
size_t upb_env_bytesallocated(const upb_env *e) { |
|
return e->bytes_allocated; |
|
} |
|
|
|
|
|
/* upb_seededalloc ************************************************************/ |
|
|
|
/* Be conservative and choose 16 in case anyone is using SSE. */ |
|
static const size_t maxalign = 16; |
|
|
|
static size_t align_up(size_t size) { |
|
return ((size + maxalign - 1) / maxalign) * maxalign; |
|
} |
|
|
|
UPB_FORCEINLINE static void *seeded_alloc(void *ud, void *ptr, size_t oldsize, |
|
size_t size) { |
|
upb_seededalloc *a = ud; |
|
|
|
size = align_up(size); |
|
|
|
assert(a->mem_limit >= a->mem_ptr); |
|
|
|
if (oldsize == 0 && size <= (size_t)(a->mem_limit - a->mem_ptr)) { |
|
/* Fast path: we can satisfy from the initial allocation. */ |
|
void *ret = a->mem_ptr; |
|
a->mem_ptr += size; |
|
return ret; |
|
} else { |
|
char *chptr = ptr; |
|
/* Slow path: fallback to other allocator. */ |
|
a->need_cleanup = true; |
|
/* Is `ptr` part of the user-provided initial block? Don't pass it to the |
|
* default allocator if so; otherwise, it may try to realloc() the block. */ |
|
if (chptr >= a->mem_base && chptr < a->mem_limit) { |
|
void *ret; |
|
assert(chptr + oldsize <= a->mem_limit); |
|
ret = a->alloc(a->alloc_ud, NULL, 0, size); |
|
if (ret) memcpy(ret, ptr, oldsize); |
|
return ret; |
|
} else { |
|
return a->alloc(a->alloc_ud, ptr, oldsize, size); |
|
} |
|
} |
|
} |
|
|
|
void upb_seededalloc_init(upb_seededalloc *a, void *mem, size_t len) { |
|
default_alloc_ud *ud = (default_alloc_ud*)&a->default_alloc_ud; |
|
a->mem_base = mem; |
|
a->mem_ptr = mem; |
|
a->mem_limit = (char*)mem + len; |
|
a->need_cleanup = false; |
|
a->returned_allocfunc = false; |
|
|
|
ud->head = NULL; |
|
|
|
upb_seededalloc_setfallbackalloc(a, default_alloc, ud); |
|
} |
|
|
|
void upb_seededalloc_uninit(upb_seededalloc *a) { |
|
if (a->alloc == default_alloc && a->need_cleanup) { |
|
default_alloc_cleanup(a->alloc_ud); |
|
} |
|
} |
|
|
|
UPB_FORCEINLINE void upb_seededalloc_setfallbackalloc(upb_seededalloc *a, |
|
upb_alloc_func *alloc, |
|
void *ud) { |
|
assert(!a->returned_allocfunc); |
|
a->alloc = alloc; |
|
a->alloc_ud = ud; |
|
} |
|
|
|
upb_alloc_func *upb_seededalloc_getallocfunc(upb_seededalloc *a) { |
|
a->returned_allocfunc = true; |
|
return seeded_alloc; |
|
} |
|
/* |
|
** TODO(haberman): it's unclear whether a lot of the consistency checks should |
|
** assert() or return false. |
|
*/ |
|
|
|
|
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
|
|
|
|
/* Defined for the sole purpose of having a unique pointer value for |
|
* UPB_NO_CLOSURE. */ |
|
char _upb_noclosure; |
|
|
|
static void freehandlers(upb_refcounted *r) { |
|
upb_handlers *h = (upb_handlers*)r; |
|
|
|
upb_inttable_iter i; |
|
upb_inttable_begin(&i, &h->cleanup_); |
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
void *val = (void*)upb_inttable_iter_key(&i); |
|
upb_value func_val = upb_inttable_iter_value(&i); |
|
upb_handlerfree *func = upb_value_getfptr(func_val); |
|
func(val); |
|
} |
|
|
|
upb_inttable_uninit(&h->cleanup_); |
|
upb_msgdef_unref(h->msg, h); |
|
free(h->sub); |
|
free(h); |
|
} |
|
|
|
static void visithandlers(const upb_refcounted *r, upb_refcounted_visit *visit, |
|
void *closure) { |
|
const upb_handlers *h = (const upb_handlers*)r; |
|
upb_msg_field_iter i; |
|
for(upb_msg_field_begin(&i, h->msg); |
|
!upb_msg_field_done(&i); |
|
upb_msg_field_next(&i)) { |
|
upb_fielddef *f = upb_msg_iter_field(&i); |
|
const upb_handlers *sub; |
|
if (!upb_fielddef_issubmsg(f)) continue; |
|
sub = upb_handlers_getsubhandlers(h, f); |
|
if (sub) visit(r, upb_handlers_upcast(sub), closure); |
|
} |
|
} |
|
|
|
static const struct upb_refcounted_vtbl vtbl = {visithandlers, freehandlers}; |
|
|
|
typedef struct { |
|
upb_inttable tab; /* maps upb_msgdef* -> upb_handlers*. */ |
|
upb_handlers_callback *callback; |
|
const void *closure; |
|
} dfs_state; |
|
|
|
/* TODO(haberman): discard upb_handlers* objects that do not actually have any |
|
* handlers set and cannot reach any upb_handlers* object that does. This is |
|
* slightly tricky to do correctly. */ |
|
static upb_handlers *newformsg(const upb_msgdef *m, const void *owner, |
|
dfs_state *s) { |
|
upb_msg_field_iter i; |
|
upb_handlers *h = upb_handlers_new(m, owner); |
|
if (!h) return NULL; |
|
if (!upb_inttable_insertptr(&s->tab, m, upb_value_ptr(h))) goto oom; |
|
|
|
s->callback(s->closure, h); |
|
|
|
/* For each submessage field, get or create a handlers object and set it as |
|
* the subhandlers. */ |
|
for(upb_msg_field_begin(&i, m); |
|
!upb_msg_field_done(&i); |
|
upb_msg_field_next(&i)) { |
|
upb_fielddef *f = upb_msg_iter_field(&i); |
|
const upb_msgdef *subdef; |
|
upb_value subm_ent; |
|
|
|
if (!upb_fielddef_issubmsg(f)) continue; |
|
|
|
subdef = upb_downcast_msgdef(upb_fielddef_subdef(f)); |
|
if (upb_inttable_lookupptr(&s->tab, subdef, &subm_ent)) { |
|
upb_handlers_setsubhandlers(h, f, upb_value_getptr(subm_ent)); |
|
} else { |
|
upb_handlers *sub_mh = newformsg(subdef, &sub_mh, s); |
|
if (!sub_mh) goto oom; |
|
upb_handlers_setsubhandlers(h, f, sub_mh); |
|
upb_handlers_unref(sub_mh, &sub_mh); |
|
} |
|
} |
|
return h; |
|
|
|
oom: |
|
upb_handlers_unref(h, owner); |
|
return NULL; |
|
} |
|
|
|
/* Given a selector for a STARTSUBMSG handler, resolves to a pointer to the |
|
* subhandlers for this submessage field. */ |
|
#define SUBH(h, selector) (h->sub[selector]) |
|
|
|
/* The selector for a submessage field is the field index. */ |
|
#define SUBH_F(h, f) SUBH(h, f->index_) |
|
|
|
static int32_t trygetsel(upb_handlers *h, const upb_fielddef *f, |
|
upb_handlertype_t type) { |
|
upb_selector_t sel; |
|
assert(!upb_handlers_isfrozen(h)); |
|
if (upb_handlers_msgdef(h) != upb_fielddef_containingtype(f)) { |
|
upb_status_seterrf( |
|
&h->status_, "type mismatch: field %s does not belong to message %s", |
|
upb_fielddef_name(f), upb_msgdef_fullname(upb_handlers_msgdef(h))); |
|
return -1; |
|
} |
|
if (!upb_handlers_getselector(f, type, &sel)) { |
|
upb_status_seterrf( |
|
&h->status_, |
|
"type mismatch: cannot register handler type %d for field %s", |
|
type, upb_fielddef_name(f)); |
|
return -1; |
|
} |
|
return sel; |
|
} |
|
|
|
static upb_selector_t handlers_getsel(upb_handlers *h, const upb_fielddef *f, |
|
upb_handlertype_t type) { |
|
int32_t sel = trygetsel(h, f, type); |
|
assert(sel >= 0); |
|
return sel; |
|
} |
|
|
|
static const void **returntype(upb_handlers *h, const upb_fielddef *f, |
|
upb_handlertype_t type) { |
|
return &h->table[handlers_getsel(h, f, type)].attr.return_closure_type_; |
|
} |
|
|
|
static bool doset(upb_handlers *h, int32_t sel, const upb_fielddef *f, |
|
upb_handlertype_t type, upb_func *func, |
|
upb_handlerattr *attr) { |
|
upb_handlerattr set_attr = UPB_HANDLERATTR_INITIALIZER; |
|
const void *closure_type; |
|
const void **context_closure_type; |
|
|
|
assert(!upb_handlers_isfrozen(h)); |
|
|
|
if (sel < 0) { |
|
upb_status_seterrmsg(&h->status_, |
|
"incorrect handler type for this field."); |
|
return false; |
|
} |
|
|
|
if (h->table[sel].func) { |
|
upb_status_seterrmsg(&h->status_, |
|
"cannot change handler once it has been set."); |
|
return false; |
|
} |
|
|
|
if (attr) { |
|
set_attr = *attr; |
|
} |
|
|
|
/* Check that the given closure type matches the closure type that has been |
|
* established for this context (if any). */ |
|
closure_type = upb_handlerattr_closuretype(&set_attr); |
|
|
|
if (type == UPB_HANDLER_STRING) { |
|
context_closure_type = returntype(h, f, UPB_HANDLER_STARTSTR); |
|
} else if (f && upb_fielddef_isseq(f) && |
|
type != UPB_HANDLER_STARTSEQ && |
|
type != UPB_HANDLER_ENDSEQ) { |
|
context_closure_type = returntype(h, f, UPB_HANDLER_STARTSEQ); |
|
} else { |
|
context_closure_type = &h->top_closure_type; |
|
} |
|
|
|
if (closure_type && *context_closure_type && |
|
closure_type != *context_closure_type) { |
|
/* TODO(haberman): better message for debugging. */ |
|
if (f) { |
|
upb_status_seterrf(&h->status_, |
|
"closure type does not match for field %s", |
|
upb_fielddef_name(f)); |
|
} else { |
|
upb_status_seterrmsg( |
|
&h->status_, "closure type does not match for message-level handler"); |
|
} |
|
return false; |
|
} |
|
|
|
if (closure_type) |
|
*context_closure_type = closure_type; |
|
|
|
/* If this is a STARTSEQ or STARTSTR handler, check that the returned pointer |
|
* matches any pre-existing expectations about what type is expected. */ |
|
if (type == UPB_HANDLER_STARTSEQ || type == UPB_HANDLER_STARTSTR) { |
|
const void *return_type = upb_handlerattr_returnclosuretype(&set_attr); |
|
const void *table_return_type = |
|
upb_handlerattr_returnclosuretype(&h->table[sel].attr); |
|
if (return_type && table_return_type && return_type != table_return_type) { |
|
upb_status_seterrmsg(&h->status_, "closure return type does not match"); |
|
return false; |
|
} |
|
|
|
if (table_return_type && !return_type) |
|
upb_handlerattr_setreturnclosuretype(&set_attr, table_return_type); |
|
} |
|
|
|
h->table[sel].func = (upb_func*)func; |
|
h->table[sel].attr = set_attr; |
|
return true; |
|
} |
|
|
|
/* Returns the effective closure type for this handler (which will propagate |
|
* from outer frames if this frame has no START* handler). Not implemented for |
|
* UPB_HANDLER_STRING at the moment since this is not needed. Returns NULL is |
|
* the effective closure type is unspecified (either no handler was registered |
|
* to specify it or the handler that was registered did not specify the closure |
|
* type). */ |
|
const void *effective_closure_type(upb_handlers *h, const upb_fielddef *f, |
|
upb_handlertype_t type) { |
|
const void *ret; |
|
upb_selector_t sel; |
|
|
|
assert(type != UPB_HANDLER_STRING); |
|
ret = h->top_closure_type; |
|
|
|
if (upb_fielddef_isseq(f) && |
|
type != UPB_HANDLER_STARTSEQ && |
|
type != UPB_HANDLER_ENDSEQ && |
|
h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSEQ)].func) { |
|
ret = upb_handlerattr_returnclosuretype(&h->table[sel].attr); |
|
} |
|
|
|
if (type == UPB_HANDLER_STRING && |
|
h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSTR)].func) { |
|
ret = upb_handlerattr_returnclosuretype(&h->table[sel].attr); |
|
} |
|
|
|
/* The effective type of the submessage; not used yet. |
|
* if (type == SUBMESSAGE && |
|
* h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSUBMSG)].func) { |
|
* ret = upb_handlerattr_returnclosuretype(&h->table[sel].attr); |
|
* } */ |
|
|
|
return ret; |
|
} |
|
|
|
/* Checks whether the START* handler specified by f & type is missing even |
|
* though it is required to convert the established type of an outer frame |
|
* ("closure_type") into the established type of an inner frame (represented in |
|
* the return closure type of this handler's attr. */ |
|
bool checkstart(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type, |
|
upb_status *status) { |
|
const void *closure_type; |
|
const upb_handlerattr *attr; |
|
const void *return_closure_type; |
|
|
|
upb_selector_t sel = handlers_getsel(h, f, type); |
|
if (h->table[sel].func) return true; |
|
closure_type = effective_closure_type(h, f, type); |
|
attr = &h->table[sel].attr; |
|
return_closure_type = upb_handlerattr_returnclosuretype(attr); |
|
if (closure_type && return_closure_type && |
|
closure_type != return_closure_type) { |
|
upb_status_seterrf(status, |
|
"expected start handler to return sub type for field %f", |
|
upb_fielddef_name(f)); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
/* Public interface ***********************************************************/ |
|
|
|
upb_handlers *upb_handlers_new(const upb_msgdef *md, const void *owner) { |
|
int extra; |
|
upb_handlers *h; |
|
|
|
assert(upb_msgdef_isfrozen(md)); |
|
|
|
extra = sizeof(upb_handlers_tabent) * (md->selector_count - 1); |
|
h = calloc(sizeof(*h) + extra, 1); |
|
if (!h) return NULL; |
|
|
|
h->msg = md; |
|
upb_msgdef_ref(h->msg, h); |
|
upb_status_clear(&h->status_); |
|
h->sub = calloc(md->submsg_field_count, sizeof(*h->sub)); |
|
if (!h->sub) goto oom; |
|
if (!upb_refcounted_init(upb_handlers_upcast_mutable(h), &vtbl, owner)) |
|
goto oom; |
|
if (!upb_inttable_init(&h->cleanup_, UPB_CTYPE_FPTR)) goto oom; |
|
|
|
/* calloc() above initialized all handlers to NULL. */ |
|
return h; |
|
|
|
oom: |
|
freehandlers(upb_handlers_upcast_mutable(h)); |
|
return NULL; |
|
} |
|
|
|
const upb_handlers *upb_handlers_newfrozen(const upb_msgdef *m, |
|
const void *owner, |
|
upb_handlers_callback *callback, |
|
const void *closure) { |
|
dfs_state state; |
|
upb_handlers *ret; |
|
bool ok; |
|
upb_refcounted *r; |
|
|
|
state.callback = callback; |
|
state.closure = closure; |
|
if (!upb_inttable_init(&state.tab, UPB_CTYPE_PTR)) return NULL; |
|
|
|
ret = newformsg(m, owner, &state); |
|
|
|
upb_inttable_uninit(&state.tab); |
|
if (!ret) return NULL; |
|
|
|
r = upb_handlers_upcast_mutable(ret); |
|
ok = upb_refcounted_freeze(&r, 1, NULL, UPB_MAX_HANDLER_DEPTH); |
|
UPB_ASSERT_VAR(ok, ok); |
|
|
|
return ret; |
|
} |
|
|
|
const upb_status *upb_handlers_status(upb_handlers *h) { |
|
assert(!upb_handlers_isfrozen(h)); |
|
return &h->status_; |
|
} |
|
|
|
void upb_handlers_clearerr(upb_handlers *h) { |
|
assert(!upb_handlers_isfrozen(h)); |
|
upb_status_clear(&h->status_); |
|
} |
|
|
|
#define SETTER(name, handlerctype, handlertype) \ |
|
bool upb_handlers_set ## name(upb_handlers *h, const upb_fielddef *f, \ |
|
handlerctype func, upb_handlerattr *attr) { \ |
|
int32_t sel = trygetsel(h, f, handlertype); \ |
|
return doset(h, sel, f, handlertype, (upb_func*)func, attr); \ |
|
} |
|
|
|
SETTER(int32, upb_int32_handlerfunc*, UPB_HANDLER_INT32) |
|
SETTER(int64, upb_int64_handlerfunc*, UPB_HANDLER_INT64) |
|
SETTER(uint32, upb_uint32_handlerfunc*, UPB_HANDLER_UINT32) |
|
SETTER(uint64, upb_uint64_handlerfunc*, UPB_HANDLER_UINT64) |
|
SETTER(float, upb_float_handlerfunc*, UPB_HANDLER_FLOAT) |
|
SETTER(double, upb_double_handlerfunc*, UPB_HANDLER_DOUBLE) |
|
SETTER(bool, upb_bool_handlerfunc*, UPB_HANDLER_BOOL) |
|
SETTER(startstr, upb_startstr_handlerfunc*, UPB_HANDLER_STARTSTR) |
|
SETTER(string, upb_string_handlerfunc*, UPB_HANDLER_STRING) |
|
SETTER(endstr, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSTR) |
|
SETTER(startseq, upb_startfield_handlerfunc*, UPB_HANDLER_STARTSEQ) |
|
SETTER(startsubmsg, upb_startfield_handlerfunc*, UPB_HANDLER_STARTSUBMSG) |
|
SETTER(endsubmsg, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSUBMSG) |
|
SETTER(endseq, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSEQ) |
|
|
|
#undef SETTER |
|
|
|
bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func, |
|
upb_handlerattr *attr) { |
|
return doset(h, UPB_STARTMSG_SELECTOR, NULL, UPB_HANDLER_INT32, |
|
(upb_func *)func, attr); |
|
} |
|
|
|
bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func, |
|
upb_handlerattr *attr) { |
|
assert(!upb_handlers_isfrozen(h)); |
|
return doset(h, UPB_ENDMSG_SELECTOR, NULL, UPB_HANDLER_INT32, |
|
(upb_func *)func, attr); |
|
} |
|
|
|
bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f, |
|
const upb_handlers *sub) { |
|
assert(sub); |
|
assert(!upb_handlers_isfrozen(h)); |
|
assert(upb_fielddef_issubmsg(f)); |
|
if (SUBH_F(h, f)) return false; /* Can't reset. */ |
|
if (upb_msgdef_upcast(upb_handlers_msgdef(sub)) != upb_fielddef_subdef(f)) { |
|
return false; |
|
} |
|
SUBH_F(h, f) = sub; |
|
upb_ref2(sub, h); |
|
return true; |
|
} |
|
|
|
const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h, |
|
const upb_fielddef *f) { |
|
assert(upb_fielddef_issubmsg(f)); |
|
return SUBH_F(h, f); |
|
} |
|
|
|
bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t sel, |
|
upb_handlerattr *attr) { |
|
if (!upb_handlers_gethandler(h, sel)) |
|
return false; |
|
*attr = h->table[sel].attr; |
|
return true; |
|
} |
|
|
|
const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h, |
|
upb_selector_t sel) { |
|
/* STARTSUBMSG selector in sel is the field's selector base. */ |
|
return SUBH(h, sel - UPB_STATIC_SELECTOR_COUNT); |
|
} |
|
|
|
const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h) { return h->msg; } |
|
|
|
bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *func) { |
|
bool ok; |
|
if (upb_inttable_lookupptr(&h->cleanup_, p, NULL)) { |
|
return false; |
|
} |
|
ok = upb_inttable_insertptr(&h->cleanup_, p, upb_value_fptr(func)); |
|
UPB_ASSERT_VAR(ok, ok); |
|
return true; |
|
} |
|
|
|
|
|
/* "Static" methods ***********************************************************/ |
|
|
|
bool upb_handlers_freeze(upb_handlers *const*handlers, int n, upb_status *s) { |
|
/* TODO: verify we have a transitive closure. */ |
|
int i; |
|
for (i = 0; i < n; i++) { |
|
upb_msg_field_iter j; |
|
upb_handlers *h = handlers[i]; |
|
|
|
if (!upb_ok(&h->status_)) { |
|
upb_status_seterrf(s, "handlers for message %s had error status: %s", |
|
upb_msgdef_fullname(upb_handlers_msgdef(h)), |
|
upb_status_errmsg(&h->status_)); |
|
return false; |
|
} |
|
|
|
/* Check that there are no closure mismatches due to missing Start* handlers |
|
* or subhandlers with different type-level types. */ |
|
for(upb_msg_field_begin(&j, h->msg); |
|
!upb_msg_field_done(&j); |
|
upb_msg_field_next(&j)) { |
|
|
|
const upb_fielddef *f = upb_msg_iter_field(&j); |
|
if (upb_fielddef_isseq(f)) { |
|
if (!checkstart(h, f, UPB_HANDLER_STARTSEQ, s)) |
|
return false; |
|
} |
|
|
|
if (upb_fielddef_isstring(f)) { |
|
if (!checkstart(h, f, UPB_HANDLER_STARTSTR, s)) |
|
return false; |
|
} |
|
|
|
if (upb_fielddef_issubmsg(f)) { |
|
bool hashandler = false; |
|
if (upb_handlers_gethandler( |
|
h, handlers_getsel(h, f, UPB_HANDLER_STARTSUBMSG)) || |
|
upb_handlers_gethandler( |
|
h, handlers_getsel(h, f, UPB_HANDLER_ENDSUBMSG))) { |
|
hashandler = true; |
|
} |
|
|
|
if (upb_fielddef_isseq(f) && |
|
(upb_handlers_gethandler( |
|
h, handlers_getsel(h, f, UPB_HANDLER_STARTSEQ)) || |
|
upb_handlers_gethandler( |
|
h, handlers_getsel(h, f, UPB_HANDLER_ENDSEQ)))) { |
|
hashandler = true; |
|
} |
|
|
|
if (hashandler && !upb_handlers_getsubhandlers(h, f)) { |
|
/* For now we add an empty subhandlers in this case. It makes the |
|
* decoder code generator simpler, because it only has to handle two |
|
* cases (submessage has handlers or not) as opposed to three |
|
* (submessage has handlers in enclosing message but no subhandlers). |
|
* |
|
* This makes parsing less efficient in the case that we want to |
|
* notice a submessage but skip its contents (like if we're testing |
|
* for submessage presence or counting the number of repeated |
|
* submessages). In this case we will end up parsing the submessage |
|
* field by field and throwing away the results for each, instead of |
|
* skipping the whole delimited thing at once. If this is an issue we |
|
* can revisit it, but do remember that this only arises when you have |
|
* handlers (startseq/startsubmsg/endsubmsg/endseq) set for the |
|
* submessage but no subhandlers. The uses cases for this are |
|
* limited. */ |
|
upb_handlers *sub = upb_handlers_new(upb_fielddef_msgsubdef(f), &sub); |
|
upb_handlers_setsubhandlers(h, f, sub); |
|
upb_handlers_unref(sub, &sub); |
|
} |
|
|
|
/* TODO(haberman): check type of submessage. |
|
* This is slightly tricky; also consider whether we should check that |
|
* they match at setsubhandlers time. */ |
|
} |
|
} |
|
} |
|
|
|
if (!upb_refcounted_freeze((upb_refcounted*const*)handlers, n, s, |
|
UPB_MAX_HANDLER_DEPTH)) { |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f) { |
|
switch (upb_fielddef_type(f)) { |
|
case UPB_TYPE_INT32: |
|
case UPB_TYPE_ENUM: return UPB_HANDLER_INT32; |
|
case UPB_TYPE_INT64: return UPB_HANDLER_INT64; |
|
case UPB_TYPE_UINT32: return UPB_HANDLER_UINT32; |
|
case UPB_TYPE_UINT64: return UPB_HANDLER_UINT64; |
|
case UPB_TYPE_FLOAT: return UPB_HANDLER_FLOAT; |
|
case UPB_TYPE_DOUBLE: return UPB_HANDLER_DOUBLE; |
|
case UPB_TYPE_BOOL: return UPB_HANDLER_BOOL; |
|
default: assert(false); return -1; /* Invalid input. */ |
|
} |
|
} |
|
|
|
bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type, |
|
upb_selector_t *s) { |
|
switch (type) { |
|
case UPB_HANDLER_INT32: |
|
case UPB_HANDLER_INT64: |
|
case UPB_HANDLER_UINT32: |
|
case UPB_HANDLER_UINT64: |
|
case UPB_HANDLER_FLOAT: |
|
case UPB_HANDLER_DOUBLE: |
|
case UPB_HANDLER_BOOL: |
|
if (!upb_fielddef_isprimitive(f) || |
|
upb_handlers_getprimitivehandlertype(f) != type) |
|
return false; |
|
*s = f->selector_base; |
|
break; |
|
case UPB_HANDLER_STRING: |
|
if (upb_fielddef_isstring(f)) { |
|
*s = f->selector_base; |
|
} else if (upb_fielddef_lazy(f)) { |
|
*s = f->selector_base + 3; |
|
} else { |
|
return false; |
|
} |
|
break; |
|
case UPB_HANDLER_STARTSTR: |
|
if (upb_fielddef_isstring(f) || upb_fielddef_lazy(f)) { |
|
*s = f->selector_base + 1; |
|
} else { |
|
return false; |
|
} |
|
break; |
|
case UPB_HANDLER_ENDSTR: |
|
if (upb_fielddef_isstring(f) || upb_fielddef_lazy(f)) { |
|
*s = f->selector_base + 2; |
|
} else { |
|
return false; |
|
} |
|
break; |
|
case UPB_HANDLER_STARTSEQ: |
|
if (!upb_fielddef_isseq(f)) return false; |
|
*s = f->selector_base - 2; |
|
break; |
|
case UPB_HANDLER_ENDSEQ: |
|
if (!upb_fielddef_isseq(f)) return false; |
|
*s = f->selector_base - 1; |
|
break; |
|
case UPB_HANDLER_STARTSUBMSG: |
|
if (!upb_fielddef_issubmsg(f)) return false; |
|
/* Selectors for STARTSUBMSG are at the beginning of the table so that the |
|
* selector can also be used as an index into the "sub" array of |
|
* subhandlers. The indexes for the two into these two tables are the |
|
* same, except that in the handler table the static selectors come first. */ |
|
*s = f->index_ + UPB_STATIC_SELECTOR_COUNT; |
|
break; |
|
case UPB_HANDLER_ENDSUBMSG: |
|
if (!upb_fielddef_issubmsg(f)) return false; |
|
*s = f->selector_base; |
|
break; |
|
} |
|
assert((size_t)*s < upb_fielddef_containingtype(f)->selector_count); |
|
return true; |
|
} |
|
|
|
uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f) { |
|
return upb_fielddef_isseq(f) ? 2 : 0; |
|
} |
|
|
|
uint32_t upb_handlers_selectorcount(const upb_fielddef *f) { |
|
uint32_t ret = 1; |
|
if (upb_fielddef_isseq(f)) ret += 2; /* STARTSEQ/ENDSEQ */ |
|
if (upb_fielddef_isstring(f)) ret += 2; /* [STRING]/STARTSTR/ENDSTR */ |
|
if (upb_fielddef_issubmsg(f)) { |
|
/* ENDSUBMSG (STARTSUBMSG is at table beginning) */ |
|
ret += 0; |
|
if (upb_fielddef_lazy(f)) { |
|
/* STARTSTR/ENDSTR/STRING (for lazy) */ |
|
ret += 3; |
|
} |
|
} |
|
return ret; |
|
} |
|
|
|
|
|
/* upb_handlerattr ************************************************************/ |
|
|
|
void upb_handlerattr_init(upb_handlerattr *attr) { |
|
upb_handlerattr from = UPB_HANDLERATTR_INITIALIZER; |
|
memcpy(attr, &from, sizeof(*attr)); |
|
} |
|
|
|
void upb_handlerattr_uninit(upb_handlerattr *attr) { |
|
UPB_UNUSED(attr); |
|
} |
|
|
|
bool upb_handlerattr_sethandlerdata(upb_handlerattr *attr, const void *hd) { |
|
attr->handler_data_ = hd; |
|
return true; |
|
} |
|
|
|
bool upb_handlerattr_setclosuretype(upb_handlerattr *attr, const void *type) { |
|
attr->closure_type_ = type; |
|
return true; |
|
} |
|
|
|
const void *upb_handlerattr_closuretype(const upb_handlerattr *attr) { |
|
return attr->closure_type_; |
|
} |
|
|
|
bool upb_handlerattr_setreturnclosuretype(upb_handlerattr *attr, |
|
const void *type) { |
|
attr->return_closure_type_ = type; |
|
return true; |
|
} |
|
|
|
const void *upb_handlerattr_returnclosuretype(const upb_handlerattr *attr) { |
|
return attr->return_closure_type_; |
|
} |
|
|
|
bool upb_handlerattr_setalwaysok(upb_handlerattr *attr, bool alwaysok) { |
|
attr->alwaysok_ = alwaysok; |
|
return true; |
|
} |
|
|
|
bool upb_handlerattr_alwaysok(const upb_handlerattr *attr) { |
|
return attr->alwaysok_; |
|
} |
|
|
|
/* upb_bufhandle **************************************************************/ |
|
|
|
size_t upb_bufhandle_objofs(const upb_bufhandle *h) { |
|
return h->objofs_; |
|
} |
|
|
|
/* upb_byteshandler ***********************************************************/ |
|
|
|
void upb_byteshandler_init(upb_byteshandler* h) { |
|
memset(h, 0, sizeof(*h)); |
|
} |
|
|
|
/* For when we support handlerfree callbacks. */ |
|
void upb_byteshandler_uninit(upb_byteshandler* h) { |
|
UPB_UNUSED(h); |
|
} |
|
|
|
bool upb_byteshandler_setstartstr(upb_byteshandler *h, |
|
upb_startstr_handlerfunc *func, void *d) { |
|
h->table[UPB_STARTSTR_SELECTOR].func = (upb_func*)func; |
|
h->table[UPB_STARTSTR_SELECTOR].attr.handler_data_ = d; |
|
return true; |
|
} |
|
|
|
bool upb_byteshandler_setstring(upb_byteshandler *h, |
|
upb_string_handlerfunc *func, void *d) { |
|
h->table[UPB_STRING_SELECTOR].func = (upb_func*)func; |
|
h->table[UPB_STRING_SELECTOR].attr.handler_data_ = d; |
|
return true; |
|
} |
|
|
|
bool upb_byteshandler_setendstr(upb_byteshandler *h, |
|
upb_endfield_handlerfunc *func, void *d) { |
|
h->table[UPB_ENDSTR_SELECTOR].func = (upb_func*)func; |
|
h->table[UPB_ENDSTR_SELECTOR].attr.handler_data_ = d; |
|
return true; |
|
} |
|
/* |
|
** upb::RefCounted Implementation |
|
** |
|
** Our key invariants are: |
|
** 1. reference cycles never span groups |
|
** 2. for ref2(to, from), we increment to's count iff group(from) != group(to) |
|
** |
|
** The previous two are how we avoid leaking cycles. Other important |
|
** invariants are: |
|
** 3. for mutable objects "from" and "to", if there exists a ref2(to, from) |
|
** this implies group(from) == group(to). (In practice, what we implement |
|
** is even stronger; "from" and "to" will share a group if there has *ever* |
|
** been a ref2(to, from), but all that is necessary for correctness is the |
|
** weaker one). |
|
** 4. mutable and immutable objects are never in the same group. |
|
*/ |
|
|
|
|
|
#include <setjmp.h> |
|
#include <stdlib.h> |
|
|
|
static void freeobj(upb_refcounted *o); |
|
|
|
const char untracked_val; |
|
const void *UPB_UNTRACKED_REF = &untracked_val; |
|
|
|
/* arch-specific atomic primitives *******************************************/ |
|
|
|
#ifdef UPB_THREAD_UNSAFE /*---------------------------------------------------*/ |
|
|
|
static void atomic_inc(uint32_t *a) { (*a)++; } |
|
static bool atomic_dec(uint32_t *a) { return --(*a) == 0; } |
|
|
|
#elif defined(__GNUC__) || defined(__clang__) /*------------------------------*/ |
|
|
|
static void atomic_inc(uint32_t *a) { __sync_fetch_and_add(a, 1); } |
|
static bool atomic_dec(uint32_t *a) { return __sync_sub_and_fetch(a, 1) == 0; } |
|
|
|
#elif defined(WIN32) /*-------------------------------------------------------*/ |
|
|
|
#include <Windows.h> |
|
|
|
static void atomic_inc(upb_atomic_t *a) { InterlockedIncrement(&a->val); } |
|
static bool atomic_dec(upb_atomic_t *a) { |
|
return InterlockedDecrement(&a->val) == 0; |
|
} |
|
|
|
#else |
|
#error Atomic primitives not defined for your platform/CPU. \ |
|
Implement them or compile with UPB_THREAD_UNSAFE. |
|
#endif |
|
|
|
/* All static objects point to this refcount. |
|
* It is special-cased in ref/unref below. */ |
|
uint32_t static_refcount = -1; |
|
|
|
/* We can avoid atomic ops for statically-declared objects. |
|
* This is a minor optimization but nice since we can avoid degrading under |
|
* contention in this case. */ |
|
|
|
static void refgroup(uint32_t *group) { |
|
if (group != &static_refcount) |
|
atomic_inc(group); |
|
} |
|
|
|
static bool unrefgroup(uint32_t *group) { |
|
if (group == &static_refcount) { |
|
return false; |
|
} else { |
|
return atomic_dec(group); |
|
} |
|
} |
|
|
|
|
|
/* Reference tracking (debug only) ********************************************/ |
|
|
|
#ifdef UPB_DEBUG_REFS |
|
|
|
#ifdef UPB_THREAD_UNSAFE |
|
|
|
static void upb_lock() {} |
|
static void upb_unlock() {} |
|
|
|
#else |
|
|
|
/* User must define functions that lock/unlock a global mutex and link this |
|
* file against them. */ |
|
void upb_lock(); |
|
void upb_unlock(); |
|
|
|
#endif |
|
|
|
/* UPB_DEBUG_REFS mode counts on being able to malloc() memory in some |
|
* code-paths that can normally never fail, like upb_refcounted_ref(). Since |
|
* we have no way to propagage out-of-memory errors back to the user, and since |
|
* these errors can only occur in UPB_DEBUG_REFS mode, we immediately fail. */ |
|
#define CHECK_OOM(predicate) if (!(predicate)) { assert(predicate); exit(1); } |
|
|
|
typedef struct { |
|
int count; /* How many refs there are (duplicates only allowed for ref2). */ |
|
bool is_ref2; |
|
} trackedref; |
|
|
|
static trackedref *trackedref_new(bool is_ref2) { |
|
trackedref *ret = malloc(sizeof(*ret)); |
|
CHECK_OOM(ret); |
|
ret->count = 1; |
|
ret->is_ref2 = is_ref2; |
|
return ret; |
|
} |
|
|
|
static void track(const upb_refcounted *r, const void *owner, bool ref2) { |
|
upb_value v; |
|
|
|
assert(owner); |
|
if (owner == UPB_UNTRACKED_REF) return; |
|
|
|
upb_lock(); |
|
if (upb_inttable_lookupptr(r->refs, owner, &v)) { |
|
trackedref *ref = upb_value_getptr(v); |
|
/* Since we allow multiple ref2's for the same to/from pair without |
|
* allocating separate memory for each one, we lose the fine-grained |
|
* tracking behavior we get with regular refs. Since ref2s only happen |
|
* inside upb, we'll accept this limitation until/unless there is a really |
|
* difficult upb-internal bug that can't be figured out without it. */ |
|
assert(ref2); |
|
assert(ref->is_ref2); |
|
ref->count++; |
|
} else { |
|
trackedref *ref = trackedref_new(ref2); |
|
bool ok = upb_inttable_insertptr(r->refs, owner, upb_value_ptr(ref)); |
|
CHECK_OOM(ok); |
|
if (ref2) { |
|
/* We know this cast is safe when it is a ref2, because it's coming from |
|
* another refcounted object. */ |
|
const upb_refcounted *from = owner; |
|
assert(!upb_inttable_lookupptr(from->ref2s, r, NULL)); |
|
ok = upb_inttable_insertptr(from->ref2s, r, upb_value_ptr(NULL)); |
|
CHECK_OOM(ok); |
|
} |
|
} |
|
upb_unlock(); |
|
} |
|
|
|
static void untrack(const upb_refcounted *r, const void *owner, bool ref2) { |
|
upb_value v; |
|
bool found; |
|
trackedref *ref; |
|
|
|
assert(owner); |
|
if (owner == UPB_UNTRACKED_REF) return; |
|
|
|
upb_lock(); |
|
found = upb_inttable_lookupptr(r->refs, owner, &v); |
|
/* This assert will fail if an owner attempts to release a ref it didn't have. */ |
|
UPB_ASSERT_VAR(found, found); |
|
ref = upb_value_getptr(v); |
|
assert(ref->is_ref2 == ref2); |
|
if (--ref->count == 0) { |
|
free(ref); |
|
upb_inttable_removeptr(r->refs, owner, NULL); |
|
if (ref2) { |
|
/* We know this cast is safe when it is a ref2, because it's coming from |
|
* another refcounted object. */ |
|
const upb_refcounted *from = owner; |
|
bool removed = upb_inttable_removeptr(from->ref2s, r, NULL); |
|
assert(removed); |
|
} |
|
} |
|
upb_unlock(); |
|
} |
|
|
|
static void checkref(const upb_refcounted *r, const void *owner, bool ref2) { |
|
upb_value v; |
|
bool found; |
|
trackedref *ref; |
|
|
|
upb_lock(); |
|
found = upb_inttable_lookupptr(r->refs, owner, &v); |
|
UPB_ASSERT_VAR(found, found); |
|
ref = upb_value_getptr(v); |
|
assert(ref->is_ref2 == ref2); |
|
upb_unlock(); |
|
} |
|
|
|
/* Populates the given UPB_CTYPE_INT32 inttable with counts of ref2's that |
|
* originate from the given owner. */ |
|
static void getref2s(const upb_refcounted *owner, upb_inttable *tab) { |
|
upb_inttable_iter i; |
|
|
|
upb_lock(); |
|
upb_inttable_begin(&i, owner->ref2s); |
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
upb_value v; |
|
upb_value count; |
|
trackedref *ref; |
|
bool ok; |
|
bool found; |
|
|
|
upb_refcounted *to = (upb_refcounted*)upb_inttable_iter_key(&i); |
|
|
|
/* To get the count we need to look in the target's table. */ |
|
found = upb_inttable_lookupptr(to->refs, owner, &v); |
|
assert(found); |
|
ref = upb_value_getptr(v); |
|
count = upb_value_int32(ref->count); |
|
|
|
ok = upb_inttable_insertptr(tab, to, count); |
|
CHECK_OOM(ok); |
|
} |
|
upb_unlock(); |
|
} |
|
|
|
typedef struct { |
|
upb_inttable ref2; |
|
const upb_refcounted *obj; |
|
} check_state; |
|
|
|
static void visit_check(const upb_refcounted *obj, const upb_refcounted *subobj, |
|
void *closure) { |
|
check_state *s = closure; |
|
upb_inttable *ref2 = &s->ref2; |
|
upb_value v; |
|
bool removed; |
|
int32_t newcount; |
|
|
|
assert(obj == s->obj); |
|
assert(subobj); |
|
removed = upb_inttable_removeptr(ref2, subobj, &v); |
|
/* The following assertion will fail if the visit() function visits a subobj |
|
* that it did not have a ref2 on, or visits the same subobj too many times. */ |
|
assert(removed); |
|
newcount = upb_value_getint32(v) - 1; |
|
if (newcount > 0) { |
|
upb_inttable_insert(ref2, (uintptr_t)subobj, upb_value_int32(newcount)); |
|
} |
|
} |
|
|
|
static void visit(const upb_refcounted *r, upb_refcounted_visit *v, |
|
void *closure) { |
|
bool ok; |
|
|
|
/* In DEBUG_REFS mode we know what existing ref2 refs there are, so we know |
|
* exactly the set of nodes that visit() should visit. So we verify visit()'s |
|
* correctness here. */ |
|
check_state state; |
|
state.obj = r; |
|
ok = upb_inttable_init(&state.ref2, UPB_CTYPE_INT32); |
|
CHECK_OOM(ok); |
|
getref2s(r, &state.ref2); |
|
|
|
/* This should visit any children in the ref2 table. */ |
|
if (r->vtbl->visit) r->vtbl->visit(r, visit_check, &state); |
|
|
|
/* This assertion will fail if the visit() function missed any children. */ |
|
assert(upb_inttable_count(&state.ref2) == 0); |
|
upb_inttable_uninit(&state.ref2); |
|
if (r->vtbl->visit) r->vtbl->visit(r, v, closure); |
|
} |
|
|
|
static bool trackinit(upb_refcounted *r) { |
|
r->refs = malloc(sizeof(*r->refs)); |
|
r->ref2s = malloc(sizeof(*r->ref2s)); |
|
if (!r->refs || !r->ref2s) goto err1; |
|
|
|
if (!upb_inttable_init(r->refs, UPB_CTYPE_PTR)) goto err1; |
|
if (!upb_inttable_init(r->ref2s, UPB_CTYPE_PTR)) goto err2; |
|
return true; |
|
|
|
err2: |
|
upb_inttable_uninit(r->refs); |
|
err1: |
|
free(r->refs); |
|
free(r->ref2s); |
|
return false; |
|
} |
|
|
|
static void trackfree(const upb_refcounted *r) { |
|
upb_inttable_uninit(r->refs); |
|
upb_inttable_uninit(r->ref2s); |
|
free(r->refs); |
|
free(r->ref2s); |
|
} |
|
|
|
#else |
|
|
|
static void track(const upb_refcounted *r, const void *owner, bool ref2) { |
|
UPB_UNUSED(r); |
|
UPB_UNUSED(owner); |
|
UPB_UNUSED(ref2); |
|
} |
|
|
|
static void untrack(const upb_refcounted *r, const void *owner, bool ref2) { |
|
UPB_UNUSED(r); |
|
UPB_UNUSED(owner); |
|
UPB_UNUSED(ref2); |
|
} |
|
|
|
static void checkref(const upb_refcounted *r, const void *owner, bool ref2) { |
|
UPB_UNUSED(r); |
|
UPB_UNUSED(owner); |
|
UPB_UNUSED(ref2); |
|
} |
|
|
|
static bool trackinit(upb_refcounted *r) { |
|
UPB_UNUSED(r); |
|
return true; |
|
} |
|
|
|
static void trackfree(const upb_refcounted *r) { |
|
UPB_UNUSED(r); |
|
} |
|
|
|
static void visit(const upb_refcounted *r, upb_refcounted_visit *v, |
|
void *closure) { |
|
if (r->vtbl->visit) r->vtbl->visit(r, v, closure); |
|
} |
|
|
|
#endif /* UPB_DEBUG_REFS */ |
|
|
|
|
|
/* freeze() *******************************************************************/ |
|
|
|
/* The freeze() operation is by far the most complicated part of this scheme. |
|
* We compute strongly-connected components and then mutate the graph such that |
|
* we preserve the invariants documented at the top of this file. And we must |
|
* handle out-of-memory errors gracefully (without leaving the graph |
|
* inconsistent), which adds to the fun. */ |
|
|
|
/* The state used by the freeze operation (shared across many functions). */ |
|
typedef struct { |
|
int depth; |
|
int maxdepth; |
|
uint64_t index; |
|
/* Maps upb_refcounted* -> attributes (color, etc). attr layout varies by |
|
* color. */ |
|
upb_inttable objattr; |
|
upb_inttable stack; /* stack of upb_refcounted* for Tarjan's algorithm. */ |
|
upb_inttable groups; /* array of uint32_t*, malloc'd refcounts for new groups */ |
|
upb_status *status; |
|
jmp_buf err; |
|
} tarjan; |
|
|
|
static void release_ref2(const upb_refcounted *obj, |
|
const upb_refcounted *subobj, |
|
void *closure); |
|
|
|
/* Node attributes -----------------------------------------------------------*/ |
|
|
|
/* After our analysis phase all nodes will be either GRAY or WHITE. */ |
|
|
|
typedef enum { |
|
BLACK = 0, /* Object has not been seen. */ |
|
GRAY, /* Object has been found via a refgroup but may not be reachable. */ |
|
GREEN, /* Object is reachable and is currently on the Tarjan stack. */ |
|
WHITE /* Object is reachable and has been assigned a group (SCC). */ |
|
} color_t; |
|
|
|
UPB_NORETURN static void err(tarjan *t) { longjmp(t->err, 1); } |
|
UPB_NORETURN static void oom(tarjan *t) { |
|
upb_status_seterrmsg(t->status, "out of memory"); |
|
err(t); |
|
} |
|
|
|
static uint64_t trygetattr(const tarjan *t, const upb_refcounted *r) { |
|
upb_value v; |
|
return upb_inttable_lookupptr(&t->objattr, r, &v) ? |
|
upb_value_getuint64(v) : 0; |
|
} |
|
|
|
static uint64_t getattr(const tarjan *t, const upb_refcounted *r) { |
|
upb_value v; |
|
bool found = upb_inttable_lookupptr(&t->objattr, r, &v); |
|
UPB_ASSERT_VAR(found, found); |
|
return upb_value_getuint64(v); |
|
} |
|
|
|
static void setattr(tarjan *t, const upb_refcounted *r, uint64_t attr) { |
|
upb_inttable_removeptr(&t->objattr, r, NULL); |
|
upb_inttable_insertptr(&t->objattr, r, upb_value_uint64(attr)); |
|
} |
|
|
|
static color_t color(tarjan *t, const upb_refcounted *r) { |
|
return trygetattr(t, r) & 0x3; /* Color is always stored in the low 2 bits. */ |
|
} |
|
|
|
static void set_gray(tarjan *t, const upb_refcounted *r) { |
|
assert(color(t, r) == BLACK); |
|
setattr(t, r, GRAY); |
|
} |
|
|
|
/* Pushes an obj onto the Tarjan stack and sets it to GREEN. */ |
|
static void push(tarjan *t, const upb_refcounted *r) { |
|
assert(color(t, r) == BLACK || color(t, r) == GRAY); |
|
/* This defines the attr layout for the GREEN state. "index" and "lowlink" |
|
* get 31 bits, which is plenty (limit of 2B objects frozen at a time). */ |
|
setattr(t, r, GREEN | (t->index << 2) | (t->index << 33)); |
|
if (++t->index == 0x80000000) { |
|
upb_status_seterrmsg(t->status, "too many objects to freeze"); |
|
err(t); |
|
} |
|
upb_inttable_push(&t->stack, upb_value_ptr((void*)r)); |
|
} |
|
|
|
/* Pops an obj from the Tarjan stack and sets it to WHITE, with a ptr to its |
|
* SCC group. */ |
|
static upb_refcounted *pop(tarjan *t) { |
|
upb_refcounted *r = upb_value_getptr(upb_inttable_pop(&t->stack)); |
|
assert(color(t, r) == GREEN); |
|
/* This defines the attr layout for nodes in the WHITE state. |
|
* Top of group stack is [group, NULL]; we point at group. */ |
|
setattr(t, r, WHITE | (upb_inttable_count(&t->groups) - 2) << 8); |
|
return r; |
|
} |
|
|
|
static void tarjan_newgroup(tarjan *t) { |
|
uint32_t *group = malloc(sizeof(*group)); |
|
if (!group) oom(t); |
|
/* Push group and empty group leader (we'll fill in leader later). */ |
|
if (!upb_inttable_push(&t->groups, upb_value_ptr(group)) || |
|
!upb_inttable_push(&t->groups, upb_value_ptr(NULL))) { |
|
free(group); |
|
oom(t); |
|
} |
|
*group = 0; |
|
} |
|
|
|
static uint32_t idx(tarjan *t, const upb_refcounted *r) { |
|
assert(color(t, r) == GREEN); |
|
return (getattr(t, r) >> 2) & 0x7FFFFFFF; |
|
} |
|
|
|
static uint32_t lowlink(tarjan *t, const upb_refcounted *r) { |
|
if (color(t, r) == GREEN) { |
|
return getattr(t, r) >> 33; |
|
} else { |
|
return UINT32_MAX; |
|
} |
|
} |
|
|
|
static void set_lowlink(tarjan *t, const upb_refcounted *r, uint32_t lowlink) { |
|
assert(color(t, r) == GREEN); |
|
setattr(t, r, ((uint64_t)lowlink << 33) | (getattr(t, r) & 0x1FFFFFFFF)); |
|
} |
|
|
|
static uint32_t *group(tarjan *t, upb_refcounted *r) { |
|
uint64_t groupnum; |
|
upb_value v; |
|
bool found; |
|
|
|
assert(color(t, r) == WHITE); |
|
groupnum = getattr(t, r) >> 8; |
|
found = upb_inttable_lookup(&t->groups, groupnum, &v); |
|
UPB_ASSERT_VAR(found, found); |
|
return upb_value_getptr(v); |
|
} |
|
|
|
/* If the group leader for this object's group has not previously been set, |
|
* the given object is assigned to be its leader. */ |
|
static upb_refcounted *groupleader(tarjan *t, upb_refcounted *r) { |
|
uint64_t leader_slot; |
|
upb_value v; |
|
bool found; |
|
|
|
assert(color(t, r) == WHITE); |
|
leader_slot = (getattr(t, r) >> 8) + 1; |
|
found = upb_inttable_lookup(&t->groups, leader_slot, &v); |
|
UPB_ASSERT_VAR(found, found); |
|
if (upb_value_getptr(v)) { |
|
return upb_value_getptr(v); |
|
} else { |
|
upb_inttable_remove(&t->groups, leader_slot, NULL); |
|
upb_inttable_insert(&t->groups, leader_slot, upb_value_ptr(r)); |
|
return r; |
|
} |
|
} |
|
|
|
|
|
/* Tarjan's algorithm --------------------------------------------------------*/ |
|
|
|
/* See: |
|
* http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm */ |
|
static void do_tarjan(const upb_refcounted *obj, tarjan *t); |
|
|
|
static void tarjan_visit(const upb_refcounted *obj, |
|
const upb_refcounted *subobj, |
|
void *closure) { |
|
tarjan *t = closure; |
|
if (++t->depth > t->maxdepth) { |
|
upb_status_seterrf(t->status, "graph too deep to freeze (%d)", t->maxdepth); |
|
err(t); |
|
} else if (subobj->is_frozen || color(t, subobj) == WHITE) { |
|
/* Do nothing: we don't want to visit or color already-frozen nodes, |
|
* and WHITE nodes have already been assigned a SCC. */ |
|
} else if (color(t, subobj) < GREEN) { |
|
/* Subdef has not yet been visited; recurse on it. */ |
|
do_tarjan(subobj, t); |
|
set_lowlink(t, obj, UPB_MIN(lowlink(t, obj), lowlink(t, subobj))); |
|
} else if (color(t, subobj) == GREEN) { |
|
/* Subdef is in the stack and hence in the current SCC. */ |
|
set_lowlink(t, obj, UPB_MIN(lowlink(t, obj), idx(t, subobj))); |
|
} |
|
--t->depth; |
|
} |
|
|
|
static void do_tarjan(const upb_refcounted *obj, tarjan *t) { |
|
if (color(t, obj) == BLACK) { |
|
/* We haven't seen this object's group; mark the whole group GRAY. */ |
|
const upb_refcounted *o = obj; |
|
do { set_gray(t, o); } while ((o = o->next) != obj); |
|
} |
|
|
|
push(t, obj); |
|
visit(obj, tarjan_visit, t); |
|
if (lowlink(t, obj) == idx(t, obj)) { |
|
tarjan_newgroup(t); |
|
while (pop(t) != obj) |
|
; |
|
} |
|
} |
|
|
|
|
|
/* freeze() ------------------------------------------------------------------*/ |
|
|
|
static void crossref(const upb_refcounted *r, const upb_refcounted *subobj, |
|
void *_t) { |
|
tarjan *t = _t; |
|
assert(color(t, r) > BLACK); |
|
if (color(t, subobj) > BLACK && r->group != subobj->group) { |
|
/* Previously this ref was not reflected in subobj->group because they |
|
* were in the same group; now that they are split a ref must be taken. */ |
|
refgroup(subobj->group); |
|
} |
|
} |
|
|
|
static bool freeze(upb_refcounted *const*roots, int n, upb_status *s, |
|
int maxdepth) { |
|
volatile bool ret = false; |
|
int i; |
|
upb_inttable_iter iter; |
|
|
|
/* We run in two passes so that we can allocate all memory before performing |
|
* any mutation of the input -- this allows us to leave the input unchanged |
|
* in the case of memory allocation failure. */ |
|
tarjan t; |
|
t.index = 0; |
|
t.depth = 0; |
|
t.maxdepth = maxdepth; |
|
t.status = s; |
|
if (!upb_inttable_init(&t.objattr, UPB_CTYPE_UINT64)) goto err1; |
|
if (!upb_inttable_init(&t.stack, UPB_CTYPE_PTR)) goto err2; |
|
if (!upb_inttable_init(&t.groups, UPB_CTYPE_PTR)) goto err3; |
|
if (setjmp(t.err) != 0) goto err4; |
|
|
|
|
|
for (i = 0; i < n; i++) { |
|
if (color(&t, roots[i]) < GREEN) { |
|
do_tarjan(roots[i], &t); |
|
} |
|
} |
|
|
|
/* If we've made it this far, no further errors are possible so it's safe to |
|
* mutate the objects without risk of leaving them in an inconsistent state. */ |
|
ret = true; |
|
|
|
/* The transformation that follows requires care. The preconditions are: |
|
* - all objects in attr map are WHITE or GRAY, and are in mutable groups |
|
* (groups of all mutable objs) |
|
* - no ref2(to, from) refs have incremented count(to) if both "to" and |
|
* "from" are in our attr map (this follows from invariants (2) and (3)) */ |
|
|
|
/* Pass 1: we remove WHITE objects from their mutable groups, and add them to |
|
* new groups according to the SCC's we computed. These new groups will |
|
* consist of only frozen objects. None will be immediately collectible, |
|
* because WHITE objects are by definition reachable from one of "roots", |
|
* which the caller must own refs on. */ |
|
upb_inttable_begin(&iter, &t.objattr); |
|
for(; !upb_inttable_done(&iter); upb_inttable_next(&iter)) { |
|
upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&iter); |
|
/* Since removal from a singly-linked list requires access to the object's |
|
* predecessor, we consider obj->next instead of obj for moving. With the |
|
* while() loop we guarantee that we will visit every node's predecessor. |
|
* Proof: |
|
* 1. every node's predecessor is in our attr map. |
|
* 2. though the loop body may change a node's predecessor, it will only |
|
* change it to be the node we are currently operating on, so with a |
|
* while() loop we guarantee ourselves the chance to remove each node. */ |
|
while (color(&t, obj->next) == WHITE && |
|
group(&t, obj->next) != obj->next->group) { |
|
upb_refcounted *leader; |
|
|
|
/* Remove from old group. */ |
|
upb_refcounted *move = obj->next; |
|
if (obj == move) { |
|
/* Removing the last object from a group. */ |
|
assert(*obj->group == obj->individual_count); |
|
free(obj->group); |
|
} else { |
|
obj->next = move->next; |
|
/* This may decrease to zero; we'll collect GRAY objects (if any) that |
|
* remain in the group in the third pass. */ |
|
assert(*move->group >= move->individual_count); |
|
*move->group -= move->individual_count; |
|
} |
|
|
|
/* Add to new group. */ |
|
leader = groupleader(&t, move); |
|
if (move == leader) { |
|
/* First object added to new group is its leader. */ |
|
move->group = group(&t, move); |
|
move->next = move; |
|
*move->group = move->individual_count; |
|
} else { |
|
/* Group already has at least one object in it. */ |
|
assert(leader->group == group(&t, move)); |
|
move->group = group(&t, move); |
|
move->next = leader->next; |
|
leader->next = move; |
|
*move->group += move->individual_count; |
|
} |
|
|
|
move->is_frozen = true; |
|
} |
|
} |
|
|
|
/* Pass 2: GRAY and WHITE objects "obj" with ref2(to, obj) references must |
|
* increment count(to) if group(obj) != group(to) (which could now be the |
|
* case if "to" was just frozen). */ |
|
upb_inttable_begin(&iter, &t.objattr); |
|
for(; !upb_inttable_done(&iter); upb_inttable_next(&iter)) { |
|
upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&iter); |
|
visit(obj, crossref, &t); |
|
} |
|
|
|
/* Pass 3: GRAY objects are collected if their group's refcount dropped to |
|
* zero when we removed its white nodes. This can happen if they had only |
|
* been kept alive by virtue of sharing a group with an object that was just |
|
* frozen. |
|
* |
|
* It is important that we do this last, since the GRAY object's free() |
|
* function could call unref2() on just-frozen objects, which will decrement |
|
* refs that were added in pass 2. */ |
|
upb_inttable_begin(&iter, &t.objattr); |
|
for(; !upb_inttable_done(&iter); upb_inttable_next(&iter)) { |
|
upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&iter); |
|
if (obj->group == NULL || *obj->group == 0) { |
|
if (obj->group) { |
|
upb_refcounted *o; |
|
|
|
/* We eagerly free() the group's count (since we can't easily determine |
|
* the group's remaining size it's the easiest way to ensure it gets |
|
* done). */ |
|
free(obj->group); |
|
|
|
/* Visit to release ref2's (done in a separate pass since release_ref2 |
|
* depends on o->group being unmodified so it can test merged()). */ |
|
o = obj; |
|
do { visit(o, release_ref2, NULL); } while ((o = o->next) != obj); |
|
|
|
/* Mark "group" fields as NULL so we know to free the objects later in |
|
* this loop, but also don't try to delete the group twice. */ |
|
o = obj; |
|
do { o->group = NULL; } while ((o = o->next) != obj); |
|
} |
|
freeobj(obj); |
|
} |
|
} |
|
|
|
err4: |
|
if (!ret) { |
|
upb_inttable_begin(&iter, &t.groups); |
|
for(; !upb_inttable_done(&iter); upb_inttable_next(&iter)) |
|
free(upb_value_getptr(upb_inttable_iter_value(&iter))); |
|
} |
|
upb_inttable_uninit(&t.groups); |
|
err3: |
|
upb_inttable_uninit(&t.stack); |
|
err2: |
|
upb_inttable_uninit(&t.objattr); |
|
err1: |
|
return ret; |
|
} |
|
|
|
|
|
/* Misc internal functions ***************************************************/ |
|
|
|
static bool merged(const upb_refcounted *r, const upb_refcounted *r2) { |
|
return r->group == r2->group; |
|
} |
|
|
|
static void merge(upb_refcounted *r, upb_refcounted *from) { |
|
upb_refcounted *base; |
|
upb_refcounted *tmp; |
|
|
|
if (merged(r, from)) return; |
|
*r->group += *from->group; |
|
free(from->group); |
|
base = from; |
|
|
|
/* Set all refcount pointers in the "from" chain to the merged refcount. |
|
* |
|
* TODO(haberman): this linear algorithm can result in an overall O(n^2) bound |
|
* if the user continuously extends a group by one object. Prevent this by |
|
* using one of the techniques in this paper: |
|
* ftp://www.ncedc.org/outgoing/geomorph/dino/orals/p245-tarjan.pdf */ |
|
do { from->group = r->group; } while ((from = from->next) != base); |
|
|
|
/* Merge the two circularly linked lists by swapping their next pointers. */ |
|
tmp = r->next; |
|
r->next = base->next; |
|
base->next = tmp; |
|
} |
|
|
|
static void unref(const upb_refcounted *r); |
|
|
|
static void release_ref2(const upb_refcounted *obj, |
|
const upb_refcounted *subobj, |
|
void *closure) { |
|
UPB_UNUSED(closure); |
|
untrack(subobj, obj, true); |
|
if (!merged(obj, subobj)) { |
|
assert(subobj->is_frozen); |
|
unref(subobj); |
|
} |
|
} |
|
|
|
static void unref(const upb_refcounted *r) { |
|
if (unrefgroup(r->group)) { |
|
const upb_refcounted *o; |
|
|
|
free(r->group); |
|
|
|
/* In two passes, since release_ref2 needs a guarantee that any subobjs |
|
* are alive. */ |
|
o = r; |
|
do { visit(o, release_ref2, NULL); } while((o = o->next) != r); |
|
|
|
o = r; |
|
do { |
|
const upb_refcounted *next = o->next; |
|
assert(o->is_frozen || o->individual_count == 0); |
|
freeobj((upb_refcounted*)o); |
|
o = next; |
|
} while(o != r); |
|
} |
|
} |
|
|
|
static void freeobj(upb_refcounted *o) { |
|
trackfree(o); |
|
o->vtbl->free((upb_refcounted*)o); |
|
} |
|
|
|
|
|
/* Public interface ***********************************************************/ |
|
|
|
bool upb_refcounted_init(upb_refcounted *r, |
|
const struct upb_refcounted_vtbl *vtbl, |
|
const void *owner) { |
|
#ifndef NDEBUG |
|
/* Endianness check. This is unrelated to upb_refcounted, it's just a |
|
* convenient place to put the check that we can be assured will run for |
|
* basically every program using upb. */ |
|
const int x = 1; |
|
#ifdef UPB_BIG_ENDIAN |
|
assert(*(char*)&x != 1); |
|
#else |
|
assert(*(char*)&x == 1); |
|
#endif |
|
#endif |
|
|
|
r->next = r; |
|
r->vtbl = vtbl; |
|
r->individual_count = 0; |
|
r->is_frozen = false; |
|
r->group = malloc(sizeof(*r->group)); |
|
if (!r->group) return false; |
|
*r->group = 0; |
|
if (!trackinit(r)) { |
|
free(r->group); |
|
return false; |
|
} |
|
upb_refcounted_ref(r, owner); |
|
return true; |
|
} |
|
|
|
bool upb_refcounted_isfrozen(const upb_refcounted *r) { |
|
return r->is_frozen; |
|
} |
|
|
|
void upb_refcounted_ref(const upb_refcounted *r, const void *owner) { |
|
track(r, owner, false); |
|
if (!r->is_frozen) |
|
((upb_refcounted*)r)->individual_count++; |
|
refgroup(r->group); |
|
} |
|
|
|
void upb_refcounted_unref(const upb_refcounted *r, const void *owner) { |
|
untrack(r, owner, false); |
|
if (!r->is_frozen) |
|
((upb_refcounted*)r)->individual_count--; |
|
unref(r); |
|
} |
|
|
|
void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from) { |
|
assert(!from->is_frozen); /* Non-const pointer implies this. */ |
|
track(r, from, true); |
|
if (r->is_frozen) { |
|
refgroup(r->group); |
|
} else { |
|
merge((upb_refcounted*)r, from); |
|
} |
|
} |
|
|
|
void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from) { |
|
assert(!from->is_frozen); /* Non-const pointer implies this. */ |
|
untrack(r, from, true); |
|
if (r->is_frozen) { |
|
unref(r); |
|
} else { |
|
assert(merged(r, from)); |
|
} |
|
} |
|
|
|
void upb_refcounted_donateref( |
|
const upb_refcounted *r, const void *from, const void *to) { |
|
assert(from != to); |
|
if (to != NULL) |
|
upb_refcounted_ref(r, to); |
|
if (from != NULL) |
|
upb_refcounted_unref(r, from); |
|
} |
|
|
|
void upb_refcounted_checkref(const upb_refcounted *r, const void *owner) { |
|
checkref(r, owner, false); |
|
} |
|
|
|
bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s, |
|
int maxdepth) { |
|
int i; |
|
for (i = 0; i < n; i++) { |
|
assert(!roots[i]->is_frozen); |
|
} |
|
return freeze(roots, n, s, maxdepth); |
|
} |
|
|
|
|
|
#include <stdlib.h> |
|
|
|
/* Fallback implementation if the shim is not specialized by the JIT. */ |
|
#define SHIM_WRITER(type, ctype) \ |
|
bool upb_shim_set ## type (void *c, const void *hd, ctype val) { \ |
|
uint8_t *m = c; \ |
|
const upb_shim_data *d = hd; \ |
|
if (d->hasbit > 0) \ |
|
*(uint8_t*)&m[d->hasbit / 8] |= 1 << (d->hasbit % 8); \ |
|
*(ctype*)&m[d->offset] = val; \ |
|
return true; \ |
|
} \ |
|
|
|
SHIM_WRITER(double, double) |
|
SHIM_WRITER(float, float) |
|
SHIM_WRITER(int32, int32_t) |
|
SHIM_WRITER(int64, int64_t) |
|
SHIM_WRITER(uint32, uint32_t) |
|
SHIM_WRITER(uint64, uint64_t) |
|
SHIM_WRITER(bool, bool) |
|
#undef SHIM_WRITER |
|
|
|
bool upb_shim_set(upb_handlers *h, const upb_fielddef *f, size_t offset, |
|
int32_t hasbit) { |
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
|
bool ok; |
|
|
|
upb_shim_data *d = malloc(sizeof(*d)); |
|
if (!d) return false; |
|
d->offset = offset; |
|
d->hasbit = hasbit; |
|
|
|
upb_handlerattr_sethandlerdata(&attr, d); |
|
upb_handlerattr_setalwaysok(&attr, true); |
|
upb_handlers_addcleanup(h, d, free); |
|
|
|
#define TYPE(u, l) \ |
|
case UPB_TYPE_##u: \ |
|
ok = upb_handlers_set##l(h, f, upb_shim_set##l, &attr); break; |
|
|
|
ok = false; |
|
|
|
switch (upb_fielddef_type(f)) { |
|
TYPE(INT64, int64); |
|
TYPE(INT32, int32); |
|
TYPE(ENUM, int32); |
|
TYPE(UINT64, uint64); |
|
TYPE(UINT32, uint32); |
|
TYPE(DOUBLE, double); |
|
TYPE(FLOAT, float); |
|
TYPE(BOOL, bool); |
|
default: assert(false); break; |
|
} |
|
#undef TYPE |
|
|
|
upb_handlerattr_uninit(&attr); |
|
return ok; |
|
} |
|
|
|
const upb_shim_data *upb_shim_getdata(const upb_handlers *h, upb_selector_t s, |
|
upb_fieldtype_t *type) { |
|
upb_func *f = upb_handlers_gethandler(h, s); |
|
|
|
if ((upb_int64_handlerfunc*)f == upb_shim_setint64) { |
|
*type = UPB_TYPE_INT64; |
|
} else if ((upb_int32_handlerfunc*)f == upb_shim_setint32) { |
|
*type = UPB_TYPE_INT32; |
|
} else if ((upb_uint64_handlerfunc*)f == upb_shim_setuint64) { |
|
*type = UPB_TYPE_UINT64; |
|
} else if ((upb_uint32_handlerfunc*)f == upb_shim_setuint32) { |
|
*type = UPB_TYPE_UINT32; |
|
} else if ((upb_double_handlerfunc*)f == upb_shim_setdouble) { |
|
*type = UPB_TYPE_DOUBLE; |
|
} else if ((upb_float_handlerfunc*)f == upb_shim_setfloat) { |
|
*type = UPB_TYPE_FLOAT; |
|
} else if ((upb_bool_handlerfunc*)f == upb_shim_setbool) { |
|
*type = UPB_TYPE_BOOL; |
|
} else { |
|
return NULL; |
|
} |
|
|
|
return (const upb_shim_data*)upb_handlers_gethandlerdata(h, s); |
|
} |
|
|
|
|
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
static void upb_symtab_free(upb_refcounted *r) { |
|
upb_symtab *s = (upb_symtab*)r; |
|
upb_strtable_iter i; |
|
upb_strtable_begin(&i, &s->symtab); |
|
for (; !upb_strtable_done(&i); upb_strtable_next(&i)) { |
|
const upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i)); |
|
upb_def_unref(def, s); |
|
} |
|
upb_strtable_uninit(&s->symtab); |
|
free(s); |
|
} |
|
|
|
|
|
upb_symtab *upb_symtab_new(const void *owner) { |
|
static const struct upb_refcounted_vtbl vtbl = {NULL, &upb_symtab_free}; |
|
upb_symtab *s = malloc(sizeof(*s)); |
|
upb_refcounted_init(upb_symtab_upcast_mutable(s), &vtbl, owner); |
|
upb_strtable_init(&s->symtab, UPB_CTYPE_PTR); |
|
return s; |
|
} |
|
|
|
void upb_symtab_freeze(upb_symtab *s) { |
|
upb_refcounted *r; |
|
bool ok; |
|
|
|
assert(!upb_symtab_isfrozen(s)); |
|
r = upb_symtab_upcast_mutable(s); |
|
/* The symtab does not take ref2's (see refcounted.h) on the defs, because |
|
* defs cannot refer back to the table and therefore cannot create cycles. So |
|
* 0 will suffice for maxdepth here. */ |
|
ok = upb_refcounted_freeze(&r, 1, NULL, 0); |
|
UPB_ASSERT_VAR(ok, ok); |
|
} |
|
|
|
const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym) { |
|
upb_value v; |
|
upb_def *ret = upb_strtable_lookup(&s->symtab, sym, &v) ? |
|
upb_value_getptr(v) : NULL; |
|
return ret; |
|
} |
|
|
|
const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym) { |
|
upb_value v; |
|
upb_def *def = upb_strtable_lookup(&s->symtab, sym, &v) ? |
|
upb_value_getptr(v) : NULL; |
|
return def ? upb_dyncast_msgdef(def) : NULL; |
|
} |
|
|
|
const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym) { |
|
upb_value v; |
|
upb_def *def = upb_strtable_lookup(&s->symtab, sym, &v) ? |
|
upb_value_getptr(v) : NULL; |
|
return def ? upb_dyncast_enumdef(def) : NULL; |
|
} |
|
|
|
/* Given a symbol and the base symbol inside which it is defined, find the |
|
* symbol's definition in t. */ |
|
static upb_def *upb_resolvename(const upb_strtable *t, |
|
const char *base, const char *sym) { |
|
if(strlen(sym) == 0) return NULL; |
|
if(sym[0] == '.') { |
|
/* Symbols starting with '.' are absolute, so we do a single lookup. |
|
* Slice to omit the leading '.' */ |
|
upb_value v; |
|
return upb_strtable_lookup(t, sym + 1, &v) ? upb_value_getptr(v) : NULL; |
|
} else { |
|
/* Remove components from base until we find an entry or run out. |
|
* TODO: This branch is totally broken, but currently not used. */ |
|
(void)base; |
|
assert(false); |
|
return NULL; |
|
} |
|
} |
|
|
|
const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base, |
|
const char *sym) { |
|
upb_def *ret = upb_resolvename(&s->symtab, base, sym); |
|
return ret; |
|
} |
|
|
|
/* Starts a depth-first traversal at "def", recursing into any subdefs |
|
* (ie. submessage types). Adds duplicates of existing defs to addtab |
|
* wherever necessary, so that the resulting symtab will be consistent once |
|
* addtab is added. |
|
* |
|
* More specifically, if any def D is found in the DFS that: |
|
* |
|
* 1. can reach a def that is being replaced by something in addtab, AND |
|
* |
|
* 2. is not itself being replaced already (ie. this name doesn't already |
|
* exist in addtab) |
|
* |
|
* ...then a duplicate (new copy) of D will be added to addtab. |
|
* |
|
* Returns true if this happened for any def reachable from "def." |
|
* |
|
* It is slightly tricky to do this correctly in the presence of cycles. If we |
|
* detect that our DFS has hit a cycle, we might not yet know if any SCCs on |
|
* our stack can reach a def in addtab or not. Once we figure this out, that |
|
* answer needs to apply to *all* defs in these SCCs, even if we visited them |
|
* already. So a straight up one-pass cycle-detecting DFS won't work. |
|
* |
|
* To work around this problem, we traverse each SCC (which we already |
|
* computed, since these defs are frozen) as a single node. We first compute |
|
* whether the SCC as a whole can reach any def in addtab, then we dup (or not) |
|
* the entire SCC. This requires breaking the encapsulation of upb_refcounted, |
|
* since that is where we get the data about what SCC we are in. */ |
|
static bool upb_resolve_dfs(const upb_def *def, upb_strtable *addtab, |
|
const void *new_owner, upb_inttable *seen, |
|
upb_status *s) { |
|
upb_value v; |
|
bool need_dup; |
|
const upb_def *base; |
|
const void* memoize_key; |
|
|
|
/* Memoize results of this function for efficiency (since we're traversing a |
|
* DAG this is not needed to limit the depth of the search). |
|
* |
|
* We memoize by SCC instead of by individual def. */ |
|
memoize_key = def->base.group; |
|
|
|
if (upb_inttable_lookupptr(seen, memoize_key, &v)) |
|
return upb_value_getbool(v); |
|
|
|
/* Visit submessages for all messages in the SCC. */ |
|
need_dup = false; |
|
base = def; |
|
do { |
|
upb_value v; |
|
const upb_msgdef *m; |
|
|
|
assert(upb_def_isfrozen(def)); |
|
if (def->type == UPB_DEF_FIELD) continue; |
|
if (upb_strtable_lookup(addtab, upb_def_fullname(def), &v)) { |
|
need_dup = true; |
|
} |
|
|
|
/* For messages, continue the recursion by visiting all subdefs, but only |
|
* ones in different SCCs. */ |
|
m = upb_dyncast_msgdef(def); |
|
if (m) { |
|
upb_msg_field_iter i; |
|
for(upb_msg_field_begin(&i, m); |
|
!upb_msg_field_done(&i); |
|
upb_msg_field_next(&i)) { |
|
upb_fielddef *f = upb_msg_iter_field(&i); |
|
const upb_def *subdef; |
|
|
|
if (!upb_fielddef_hassubdef(f)) continue; |
|
subdef = upb_fielddef_subdef(f); |
|
|
|
/* Skip subdefs in this SCC. */ |
|
if (def->base.group == subdef->base.group) continue; |
|
|
|
/* |= to avoid short-circuit; we need its side-effects. */ |
|
need_dup |= upb_resolve_dfs(subdef, addtab, new_owner, seen, s); |
|
if (!upb_ok(s)) return false; |
|
} |
|
} |
|
} while ((def = (upb_def*)def->base.next) != base); |
|
|
|
if (need_dup) { |
|
/* Dup all defs in this SCC that don't already have entries in addtab. */ |
|
def = base; |
|
do { |
|
const char *name; |
|
|
|
if (def->type == UPB_DEF_FIELD) continue; |
|
name = upb_def_fullname(def); |
|
if (!upb_strtable_lookup(addtab, name, NULL)) { |
|
upb_def *newdef = upb_def_dup(def, new_owner); |
|
if (!newdef) goto oom; |
|
newdef->came_from_user = false; |
|
if (!upb_strtable_insert(addtab, name, upb_value_ptr(newdef))) |
|
goto oom; |
|
} |
|
} while ((def = (upb_def*)def->base.next) != base); |
|
} |
|
|
|
upb_inttable_insertptr(seen, memoize_key, upb_value_bool(need_dup)); |
|
return need_dup; |
|
|
|
oom: |
|
upb_status_seterrmsg(s, "out of memory"); |
|
return false; |
|
} |
|
|
|
/* TODO(haberman): we need a lot more testing of error conditions. |
|
* The came_from_user stuff in particular is not tested. */ |
|
bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, int n, void *ref_donor, |
|
upb_status *status) { |
|
int i; |
|
upb_strtable_iter iter; |
|
upb_def **add_defs = NULL; |
|
upb_strtable addtab; |
|
upb_inttable seen; |
|
|
|
assert(!upb_symtab_isfrozen(s)); |
|
if (!upb_strtable_init(&addtab, UPB_CTYPE_PTR)) { |
|
upb_status_seterrmsg(status, "out of memory"); |
|
return false; |
|
} |
|
|
|
/* Add new defs to our "add" set. */ |
|
for (i = 0; i < n; i++) { |
|
upb_def *def = defs[i]; |
|
const char *fullname; |
|
upb_fielddef *f; |
|
|
|
if (upb_def_isfrozen(def)) { |
|
upb_status_seterrmsg(status, "added defs must be mutable"); |
|
goto err; |
|
} |
|
assert(!upb_def_isfrozen(def)); |
|
fullname = upb_def_fullname(def); |
|
if (!fullname) { |
|
upb_status_seterrmsg( |
|
status, "Anonymous defs cannot be added to a symtab"); |
|
goto err; |
|
} |
|
|
|
f = upb_dyncast_fielddef_mutable(def); |
|
|
|
if (f) { |
|
if (!upb_fielddef_containingtypename(f)) { |
|
upb_status_seterrmsg(status, |
|
"Standalone fielddefs must have a containing type " |
|
"(extendee) name set"); |
|
goto err; |
|
} |
|
} else { |
|
if (upb_strtable_lookup(&addtab, fullname, NULL)) { |
|
upb_status_seterrf(status, "Conflicting defs named '%s'", fullname); |
|
goto err; |
|
} |
|
/* We need this to back out properly, because if there is a failure we |
|
* need to donate the ref back to the caller. */ |
|
def->came_from_user = true; |
|
upb_def_donateref(def, ref_donor, s); |
|
if (!upb_strtable_insert(&addtab, fullname, upb_value_ptr(def))) |
|
goto oom_err; |
|
} |
|
} |
|
|
|
/* Add standalone fielddefs (ie. extensions) to the appropriate messages. |
|
* If the appropriate message only exists in the existing symtab, duplicate |
|
* it so we have a mutable copy we can add the fields to. */ |
|
for (i = 0; i < n; i++) { |
|
upb_def *def = defs[i]; |
|
upb_fielddef *f = upb_dyncast_fielddef_mutable(def); |
|
const char *msgname; |
|
upb_value v; |
|
upb_msgdef *m; |
|
|
|
if (!f) continue; |
|
msgname = upb_fielddef_containingtypename(f); |
|
/* We validated this earlier in this function. */ |
|
assert(msgname); |
|
|
|
/* If the extendee name is absolutely qualified, move past the initial ".". |
|
* TODO(haberman): it is not obvious what it would mean if this was not |
|
* absolutely qualified. */ |
|
if (msgname[0] == '.') { |
|
msgname++; |
|
} |
|
|
|
if (upb_strtable_lookup(&addtab, msgname, &v)) { |
|
/* Extendee is in the set of defs the user asked us to add. */ |
|
m = upb_value_getptr(v); |
|
} else { |
|
/* Need to find and dup the extendee from the existing symtab. */ |
|
const upb_msgdef *frozen_m = upb_symtab_lookupmsg(s, msgname); |
|
if (!frozen_m) { |
|
upb_status_seterrf(status, |
|
"Tried to extend message %s that does not exist " |
|
"in this SymbolTable.", |
|
msgname); |
|
goto err; |
|
} |
|
m = upb_msgdef_dup(frozen_m, s); |
|
if (!m) goto oom_err; |
|
if (!upb_strtable_insert(&addtab, msgname, upb_value_ptr(m))) { |
|
upb_msgdef_unref(m, s); |
|
goto oom_err; |
|
} |
|
} |
|
|
|
if (!upb_msgdef_addfield(m, f, ref_donor, status)) { |
|
goto err; |
|
} |
|
} |
|
|
|
/* Add dups of any existing def that can reach a def with the same name as |
|
* anything in our "add" set. */ |
|
if (!upb_inttable_init(&seen, UPB_CTYPE_BOOL)) goto oom_err; |
|
upb_strtable_begin(&iter, &s->symtab); |
|
for (; !upb_strtable_done(&iter); upb_strtable_next(&iter)) { |
|
upb_def *def = upb_value_getptr(upb_strtable_iter_value(&iter)); |
|
upb_resolve_dfs(def, &addtab, s, &seen, status); |
|
if (!upb_ok(status)) goto err; |
|
} |
|
upb_inttable_uninit(&seen); |
|
|
|
/* Now using the table, resolve symbolic references for subdefs. */ |
|
upb_strtable_begin(&iter, &addtab); |
|
for (; !upb_strtable_done(&iter); upb_strtable_next(&iter)) { |
|
const char *base; |
|
upb_def *def = upb_value_getptr(upb_strtable_iter_value(&iter)); |
|
upb_msgdef *m = upb_dyncast_msgdef_mutable(def); |
|
upb_msg_field_iter j; |
|
|
|
if (!m) continue; |
|
/* Type names are resolved relative to the message in which they appear. */ |
|
base = upb_msgdef_fullname(m); |
|
|
|
for(upb_msg_field_begin(&j, m); |
|
!upb_msg_field_done(&j); |
|
upb_msg_field_next(&j)) { |
|
upb_fielddef *f = upb_msg_iter_field(&j); |
|
const char *name = upb_fielddef_subdefname(f); |
|
if (name && !upb_fielddef_subdef(f)) { |
|
/* Try the lookup in the current set of to-be-added defs first. If not |
|
* there, try existing defs. */ |
|
upb_def *subdef = upb_resolvename(&addtab, base, name); |
|
if (subdef == NULL) { |
|
subdef = upb_resolvename(&s->symtab, base, name); |
|
} |
|
if (subdef == NULL) { |
|
upb_status_seterrf( |
|
status, "couldn't resolve name '%s' in message '%s'", name, base); |
|
goto err; |
|
} else if (!upb_fielddef_setsubdef(f, subdef, status)) { |
|
goto err; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* We need an array of the defs in addtab, for passing to upb_def_freeze. */ |
|
add_defs = malloc(sizeof(void*) * upb_strtable_count(&addtab)); |
|
if (add_defs == NULL) goto oom_err; |
|
upb_strtable_begin(&iter, &addtab); |
|
for (n = 0; !upb_strtable_done(&iter); upb_strtable_next(&iter)) { |
|
add_defs[n++] = upb_value_getptr(upb_strtable_iter_value(&iter)); |
|
} |
|
|
|
if (!upb_def_freeze(add_defs, n, status)) goto err; |
|
|
|
/* This must be delayed until all errors have been detected, since error |
|
* recovery code uses this table to cleanup defs. */ |
|
upb_strtable_uninit(&addtab); |
|
|
|
/* TODO(haberman) we don't properly handle errors after this point (like |
|
* OOM in upb_strtable_insert() below). */ |
|
for (i = 0; i < n; i++) { |
|
upb_def *def = add_defs[i]; |
|
const char *name = upb_def_fullname(def); |
|
upb_value v; |
|
bool success; |
|
|
|
if (upb_strtable_remove(&s->symtab, name, &v)) { |
|
const upb_def *def = upb_value_getptr(v); |
|
upb_def_unref(def, s); |
|
} |
|
success = upb_strtable_insert(&s->symtab, name, upb_value_ptr(def)); |
|
UPB_ASSERT_VAR(success, success == true); |
|
} |
|
free(add_defs); |
|
return true; |
|
|
|
oom_err: |
|
upb_status_seterrmsg(status, "out of memory"); |
|
err: { |
|
/* For defs the user passed in, we need to donate the refs back. For defs |
|
* we dup'd, we need to just unref them. */ |
|
upb_strtable_begin(&iter, &addtab); |
|
for (; !upb_strtable_done(&iter); upb_strtable_next(&iter)) { |
|
upb_def *def = upb_value_getptr(upb_strtable_iter_value(&iter)); |
|
bool came_from_user = def->came_from_user; |
|
def->came_from_user = false; |
|
if (came_from_user) { |
|
upb_def_donateref(def, s, ref_donor); |
|
} else { |
|
upb_def_unref(def, s); |
|
} |
|
} |
|
} |
|
upb_strtable_uninit(&addtab); |
|
free(add_defs); |
|
assert(!upb_ok(status)); |
|
return false; |
|
} |
|
|
|
/* Iteration. */ |
|
|
|
static void advance_to_matching(upb_symtab_iter *iter) { |
|
if (iter->type == UPB_DEF_ANY) |
|
return; |
|
|
|
while (!upb_strtable_done(&iter->iter) && |
|
iter->type != upb_symtab_iter_def(iter)->type) { |
|
upb_strtable_next(&iter->iter); |
|
} |
|
} |
|
|
|
void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s, |
|
upb_deftype_t type) { |
|
upb_strtable_begin(&iter->iter, &s->symtab); |
|
iter->type = type; |
|
advance_to_matching(iter); |
|
} |
|
|
|
void upb_symtab_next(upb_symtab_iter *iter) { |
|
upb_strtable_next(&iter->iter); |
|
advance_to_matching(iter); |
|
} |
|
|
|
bool upb_symtab_done(const upb_symtab_iter *iter) { |
|
return upb_strtable_done(&iter->iter); |
|
} |
|
|
|
const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter) { |
|
return upb_value_getptr(upb_strtable_iter_value(&iter->iter)); |
|
} |
|
/* |
|
** upb_table Implementation |
|
** |
|
** Implementation is heavily inspired by Lua's ltable.c. |
|
*/ |
|
|
|
|
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
#define UPB_MAXARRSIZE 16 /* 64k. */ |
|
|
|
/* From Chromium. */ |
|
#define ARRAY_SIZE(x) \ |
|
((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x]))))) |
|
|
|
static const double MAX_LOAD = 0.85; |
|
|
|
/* The minimum utilization of the array part of a mixed hash/array table. This |
|
* is a speed/memory-usage tradeoff (though it's not straightforward because of |
|
* cache effects). The lower this is, the more memory we'll use. */ |
|
static const double MIN_DENSITY = 0.1; |
|
|
|
bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; } |
|
|
|
int log2ceil(uint64_t v) { |
|
int ret = 0; |
|
bool pow2 = is_pow2(v); |
|
while (v >>= 1) ret++; |
|
ret = pow2 ? ret : ret + 1; /* Ceiling. */ |
|
return UPB_MIN(UPB_MAXARRSIZE, ret); |
|
} |
|
|
|
char *upb_strdup(const char *s) { |
|
return upb_strdup2(s, strlen(s)); |
|
} |
|
|
|
char *upb_strdup2(const char *s, size_t len) { |
|
size_t n; |
|
char *p; |
|
|
|
/* Prevent overflow errors. */ |
|
if (len == SIZE_MAX) return NULL; |
|
/* Always null-terminate, even if binary data; but don't rely on the input to |
|
* have a null-terminating byte since it may be a raw binary buffer. */ |
|
n = len + 1; |
|
p = malloc(n); |
|
if (p) { |
|
memcpy(p, s, len); |
|
p[len] = 0; |
|
} |
|
return p; |
|
} |
|
|
|
/* A type to represent the lookup key of either a strtable or an inttable. */ |
|
typedef union { |
|
uintptr_t num; |
|
struct { |
|
const char *str; |
|
size_t len; |
|
} str; |
|
} lookupkey_t; |
|
|
|
static lookupkey_t strkey2(const char *str, size_t len) { |
|
lookupkey_t k; |
|
k.str.str = str; |
|
k.str.len = len; |
|
return k; |
|
} |
|
|
|
static lookupkey_t intkey(uintptr_t key) { |
|
lookupkey_t k; |
|
k.num = key; |
|
return k; |
|
} |
|
|
|
typedef uint32_t hashfunc_t(upb_tabkey key); |
|
typedef bool eqlfunc_t(upb_tabkey k1, lookupkey_t k2); |
|
|
|
/* Base table (shared code) ***************************************************/ |
|
|
|
/* For when we need to cast away const. */ |
|
static upb_tabent *mutable_entries(upb_table *t) { |
|
return (upb_tabent*)t->entries; |
|
} |
|
|
|
static bool isfull(upb_table *t) { |
|
return (double)(t->count + 1) / upb_table_size(t) > MAX_LOAD; |
|
} |
|
|
|
static bool init(upb_table *t, upb_ctype_t ctype, uint8_t size_lg2) { |
|
size_t bytes; |
|
|
|
t->count = 0; |
|
t->ctype = ctype; |
|
t->size_lg2 = size_lg2; |
|
t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0; |
|
bytes = upb_table_size(t) * sizeof(upb_tabent); |
|
if (bytes > 0) { |
|
t->entries = malloc(bytes); |
|
if (!t->entries) return false; |
|
memset(mutable_entries(t), 0, bytes); |
|
} else { |
|
t->entries = NULL; |
|
} |
|
return true; |
|
} |
|
|
|
static void uninit(upb_table *t) { free(mutable_entries(t)); } |
|
|
|
static upb_tabent *emptyent(upb_table *t) { |
|
upb_tabent *e = mutable_entries(t) + upb_table_size(t); |
|
while (1) { if (upb_tabent_isempty(--e)) return e; assert(e > t->entries); } |
|
} |
|
|
|
static upb_tabent *getentry_mutable(upb_table *t, uint32_t hash) { |
|
return (upb_tabent*)upb_getentry(t, hash); |
|
} |
|
|
|
static const upb_tabent *findentry(const upb_table *t, lookupkey_t key, |
|
uint32_t hash, eqlfunc_t *eql) { |
|
const upb_tabent *e; |
|
|
|
if (t->size_lg2 == 0) return NULL; |
|
e = upb_getentry(t, hash); |
|
if (upb_tabent_isempty(e)) return NULL; |
|
while (1) { |
|
if (eql(e->key, key)) return e; |
|
if ((e = e->next) == NULL) return NULL; |
|
} |
|
} |
|
|
|
static upb_tabent *findentry_mutable(upb_table *t, lookupkey_t key, |
|
uint32_t hash, eqlfunc_t *eql) { |
|
return (upb_tabent*)findentry(t, key, hash, eql); |
|
} |
|
|
|
static bool lookup(const upb_table *t, lookupkey_t key, upb_value *v, |
|
uint32_t hash, eqlfunc_t *eql) { |
|
const upb_tabent *e = findentry(t, key, hash, eql); |
|
if (e) { |
|
if (v) { |
|
_upb_value_setval(v, e->val.val, t->ctype); |
|
} |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
/* The given key must not already exist in the table. */ |
|
static void insert(upb_table *t, lookupkey_t key, upb_tabkey tabkey, |
|
upb_value val, uint32_t hash, |
|
hashfunc_t *hashfunc, eqlfunc_t *eql) { |
|
upb_tabent *mainpos_e; |
|
upb_tabent *our_e; |
|
|
|
UPB_UNUSED(eql); |
|
UPB_UNUSED(key); |
|
assert(findentry(t, key, hash, eql) == NULL); |
|
assert(val.ctype == t->ctype); |
|
|
|
t->count++; |
|
mainpos_e = getentry_mutable(t, hash); |
|
our_e = mainpos_e; |
|
|
|
if (upb_tabent_isempty(mainpos_e)) { |
|
/* Our main position is empty; use it. */ |
|
our_e->next = NULL; |
|
} else { |
|
/* Collision. */ |
|
upb_tabent *new_e = emptyent(t); |
|
/* Head of collider's chain. */ |
|
upb_tabent *chain = getentry_mutable(t, hashfunc(mainpos_e->key)); |
|
if (chain == mainpos_e) { |
|
/* Existing ent is in its main posisiton (it has the same hash as us, and |
|
* is the head of our chain). Insert to new ent and append to this chain. */ |
|
new_e->next = mainpos_e->next; |
|
mainpos_e->next = new_e; |
|
our_e = new_e; |
|
} else { |
|
/* Existing ent is not in its main position (it is a node in some other |
|
* chain). This implies that no existing ent in the table has our hash. |
|
* Evict it (updating its chain) and use its ent for head of our chain. */ |
|
*new_e = *mainpos_e; /* copies next. */ |
|
while (chain->next != mainpos_e) { |
|
chain = (upb_tabent*)chain->next; |
|
assert(chain); |
|
} |
|
chain->next = new_e; |
|
our_e = mainpos_e; |
|
our_e->next = NULL; |
|
} |
|
} |
|
our_e->key = tabkey; |
|
our_e->val.val = val.val; |
|
assert(findentry(t, key, hash, eql) == our_e); |
|
} |
|
|
|
static bool rm(upb_table *t, lookupkey_t key, upb_value *val, |
|
upb_tabkey *removed, uint32_t hash, eqlfunc_t *eql) { |
|
upb_tabent *chain = getentry_mutable(t, hash); |
|
if (upb_tabent_isempty(chain)) return false; |
|
if (eql(chain->key, key)) { |
|
/* Element to remove is at the head of its chain. */ |
|
t->count--; |
|
if (val) { |
|
_upb_value_setval(val, chain->val.val, t->ctype); |
|
} |
|
if (chain->next) { |
|
upb_tabent *move = (upb_tabent*)chain->next; |
|
*chain = *move; |
|
if (removed) *removed = move->key; |
|
move->key = 0; /* Make the slot empty. */ |
|
} else { |
|
if (removed) *removed = chain->key; |
|
chain->key = 0; /* Make the slot empty. */ |
|
} |
|
return true; |
|
} else { |
|
/* Element to remove is either in a non-head position or not in the |
|
* table. */ |
|
while (chain->next && !eql(chain->next->key, key)) |
|
chain = (upb_tabent*)chain->next; |
|
if (chain->next) { |
|
/* Found element to remove. */ |
|
upb_tabent *rm; |
|
|
|
if (val) { |
|
_upb_value_setval(val, chain->next->val.val, t->ctype); |
|
} |
|
rm = (upb_tabent*)chain->next; |
|
if (removed) *removed = rm->key; |
|
rm->key = 0; |
|
chain->next = rm->next; |
|
t->count--; |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
} |
|
|
|
static size_t next(const upb_table *t, size_t i) { |
|
do { |
|
if (++i >= upb_table_size(t)) |
|
return SIZE_MAX; |
|
} while(upb_tabent_isempty(&t->entries[i])); |
|
|
|
return i; |
|
} |
|
|
|
static size_t begin(const upb_table *t) { |
|
return next(t, -1); |
|
} |
|
|
|
|
|
/* upb_strtable ***************************************************************/ |
|
|
|
/* A simple "subclass" of upb_table that only adds a hash function for strings. */ |
|
|
|
static upb_tabkey strcopy(lookupkey_t k2) { |
|
char *str = malloc(k2.str.len + sizeof(uint32_t) + 1); |
|
if (str == NULL) return 0; |
|
memcpy(str, &k2.str.len, sizeof(uint32_t)); |
|
memcpy(str + sizeof(uint32_t), k2.str.str, k2.str.len + 1); |
|
return (uintptr_t)str; |
|
} |
|
|
|
static uint32_t strhash(upb_tabkey key) { |
|
uint32_t len; |
|
char *str = upb_tabstr(key, &len); |
|
return MurmurHash2(str, len, 0); |
|
} |
|
|
|
static bool streql(upb_tabkey k1, lookupkey_t k2) { |
|
uint32_t len; |
|
char *str = upb_tabstr(k1, &len); |
|
return len == k2.str.len && memcmp(str, k2.str.str, len) == 0; |
|
} |
|
|
|
bool upb_strtable_init(upb_strtable *t, upb_ctype_t ctype) { |
|
return init(&t->t, ctype, 2); |
|
} |
|
|
|
void upb_strtable_uninit(upb_strtable *t) { |
|
size_t i; |
|
for (i = 0; i < upb_table_size(&t->t); i++) |
|
free((void*)t->t.entries[i].key); |
|
uninit(&t->t); |
|
} |
|
|
|
bool upb_strtable_resize(upb_strtable *t, size_t size_lg2) { |
|
upb_strtable new_table; |
|
upb_strtable_iter i; |
|
|
|
if (!init(&new_table.t, t->t.ctype, size_lg2)) |
|
return false; |
|
upb_strtable_begin(&i, t); |
|
for ( ; !upb_strtable_done(&i); upb_strtable_next(&i)) { |
|
upb_strtable_insert2( |
|
&new_table, |
|
upb_strtable_iter_key(&i), |
|
upb_strtable_iter_keylength(&i), |
|
upb_strtable_iter_value(&i)); |
|
} |
|
upb_strtable_uninit(t); |
|
*t = new_table; |
|
return true; |
|
} |
|
|
|
bool upb_strtable_insert2(upb_strtable *t, const char *k, size_t len, |
|
upb_value v) { |
|
lookupkey_t key; |
|
upb_tabkey tabkey; |
|
uint32_t hash; |
|
|
|
if (isfull(&t->t)) { |
|
/* Need to resize. New table of double the size, add old elements to it. */ |
|
if (!upb_strtable_resize(t, t->t.size_lg2 + 1)) { |
|
return false; |
|
} |
|
} |
|
|
|
key = strkey2(k, len); |
|
tabkey = strcopy(key); |
|
if (tabkey == 0) return false; |
|
|
|
hash = MurmurHash2(key.str.str, key.str.len, 0); |
|
insert(&t->t, key, tabkey, v, hash, &strhash, &streql); |
|
return true; |
|
} |
|
|
|
bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len, |
|
upb_value *v) { |
|
uint32_t hash = MurmurHash2(key, len, 0); |
|
return lookup(&t->t, strkey2(key, len), v, hash, &streql); |
|
} |
|
|
|
bool upb_strtable_remove2(upb_strtable *t, const char *key, size_t len, |
|
upb_value *val) { |
|
uint32_t hash = MurmurHash2(key, strlen(key), 0); |
|
upb_tabkey tabkey; |
|
if (rm(&t->t, strkey2(key, len), val, &tabkey, hash, &streql)) { |
|
free((void*)tabkey); |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
/* Iteration */ |
|
|
|
static const upb_tabent *str_tabent(const upb_strtable_iter *i) { |
|
return &i->t->t.entries[i->index]; |
|
} |
|
|
|
void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t) { |
|
i->t = t; |
|
i->index = begin(&t->t); |
|
} |
|
|
|
void upb_strtable_next(upb_strtable_iter *i) { |
|
i->index = next(&i->t->t, i->index); |
|
} |
|
|
|
bool upb_strtable_done(const upb_strtable_iter *i) { |
|
return i->index >= upb_table_size(&i->t->t) || |
|
upb_tabent_isempty(str_tabent(i)); |
|
} |
|
|
|
const char *upb_strtable_iter_key(upb_strtable_iter *i) { |
|
assert(!upb_strtable_done(i)); |
|
return upb_tabstr(str_tabent(i)->key, NULL); |
|
} |
|
|
|
size_t upb_strtable_iter_keylength(upb_strtable_iter *i) { |
|
uint32_t len; |
|
assert(!upb_strtable_done(i)); |
|
upb_tabstr(str_tabent(i)->key, &len); |
|
return len; |
|
} |
|
|
|
upb_value upb_strtable_iter_value(const upb_strtable_iter *i) { |
|
assert(!upb_strtable_done(i)); |
|
return _upb_value_val(str_tabent(i)->val.val, i->t->t.ctype); |
|
} |
|
|
|
void upb_strtable_iter_setdone(upb_strtable_iter *i) { |
|
i->index = SIZE_MAX; |
|
} |
|
|
|
bool upb_strtable_iter_isequal(const upb_strtable_iter *i1, |
|
const upb_strtable_iter *i2) { |
|
if (upb_strtable_done(i1) && upb_strtable_done(i2)) |
|
return true; |
|
return i1->t == i2->t && i1->index == i2->index; |
|
} |
|
|
|
|
|
/* upb_inttable ***************************************************************/ |
|
|
|
/* For inttables we use a hybrid structure where small keys are kept in an |
|
* array and large keys are put in the hash table. */ |
|
|
|
static uint32_t inthash(upb_tabkey key) { return upb_inthash(key); } |
|
|
|
static bool inteql(upb_tabkey k1, lookupkey_t k2) { |
|
return k1 == k2.num; |
|
} |
|
|
|
static upb_tabval *mutable_array(upb_inttable *t) { |
|
return (upb_tabval*)t->array; |
|
} |
|
|
|
static upb_tabval *inttable_val(upb_inttable *t, uintptr_t key) { |
|
if (key < t->array_size) { |
|
return upb_arrhas(t->array[key]) ? &(mutable_array(t)[key]) : NULL; |
|
} else { |
|
upb_tabent *e = |
|
findentry_mutable(&t->t, intkey(key), upb_inthash(key), &inteql); |
|
return e ? &e->val : NULL; |
|
} |
|
} |
|
|
|
static const upb_tabval *inttable_val_const(const upb_inttable *t, |
|
uintptr_t key) { |
|
return inttable_val((upb_inttable*)t, key); |
|
} |
|
|
|
size_t upb_inttable_count(const upb_inttable *t) { |
|
return t->t.count + t->array_count; |
|
} |
|
|
|
static void check(upb_inttable *t) { |
|
UPB_UNUSED(t); |
|
#if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG) |
|
{ |
|
/* This check is very expensive (makes inserts/deletes O(N)). */ |
|
size_t count = 0; |
|
upb_inttable_iter i; |
|
upb_inttable_begin(&i, t); |
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i), count++) { |
|
assert(upb_inttable_lookup(t, upb_inttable_iter_key(&i), NULL)); |
|
} |
|
assert(count == upb_inttable_count(t)); |
|
} |
|
#endif |
|
} |
|
|
|
bool upb_inttable_sizedinit(upb_inttable *t, upb_ctype_t ctype, |
|
size_t asize, int hsize_lg2) { |
|
size_t array_bytes; |
|
|
|
if (!init(&t->t, ctype, hsize_lg2)) return false; |
|
/* Always make the array part at least 1 long, so that we know key 0 |
|
* won't be in the hash part, which simplifies things. */ |
|
t->array_size = UPB_MAX(1, asize); |
|
t->array_count = 0; |
|
array_bytes = t->array_size * sizeof(upb_value); |
|
t->array = malloc(array_bytes); |
|
if (!t->array) { |
|
uninit(&t->t); |
|
return false; |
|
} |
|
memset(mutable_array(t), 0xff, array_bytes); |
|
check(t); |
|
return true; |
|
} |
|
|
|
bool upb_inttable_init(upb_inttable *t, upb_ctype_t ctype) { |
|
return upb_inttable_sizedinit(t, ctype, 0, 4); |
|
} |
|
|
|
void upb_inttable_uninit(upb_inttable *t) { |
|
uninit(&t->t); |
|
free(mutable_array(t)); |
|
} |
|
|
|
bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val) { |
|
/* XXX: Table can't store value (uint64_t)-1. Need to somehow statically |
|
* guarantee that this is not necessary, or fix the limitation. */ |
|
upb_tabval tabval; |
|
tabval.val = val.val; |
|
UPB_UNUSED(tabval); |
|
assert(upb_arrhas(tabval)); |
|
|
|
if (key < t->array_size) { |
|
assert(!upb_arrhas(t->array[key])); |
|
t->array_count++; |
|
mutable_array(t)[key].val = val.val; |
|
} else { |
|
if (isfull(&t->t)) { |
|
/* Need to resize the hash part, but we re-use the array part. */ |
|
size_t i; |
|
upb_table new_table; |
|
if (!init(&new_table, t->t.ctype, t->t.size_lg2 + 1)) |
|
return false; |
|
for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) { |
|
const upb_tabent *e = &t->t.entries[i]; |
|
uint32_t hash; |
|
upb_value v; |
|
|
|
_upb_value_setval(&v, e->val.val, t->t.ctype); |
|
hash = upb_inthash(e->key); |
|
insert(&new_table, intkey(e->key), e->key, v, hash, &inthash, &inteql); |
|
} |
|
|
|
assert(t->t.count == new_table.count); |
|
|
|
uninit(&t->t); |
|
t->t = new_table; |
|
} |
|
insert(&t->t, intkey(key), key, val, upb_inthash(key), &inthash, &inteql); |
|
} |
|
check(t); |
|
return true; |
|
} |
|
|
|
bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v) { |
|
const upb_tabval *table_v = inttable_val_const(t, key); |
|
if (!table_v) return false; |
|
if (v) _upb_value_setval(v, table_v->val, t->t.ctype); |
|
return true; |
|
} |
|
|
|
bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val) { |
|
upb_tabval *table_v = inttable_val(t, key); |
|
if (!table_v) return false; |
|
table_v->val = val.val; |
|
return true; |
|
} |
|
|
|
bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val) { |
|
bool success; |
|
if (key < t->array_size) { |
|
if (upb_arrhas(t->array[key])) { |
|
upb_tabval empty = UPB_TABVALUE_EMPTY_INIT; |
|
t->array_count--; |
|
if (val) { |
|
_upb_value_setval(val, t->array[key].val, t->t.ctype); |
|
} |
|
mutable_array(t)[key] = empty; |
|
success = true; |
|
} else { |
|
success = false; |
|
} |
|
} else { |
|
upb_tabkey removed; |
|
uint32_t hash = upb_inthash(key); |
|
success = rm(&t->t, intkey(key), val, &removed, hash, &inteql); |
|
} |
|
check(t); |
|
return success; |
|
} |
|
|
|
bool upb_inttable_push(upb_inttable *t, upb_value val) { |
|
return upb_inttable_insert(t, upb_inttable_count(t), val); |
|
} |
|
|
|
upb_value upb_inttable_pop(upb_inttable *t) { |
|
upb_value val; |
|
bool ok = upb_inttable_remove(t, upb_inttable_count(t) - 1, &val); |
|
UPB_ASSERT_VAR(ok, ok); |
|
return val; |
|
} |
|
|
|
bool upb_inttable_insertptr(upb_inttable *t, const void *key, upb_value val) { |
|
return upb_inttable_insert(t, (uintptr_t)key, val); |
|
} |
|
|
|
bool upb_inttable_lookupptr(const upb_inttable *t, const void *key, |
|
upb_value *v) { |
|
return upb_inttable_lookup(t, (uintptr_t)key, v); |
|
} |
|
|
|
bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val) { |
|
return upb_inttable_remove(t, (uintptr_t)key, val); |
|
} |
|
|
|
void upb_inttable_compact(upb_inttable *t) { |
|
/* Create a power-of-two histogram of the table keys. */ |
|
int counts[UPB_MAXARRSIZE + 1] = {0}; |
|
uintptr_t max_key = 0; |
|
upb_inttable_iter i; |
|
size_t arr_size; |
|
int arr_count; |
|
upb_inttable new_t; |
|
|
|
upb_inttable_begin(&i, t); |
|
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
uintptr_t key = upb_inttable_iter_key(&i); |
|
if (key > max_key) { |
|
max_key = key; |
|
} |
|
counts[log2ceil(key)]++; |
|
} |
|
|
|
arr_size = 1; |
|
arr_count = upb_inttable_count(t); |
|
|
|
if (upb_inttable_count(t) >= max_key * MIN_DENSITY) { |
|
/* We can put 100% of the entries in the array part. */ |
|
arr_size = max_key + 1; |
|
} else { |
|
/* Find the largest power of two that satisfies the MIN_DENSITY |
|
* definition. */ |
|
int size_lg2; |
|
for (size_lg2 = ARRAY_SIZE(counts) - 1; size_lg2 > 1; size_lg2--) { |
|
arr_size = 1 << size_lg2; |
|
arr_count -= counts[size_lg2]; |
|
if (arr_count >= arr_size * MIN_DENSITY) { |
|
break; |
|
} |
|
} |
|
} |
|
|
|
/* Array part must always be at least 1 entry large to catch lookups of key |
|
* 0. Key 0 must always be in the array part because "0" in the hash part |
|
* denotes an empty entry. */ |
|
arr_size = UPB_MAX(arr_size, 1); |
|
|
|
{ |
|
/* Insert all elements into new, perfectly-sized table. */ |
|
int hash_count = upb_inttable_count(t) - arr_count; |
|
int hash_size = hash_count ? (hash_count / MAX_LOAD) + 1 : 0; |
|
int hashsize_lg2 = log2ceil(hash_size); |
|
|
|
assert(hash_count >= 0); |
|
upb_inttable_sizedinit(&new_t, t->t.ctype, arr_size, hashsize_lg2); |
|
upb_inttable_begin(&i, t); |
|
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
uintptr_t k = upb_inttable_iter_key(&i); |
|
upb_inttable_insert(&new_t, k, upb_inttable_iter_value(&i)); |
|
} |
|
assert(new_t.array_size == arr_size); |
|
assert(new_t.t.size_lg2 == hashsize_lg2); |
|
} |
|
upb_inttable_uninit(t); |
|
*t = new_t; |
|
} |
|
|
|
/* Iteration. */ |
|
|
|
static const upb_tabent *int_tabent(const upb_inttable_iter *i) { |
|
assert(!i->array_part); |
|
return &i->t->t.entries[i->index]; |
|
} |
|
|
|
static upb_tabval int_arrent(const upb_inttable_iter *i) { |
|
assert(i->array_part); |
|
return i->t->array[i->index]; |
|
} |
|
|
|
void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t) { |
|
i->t = t; |
|
i->index = -1; |
|
i->array_part = true; |
|
upb_inttable_next(i); |
|
} |
|
|
|
void upb_inttable_next(upb_inttable_iter *iter) { |
|
const upb_inttable *t = iter->t; |
|
if (iter->array_part) { |
|
while (++iter->index < t->array_size) { |
|
if (upb_arrhas(int_arrent(iter))) { |
|
return; |
|
} |
|
} |
|
iter->array_part = false; |
|
iter->index = begin(&t->t); |
|
} else { |
|
iter->index = next(&t->t, iter->index); |
|
} |
|
} |
|
|
|
bool upb_inttable_done(const upb_inttable_iter *i) { |
|
if (i->array_part) { |
|
return i->index >= i->t->array_size || |
|
!upb_arrhas(int_arrent(i)); |
|
} else { |
|
return i->index >= upb_table_size(&i->t->t) || |
|
upb_tabent_isempty(int_tabent(i)); |
|
} |
|
} |
|
|
|
uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i) { |
|
assert(!upb_inttable_done(i)); |
|
return i->array_part ? i->index : int_tabent(i)->key; |
|
} |
|
|
|
upb_value upb_inttable_iter_value(const upb_inttable_iter *i) { |
|
assert(!upb_inttable_done(i)); |
|
return _upb_value_val( |
|
i->array_part ? i->t->array[i->index].val : int_tabent(i)->val.val, |
|
i->t->t.ctype); |
|
} |
|
|
|
void upb_inttable_iter_setdone(upb_inttable_iter *i) { |
|
i->index = SIZE_MAX; |
|
i->array_part = false; |
|
} |
|
|
|
bool upb_inttable_iter_isequal(const upb_inttable_iter *i1, |
|
const upb_inttable_iter *i2) { |
|
if (upb_inttable_done(i1) && upb_inttable_done(i2)) |
|
return true; |
|
return i1->t == i2->t && i1->index == i2->index && |
|
i1->array_part == i2->array_part; |
|
} |
|
|
|
#ifdef UPB_UNALIGNED_READS_OK |
|
/* ----------------------------------------------------------------------------- |
|
* MurmurHash2, by Austin Appleby (released as public domain). |
|
* Reformatted and C99-ified by Joshua Haberman. |
|
* Note - This code makes a few assumptions about how your machine behaves - |
|
* 1. We can read a 4-byte value from any address without crashing |
|
* 2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t |
|
* And it has a few limitations - |
|
* 1. It will not work incrementally. |
|
* 2. It will not produce the same results on little-endian and big-endian |
|
* machines. */ |
|
uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed) { |
|
/* 'm' and 'r' are mixing constants generated offline. |
|
* They're not really 'magic', they just happen to work well. */ |
|
const uint32_t m = 0x5bd1e995; |
|
const int32_t r = 24; |
|
|
|
/* Initialize the hash to a 'random' value */ |
|
uint32_t h = seed ^ len; |
|
|
|
/* Mix 4 bytes at a time into the hash */ |
|
const uint8_t * data = (const uint8_t *)key; |
|
while(len >= 4) { |
|
uint32_t k = *(uint32_t *)data; |
|
|
|
k *= m; |
|
k ^= k >> r; |
|
k *= m; |
|
|
|
h *= m; |
|
h ^= k; |
|
|
|
data += 4; |
|
len -= 4; |
|
} |
|
|
|
/* Handle the last few bytes of the input array */ |
|
switch(len) { |
|
case 3: h ^= data[2] << 16; |
|
case 2: h ^= data[1] << 8; |
|
case 1: h ^= data[0]; h *= m; |
|
}; |
|
|
|
/* Do a few final mixes of the hash to ensure the last few |
|
* bytes are well-incorporated. */ |
|
h ^= h >> 13; |
|
h *= m; |
|
h ^= h >> 15; |
|
|
|
return h; |
|
} |
|
|
|
#else /* !UPB_UNALIGNED_READS_OK */ |
|
|
|
/* ----------------------------------------------------------------------------- |
|
* MurmurHashAligned2, by Austin Appleby |
|
* Same algorithm as MurmurHash2, but only does aligned reads - should be safer |
|
* on certain platforms. |
|
* Performance will be lower than MurmurHash2 */ |
|
|
|
#define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; } |
|
|
|
uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed) { |
|
const uint32_t m = 0x5bd1e995; |
|
const int32_t r = 24; |
|
const uint8_t * data = (const uint8_t *)key; |
|
uint32_t h = seed ^ len; |
|
uint8_t align = (uintptr_t)data & 3; |
|
|
|
if(align && (len >= 4)) { |
|
/* Pre-load the temp registers */ |
|
uint32_t t = 0, d = 0; |
|
int32_t sl; |
|
int32_t sr; |
|
|
|
switch(align) { |
|
case 1: t |= data[2] << 16; |
|
case 2: t |= data[1] << 8; |
|
case 3: t |= data[0]; |
|
} |
|
|
|
t <<= (8 * align); |
|
|
|
data += 4-align; |
|
len -= 4-align; |
|
|
|
sl = 8 * (4-align); |
|
sr = 8 * align; |
|
|
|
/* Mix */ |
|
|
|
while(len >= 4) { |
|
uint32_t k; |
|
|
|
d = *(uint32_t *)data; |
|
t = (t >> sr) | (d << sl); |
|
|
|
k = t; |
|
|
|
MIX(h,k,m); |
|
|
|
t = d; |
|
|
|
data += 4; |
|
len -= 4; |
|
} |
|
|
|
/* Handle leftover data in temp registers */ |
|
|
|
d = 0; |
|
|
|
if(len >= align) { |
|
uint32_t k; |
|
|
|
switch(align) { |
|
case 3: d |= data[2] << 16; |
|
case 2: d |= data[1] << 8; |
|
case 1: d |= data[0]; |
|
} |
|
|
|
k = (t >> sr) | (d << sl); |
|
MIX(h,k,m); |
|
|
|
data += align; |
|
len -= align; |
|
|
|
/* ---------- |
|
* Handle tail bytes */ |
|
|
|
switch(len) { |
|
case 3: h ^= data[2] << 16; |
|
case 2: h ^= data[1] << 8; |
|
case 1: h ^= data[0]; h *= m; |
|
}; |
|
} else { |
|
switch(len) { |
|
case 3: d |= data[2] << 16; |
|
case 2: d |= data[1] << 8; |
|
case 1: d |= data[0]; |
|
case 0: h ^= (t >> sr) | (d << sl); h *= m; |
|
} |
|
} |
|
|
|
h ^= h >> 13; |
|
h *= m; |
|
h ^= h >> 15; |
|
|
|
return h; |
|
} else { |
|
while(len >= 4) { |
|
uint32_t k = *(uint32_t *)data; |
|
|
|
MIX(h,k,m); |
|
|
|
data += 4; |
|
len -= 4; |
|
} |
|
|
|
/* ---------- |
|
* Handle tail bytes */ |
|
|
|
switch(len) { |
|
case 3: h ^= data[2] << 16; |
|
case 2: h ^= data[1] << 8; |
|
case 1: h ^= data[0]; h *= m; |
|
}; |
|
|
|
h ^= h >> 13; |
|
h *= m; |
|
h ^= h >> 15; |
|
|
|
return h; |
|
} |
|
} |
|
#undef MIX |
|
|
|
#endif /* UPB_UNALIGNED_READS_OK */ |
|
|
|
#include <errno.h> |
|
#include <stdarg.h> |
|
#include <stddef.h> |
|
#include <stdint.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
bool upb_dumptostderr(void *closure, const upb_status* status) { |
|
UPB_UNUSED(closure); |
|
fprintf(stderr, "%s\n", upb_status_errmsg(status)); |
|
return false; |
|
} |
|
|
|
/* Guarantee null-termination and provide ellipsis truncation. |
|
* It may be tempting to "optimize" this by initializing these final |
|
* four bytes up-front and then being careful never to overwrite them, |
|
* this is safer and simpler. */ |
|
static void nullz(upb_status *status) { |
|
const char *ellipsis = "..."; |
|
size_t len = strlen(ellipsis); |
|
assert(sizeof(status->msg) > len); |
|
memcpy(status->msg + sizeof(status->msg) - len, ellipsis, len); |
|
} |
|
|
|
void upb_status_clear(upb_status *status) { |
|
if (!status) return; |
|
status->ok_ = true; |
|
status->code_ = 0; |
|
status->msg[0] = '\0'; |
|
} |
|
|
|
bool upb_ok(const upb_status *status) { return status->ok_; } |
|
|
|
upb_errorspace *upb_status_errspace(const upb_status *status) { |
|
return status->error_space_; |
|
} |
|
|
|
int upb_status_errcode(const upb_status *status) { return status->code_; } |
|
|
|
const char *upb_status_errmsg(const upb_status *status) { return status->msg; } |
|
|
|
void upb_status_seterrmsg(upb_status *status, const char *msg) { |
|
if (!status) return; |
|
status->ok_ = false; |
|
strncpy(status->msg, msg, sizeof(status->msg)); |
|
nullz(status); |
|
} |
|
|
|
void upb_status_seterrf(upb_status *status, const char *fmt, ...) { |
|
va_list args; |
|
va_start(args, fmt); |
|
upb_status_vseterrf(status, fmt, args); |
|
va_end(args); |
|
} |
|
|
|
void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args) { |
|
if (!status) return; |
|
status->ok_ = false; |
|
_upb_vsnprintf(status->msg, sizeof(status->msg), fmt, args); |
|
nullz(status); |
|
} |
|
|
|
void upb_status_seterrcode(upb_status *status, upb_errorspace *space, |
|
int code) { |
|
if (!status) return; |
|
status->ok_ = false; |
|
status->error_space_ = space; |
|
status->code_ = code; |
|
space->set_message(status, code); |
|
} |
|
|
|
void upb_status_copy(upb_status *to, const upb_status *from) { |
|
if (!to) return; |
|
*to = *from; |
|
} |
|
/* This file was generated by upbc (the upb compiler). |
|
* Do not edit -- your changes will be discarded when the file is |
|
* regenerated. */ |
|
|
|
|
|
static const upb_msgdef msgs[20]; |
|
static const upb_fielddef fields[81]; |
|
static const upb_enumdef enums[4]; |
|
static const upb_tabent strentries[236]; |
|
static const upb_tabent intentries[14]; |
|
static const upb_tabval arrays[232]; |
|
|
|
#ifdef UPB_DEBUG_REFS |
|
static upb_inttable reftables[212]; |
|
#endif |
|
|
|
static const upb_msgdef msgs[20] = { |
|
UPB_MSGDEF_INIT("google.protobuf.DescriptorProto", 27, 6, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[0], 8, 7), UPB_STRTABLE_INIT(7, 15, UPB_CTYPE_PTR, 4, &strentries[0]),&reftables[0], &reftables[1]), |
|
UPB_MSGDEF_INIT("google.protobuf.DescriptorProto.ExtensionRange", 4, 0, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[8], 3, 2), UPB_STRTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &strentries[16]),&reftables[2], &reftables[3]), |
|
UPB_MSGDEF_INIT("google.protobuf.EnumDescriptorProto", 11, 2, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[11], 4, 3), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[20]),&reftables[4], &reftables[5]), |
|
UPB_MSGDEF_INIT("google.protobuf.EnumOptions", 7, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[0], &arrays[15], 8, 1), UPB_STRTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &strentries[24]),&reftables[6], &reftables[7]), |
|
UPB_MSGDEF_INIT("google.protobuf.EnumValueDescriptorProto", 8, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[23], 4, 3), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[28]),&reftables[8], &reftables[9]), |
|
UPB_MSGDEF_INIT("google.protobuf.EnumValueOptions", 6, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[2], &arrays[27], 4, 0), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[32]),&reftables[10], &reftables[11]), |
|
UPB_MSGDEF_INIT("google.protobuf.FieldDescriptorProto", 19, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[31], 9, 8), UPB_STRTABLE_INIT(8, 15, UPB_CTYPE_PTR, 4, &strentries[36]),&reftables[12], &reftables[13]), |
|
UPB_MSGDEF_INIT("google.protobuf.FieldOptions", 14, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[4], &arrays[40], 32, 6), UPB_STRTABLE_INIT(7, 15, UPB_CTYPE_PTR, 4, &strentries[52]),&reftables[14], &reftables[15]), |
|
UPB_MSGDEF_INIT("google.protobuf.FileDescriptorProto", 39, 6, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[72], 12, 11), UPB_STRTABLE_INIT(11, 15, UPB_CTYPE_PTR, 4, &strentries[68]),&reftables[16], &reftables[17]), |
|
UPB_MSGDEF_INIT("google.protobuf.FileDescriptorSet", 6, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[84], 2, 1), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[84]),&reftables[18], &reftables[19]), |
|
UPB_MSGDEF_INIT("google.protobuf.FileOptions", 21, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[6], &arrays[86], 64, 9), UPB_STRTABLE_INIT(10, 15, UPB_CTYPE_PTR, 4, &strentries[88]),&reftables[20], &reftables[21]), |
|
UPB_MSGDEF_INIT("google.protobuf.MessageOptions", 8, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[8], &arrays[150], 16, 2), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[104]),&reftables[22], &reftables[23]), |
|
UPB_MSGDEF_INIT("google.protobuf.MethodDescriptorProto", 13, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[166], 5, 4), UPB_STRTABLE_INIT(4, 7, UPB_CTYPE_PTR, 3, &strentries[108]),&reftables[24], &reftables[25]), |
|
UPB_MSGDEF_INIT("google.protobuf.MethodOptions", 6, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[10], &arrays[171], 4, 0), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[116]),&reftables[26], &reftables[27]), |
|
UPB_MSGDEF_INIT("google.protobuf.ServiceDescriptorProto", 11, 2, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[175], 4, 3), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[120]),&reftables[28], &reftables[29]), |
|
UPB_MSGDEF_INIT("google.protobuf.ServiceOptions", 6, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[12], &arrays[179], 4, 0), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[124]),&reftables[30], &reftables[31]), |
|
UPB_MSGDEF_INIT("google.protobuf.SourceCodeInfo", 6, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[183], 2, 1), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[128]),&reftables[32], &reftables[33]), |
|
UPB_MSGDEF_INIT("google.protobuf.SourceCodeInfo.Location", 14, 0, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[185], 5, 4), UPB_STRTABLE_INIT(4, 7, UPB_CTYPE_PTR, 3, &strentries[132]),&reftables[34], &reftables[35]), |
|
UPB_MSGDEF_INIT("google.protobuf.UninterpretedOption", 18, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[190], 9, 7), UPB_STRTABLE_INIT(7, 15, UPB_CTYPE_PTR, 4, &strentries[140]),&reftables[36], &reftables[37]), |
|
UPB_MSGDEF_INIT("google.protobuf.UninterpretedOption.NamePart", 6, 0, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[199], 3, 2), UPB_STRTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &strentries[156]),&reftables[38], &reftables[39]), |
|
}; |
|
|
|
static const upb_fielddef fields[81] = { |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "aggregate_value", 8, &msgs[18], NULL, 15, 6, {0},&reftables[40], &reftables[41]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "allow_alias", 2, &msgs[3], NULL, 6, 1, {0},&reftables[42], &reftables[43]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "cc_generic_services", 16, &msgs[10], NULL, 17, 6, {0},&reftables[44], &reftables[45]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "ctype", 1, &msgs[7], (const upb_def*)(&enums[2]), 6, 1, {0},&reftables[46], &reftables[47]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "default_value", 7, &msgs[6], NULL, 16, 7, {0},&reftables[48], &reftables[49]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_STRING, 0, false, false, false, false, "dependency", 3, &msgs[8], NULL, 30, 8, {0},&reftables[50], &reftables[51]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "deprecated", 3, &msgs[7], NULL, 8, 3, {0},&reftables[52], &reftables[53]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_DOUBLE, 0, false, false, false, false, "double_value", 6, &msgs[18], NULL, 11, 4, {0},&reftables[54], &reftables[55]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "end", 2, &msgs[1], NULL, 3, 1, {0},&reftables[56], &reftables[57]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "enum_type", 4, &msgs[0], (const upb_def*)(&msgs[2]), 16, 2, {0},&reftables[58], &reftables[59]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "enum_type", 5, &msgs[8], (const upb_def*)(&msgs[2]), 13, 1, {0},&reftables[60], &reftables[61]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "experimental_map_key", 9, &msgs[7], NULL, 10, 5, {0},&reftables[62], &reftables[63]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "extendee", 2, &msgs[6], NULL, 7, 2, {0},&reftables[64], &reftables[65]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "extension", 7, &msgs[8], (const upb_def*)(&msgs[6]), 19, 3, {0},&reftables[66], &reftables[67]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "extension", 6, &msgs[0], (const upb_def*)(&msgs[6]), 22, 4, {0},&reftables[68], &reftables[69]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "extension_range", 5, &msgs[0], (const upb_def*)(&msgs[1]), 19, 3, {0},&reftables[70], &reftables[71]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "field", 2, &msgs[0], (const upb_def*)(&msgs[6]), 10, 0, {0},&reftables[72], &reftables[73]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "file", 1, &msgs[9], (const upb_def*)(&msgs[8]), 5, 0, {0},&reftables[74], &reftables[75]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "go_package", 11, &msgs[10], NULL, 14, 5, {0},&reftables[76], &reftables[77]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "identifier_value", 3, &msgs[18], NULL, 6, 1, {0},&reftables[78], &reftables[79]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "input_type", 2, &msgs[12], NULL, 7, 2, {0},&reftables[80], &reftables[81]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REQUIRED, UPB_TYPE_BOOL, 0, false, false, false, false, "is_extension", 2, &msgs[19], NULL, 5, 1, {0},&reftables[82], &reftables[83]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "java_generate_equals_and_hash", 20, &msgs[10], NULL, 20, 9, {0},&reftables[84], &reftables[85]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "java_generic_services", 17, &msgs[10], NULL, 18, 7, {0},&reftables[86], &reftables[87]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "java_multiple_files", 10, &msgs[10], NULL, 13, 4, {0},&reftables[88], &reftables[89]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "java_outer_classname", 8, &msgs[10], NULL, 9, 2, {0},&reftables[90], &reftables[91]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "java_package", 1, &msgs[10], NULL, 6, 1, {0},&reftables[92], &reftables[93]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "label", 4, &msgs[6], (const upb_def*)(&enums[0]), 11, 4, {0},&reftables[94], &reftables[95]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "lazy", 5, &msgs[7], NULL, 9, 4, {0},&reftables[96], &reftables[97]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "leading_comments", 3, &msgs[17], NULL, 8, 2, {0},&reftables[98], &reftables[99]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "location", 1, &msgs[16], (const upb_def*)(&msgs[17]), 5, 0, {0},&reftables[100], &reftables[101]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "message_set_wire_format", 1, &msgs[11], NULL, 6, 1, {0},&reftables[102], &reftables[103]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "message_type", 4, &msgs[8], (const upb_def*)(&msgs[0]), 10, 0, {0},&reftables[104], &reftables[105]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "method", 2, &msgs[14], (const upb_def*)(&msgs[12]), 6, 0, {0},&reftables[106], &reftables[107]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[8], NULL, 22, 6, {0},&reftables[108], &reftables[109]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[14], NULL, 8, 2, {0},&reftables[110], &reftables[111]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "name", 2, &msgs[18], (const upb_def*)(&msgs[19]), 5, 0, {0},&reftables[112], &reftables[113]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[4], NULL, 4, 1, {0},&reftables[114], &reftables[115]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[0], NULL, 24, 6, {0},&reftables[116], &reftables[117]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[12], NULL, 4, 1, {0},&reftables[118], &reftables[119]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[2], NULL, 8, 2, {0},&reftables[120], &reftables[121]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[6], NULL, 4, 1, {0},&reftables[122], &reftables[123]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REQUIRED, UPB_TYPE_STRING, 0, false, false, false, false, "name_part", 1, &msgs[19], NULL, 2, 0, {0},&reftables[124], &reftables[125]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT64, UPB_INTFMT_VARIABLE, false, false, false, false, "negative_int_value", 5, &msgs[18], NULL, 10, 3, {0},&reftables[126], &reftables[127]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "nested_type", 3, &msgs[0], (const upb_def*)(&msgs[0]), 13, 1, {0},&reftables[128], &reftables[129]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "no_standard_descriptor_accessor", 2, &msgs[11], NULL, 7, 2, {0},&reftables[130], &reftables[131]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "number", 3, &msgs[6], NULL, 10, 3, {0},&reftables[132], &reftables[133]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "number", 2, &msgs[4], NULL, 7, 2, {0},&reftables[134], &reftables[135]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "optimize_for", 9, &msgs[10], (const upb_def*)(&enums[3]), 12, 3, {0},&reftables[136], &reftables[137]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 7, &msgs[0], (const upb_def*)(&msgs[11]), 23, 5, {0},&reftables[138], &reftables[139]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 3, &msgs[2], (const upb_def*)(&msgs[3]), 7, 1, {0},&reftables[140], &reftables[141]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 8, &msgs[6], (const upb_def*)(&msgs[7]), 3, 0, {0},&reftables[142], &reftables[143]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 3, &msgs[4], (const upb_def*)(&msgs[5]), 3, 0, {0},&reftables[144], &reftables[145]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 8, &msgs[8], (const upb_def*)(&msgs[10]), 20, 4, {0},&reftables[146], &reftables[147]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 3, &msgs[14], (const upb_def*)(&msgs[15]), 7, 1, {0},&reftables[148], &reftables[149]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 4, &msgs[12], (const upb_def*)(&msgs[13]), 3, 0, {0},&reftables[150], &reftables[151]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "output_type", 3, &msgs[12], NULL, 10, 3, {0},&reftables[152], &reftables[153]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "package", 2, &msgs[8], NULL, 25, 7, {0},&reftables[154], &reftables[155]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "packed", 2, &msgs[7], NULL, 7, 2, {0},&reftables[156], &reftables[157]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, true, "path", 1, &msgs[17], NULL, 4, 0, {0},&reftables[158], &reftables[159]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_UINT64, UPB_INTFMT_VARIABLE, false, false, false, false, "positive_int_value", 4, &msgs[18], NULL, 9, 2, {0},&reftables[160], &reftables[161]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "public_dependency", 10, &msgs[8], NULL, 35, 9, {0},&reftables[162], &reftables[163]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "py_generic_services", 18, &msgs[10], NULL, 19, 8, {0},&reftables[164], &reftables[165]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "service", 6, &msgs[8], (const upb_def*)(&msgs[14]), 16, 2, {0},&reftables[166], &reftables[167]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "source_code_info", 9, &msgs[8], (const upb_def*)(&msgs[16]), 21, 5, {0},&reftables[168], &reftables[169]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, true, "span", 2, &msgs[17], NULL, 7, 1, {0},&reftables[170], &reftables[171]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "start", 1, &msgs[1], NULL, 2, 0, {0},&reftables[172], &reftables[173]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BYTES, 0, false, false, false, false, "string_value", 7, &msgs[18], NULL, 12, 5, {0},&reftables[174], &reftables[175]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "trailing_comments", 4, &msgs[17], NULL, 11, 3, {0},&reftables[176], &reftables[177]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "type", 5, &msgs[6], (const upb_def*)(&enums[1]), 12, 5, {0},&reftables[178], &reftables[179]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "type_name", 6, &msgs[6], NULL, 13, 6, {0},&reftables[180], &reftables[181]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[5], (const upb_def*)(&msgs[18]), 5, 0, {0},&reftables[182], &reftables[183]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[15], (const upb_def*)(&msgs[18]), 5, 0, {0},&reftables[184], &reftables[185]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[3], (const upb_def*)(&msgs[18]), 5, 0, {0},&reftables[186], &reftables[187]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[13], (const upb_def*)(&msgs[18]), 5, 0, {0},&reftables[188], &reftables[189]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[10], (const upb_def*)(&msgs[18]), 5, 0, {0},&reftables[190], &reftables[191]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[11], (const upb_def*)(&msgs[18]), 5, 0, {0},&reftables[192], &reftables[193]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[7], (const upb_def*)(&msgs[18]), 5, 0, {0},&reftables[194], &reftables[195]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "value", 2, &msgs[2], (const upb_def*)(&msgs[4]), 6, 0, {0},&reftables[196], &reftables[197]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "weak", 10, &msgs[7], NULL, 13, 6, {0},&reftables[198], &reftables[199]), |
|
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "weak_dependency", 11, &msgs[8], NULL, 38, 10, {0},&reftables[200], &reftables[201]), |
|
}; |
|
|
|
static const upb_enumdef enums[4] = { |
|
UPB_ENUMDEF_INIT("google.protobuf.FieldDescriptorProto.Label", UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_INT32, 2, &strentries[160]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[202], 4, 3), 0, &reftables[202], &reftables[203]), |
|
UPB_ENUMDEF_INIT("google.protobuf.FieldDescriptorProto.Type", UPB_STRTABLE_INIT(18, 31, UPB_CTYPE_INT32, 5, &strentries[164]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[206], 19, 18), 0, &reftables[204], &reftables[205]), |
|
UPB_ENUMDEF_INIT("google.protobuf.FieldOptions.CType", UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_INT32, 2, &strentries[196]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[225], 3, 3), 0, &reftables[206], &reftables[207]), |
|
UPB_ENUMDEF_INIT("google.protobuf.FileOptions.OptimizeMode", UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_INT32, 2, &strentries[200]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[228], 4, 3), 0, &reftables[208], &reftables[209]), |
|
}; |
|
|
|
static const upb_tabent strentries[236] = { |
|
{UPB_TABKEY_STR("\011", "\000", "\000", "\000", "extension"), UPB_TABVALUE_PTR_INIT(&fields[14]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT(&fields[38]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\005", "\000", "\000", "\000", "field"), UPB_TABVALUE_PTR_INIT(&fields[16]), NULL}, |
|
{UPB_TABKEY_STR("\017", "\000", "\000", "\000", "extension_range"), UPB_TABVALUE_PTR_INIT(&fields[15]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\013", "\000", "\000", "\000", "nested_type"), UPB_TABVALUE_PTR_INIT(&fields[44]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_INIT(&fields[49]), NULL}, |
|
{UPB_TABKEY_STR("\011", "\000", "\000", "\000", "enum_type"), UPB_TABVALUE_PTR_INIT(&fields[9]), &strentries[14]}, |
|
{UPB_TABKEY_STR("\005", "\000", "\000", "\000", "start"), UPB_TABVALUE_PTR_INIT(&fields[66]), NULL}, |
|
{UPB_TABKEY_STR("\003", "\000", "\000", "\000", "end"), UPB_TABVALUE_PTR_INIT(&fields[8]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\005", "\000", "\000", "\000", "value"), UPB_TABVALUE_PTR_INIT(&fields[78]), NULL}, |
|
{UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_INIT(&fields[50]), NULL}, |
|
{UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT(&fields[40]), &strentries[22]}, |
|
{UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_TABVALUE_PTR_INIT(&fields[73]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\013", "\000", "\000", "\000", "allow_alias"), UPB_TABVALUE_PTR_INIT(&fields[1]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\006", "\000", "\000", "\000", "number"), UPB_TABVALUE_PTR_INIT(&fields[47]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_INIT(&fields[52]), NULL}, |
|
{UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT(&fields[37]), &strentries[30]}, |
|
{UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_TABVALUE_PTR_INIT(&fields[71]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\005", "\000", "\000", "\000", "label"), UPB_TABVALUE_PTR_INIT(&fields[27]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT(&fields[41]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\006", "\000", "\000", "\000", "number"), UPB_TABVALUE_PTR_INIT(&fields[46]), &strentries[49]}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\011", "\000", "\000", "\000", "type_name"), UPB_TABVALUE_PTR_INIT(&fields[70]), NULL}, |
|
{UPB_TABKEY_STR("\010", "\000", "\000", "\000", "extendee"), UPB_TABVALUE_PTR_INIT(&fields[12]), NULL}, |
|
{UPB_TABKEY_STR("\004", "\000", "\000", "\000", "type"), UPB_TABVALUE_PTR_INIT(&fields[69]), &strentries[48]}, |
|
{UPB_TABKEY_STR("\015", "\000", "\000", "\000", "default_value"), UPB_TABVALUE_PTR_INIT(&fields[4]), NULL}, |
|
{UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_INIT(&fields[51]), NULL}, |
|
{UPB_TABKEY_STR("\024", "\000", "\000", "\000", "experimental_map_key"), UPB_TABVALUE_PTR_INIT(&fields[11]), &strentries[67]}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\004", "\000", "\000", "\000", "weak"), UPB_TABVALUE_PTR_INIT(&fields[79]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\006", "\000", "\000", "\000", "packed"), UPB_TABVALUE_PTR_INIT(&fields[58]), NULL}, |
|
{UPB_TABKEY_STR("\004", "\000", "\000", "\000", "lazy"), UPB_TABVALUE_PTR_INIT(&fields[28]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\005", "\000", "\000", "\000", "ctype"), UPB_TABVALUE_PTR_INIT(&fields[3]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\012", "\000", "\000", "\000", "deprecated"), UPB_TABVALUE_PTR_INIT(&fields[6]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_TABVALUE_PTR_INIT(&fields[77]), NULL}, |
|
{UPB_TABKEY_STR("\011", "\000", "\000", "\000", "extension"), UPB_TABVALUE_PTR_INIT(&fields[13]), NULL}, |
|
{UPB_TABKEY_STR("\017", "\000", "\000", "\000", "weak_dependency"), UPB_TABVALUE_PTR_INIT(&fields[80]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT(&fields[34]), NULL}, |
|
{UPB_TABKEY_STR("\007", "\000", "\000", "\000", "service"), UPB_TABVALUE_PTR_INIT(&fields[63]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\020", "\000", "\000", "\000", "source_code_info"), UPB_TABVALUE_PTR_INIT(&fields[64]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\012", "\000", "\000", "\000", "dependency"), UPB_TABVALUE_PTR_INIT(&fields[5]), NULL}, |
|
{UPB_TABKEY_STR("\014", "\000", "\000", "\000", "message_type"), UPB_TABVALUE_PTR_INIT(&fields[32]), NULL}, |
|
{UPB_TABKEY_STR("\007", "\000", "\000", "\000", "package"), UPB_TABVALUE_PTR_INIT(&fields[57]), NULL}, |
|
{UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_INIT(&fields[53]), &strentries[82]}, |
|
{UPB_TABKEY_STR("\011", "\000", "\000", "\000", "enum_type"), UPB_TABVALUE_PTR_INIT(&fields[10]), NULL}, |
|
{UPB_TABKEY_STR("\021", "\000", "\000", "\000", "public_dependency"), UPB_TABVALUE_PTR_INIT(&fields[61]), &strentries[81]}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\004", "\000", "\000", "\000", "file"), UPB_TABVALUE_PTR_INIT(&fields[17]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_TABVALUE_PTR_INIT(&fields[75]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\023", "\000", "\000", "\000", "cc_generic_services"), UPB_TABVALUE_PTR_INIT(&fields[2]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\023", "\000", "\000", "\000", "java_multiple_files"), UPB_TABVALUE_PTR_INIT(&fields[24]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\025", "\000", "\000", "\000", "java_generic_services"), UPB_TABVALUE_PTR_INIT(&fields[23]), &strentries[102]}, |
|
{UPB_TABKEY_STR("\035", "\000", "\000", "\000", "java_generate_equals_and_hash"), UPB_TABVALUE_PTR_INIT(&fields[22]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\012", "\000", "\000", "\000", "go_package"), UPB_TABVALUE_PTR_INIT(&fields[18]), NULL}, |
|
{UPB_TABKEY_STR("\014", "\000", "\000", "\000", "java_package"), UPB_TABVALUE_PTR_INIT(&fields[26]), NULL}, |
|
{UPB_TABKEY_STR("\014", "\000", "\000", "\000", "optimize_for"), UPB_TABVALUE_PTR_INIT(&fields[48]), NULL}, |
|
{UPB_TABKEY_STR("\023", "\000", "\000", "\000", "py_generic_services"), UPB_TABVALUE_PTR_INIT(&fields[62]), NULL}, |
|
{UPB_TABKEY_STR("\024", "\000", "\000", "\000", "java_outer_classname"), UPB_TABVALUE_PTR_INIT(&fields[25]), NULL}, |
|
{UPB_TABKEY_STR("\027", "\000", "\000", "\000", "message_set_wire_format"), UPB_TABVALUE_PTR_INIT(&fields[31]), &strentries[106]}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_TABVALUE_PTR_INIT(&fields[76]), NULL}, |
|
{UPB_TABKEY_STR("\037", "\000", "\000", "\000", "no_standard_descriptor_accessor"), UPB_TABVALUE_PTR_INIT(&fields[45]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT(&fields[39]), NULL}, |
|
{UPB_TABKEY_STR("\012", "\000", "\000", "\000", "input_type"), UPB_TABVALUE_PTR_INIT(&fields[20]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\013", "\000", "\000", "\000", "output_type"), UPB_TABVALUE_PTR_INIT(&fields[56]), NULL}, |
|
{UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_INIT(&fields[55]), NULL}, |
|
{UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_TABVALUE_PTR_INIT(&fields[74]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_INIT(&fields[54]), &strentries[122]}, |
|
{UPB_TABKEY_STR("\006", "\000", "\000", "\000", "method"), UPB_TABVALUE_PTR_INIT(&fields[33]), NULL}, |
|
{UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT(&fields[35]), &strentries[121]}, |
|
{UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_TABVALUE_PTR_INIT(&fields[72]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\010", "\000", "\000", "\000", "location"), UPB_TABVALUE_PTR_INIT(&fields[30]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\004", "\000", "\000", "\000", "span"), UPB_TABVALUE_PTR_INIT(&fields[65]), &strentries[139]}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\021", "\000", "\000", "\000", "trailing_comments"), UPB_TABVALUE_PTR_INIT(&fields[68]), NULL}, |
|
{UPB_TABKEY_STR("\020", "\000", "\000", "\000", "leading_comments"), UPB_TABVALUE_PTR_INIT(&fields[29]), &strentries[137]}, |
|
{UPB_TABKEY_STR("\004", "\000", "\000", "\000", "path"), UPB_TABVALUE_PTR_INIT(&fields[59]), NULL}, |
|
{UPB_TABKEY_STR("\014", "\000", "\000", "\000", "double_value"), UPB_TABVALUE_PTR_INIT(&fields[7]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT(&fields[36]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\022", "\000", "\000", "\000", "negative_int_value"), UPB_TABVALUE_PTR_INIT(&fields[43]), NULL}, |
|
{UPB_TABKEY_STR("\017", "\000", "\000", "\000", "aggregate_value"), UPB_TABVALUE_PTR_INIT(&fields[0]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\022", "\000", "\000", "\000", "positive_int_value"), UPB_TABVALUE_PTR_INIT(&fields[60]), NULL}, |
|
{UPB_TABKEY_STR("\020", "\000", "\000", "\000", "identifier_value"), UPB_TABVALUE_PTR_INIT(&fields[19]), NULL}, |
|
{UPB_TABKEY_STR("\014", "\000", "\000", "\000", "string_value"), UPB_TABVALUE_PTR_INIT(&fields[67]), &strentries[154]}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\014", "\000", "\000", "\000", "is_extension"), UPB_TABVALUE_PTR_INIT(&fields[21]), NULL}, |
|
{UPB_TABKEY_STR("\011", "\000", "\000", "\000", "name_part"), UPB_TABVALUE_PTR_INIT(&fields[42]), NULL}, |
|
{UPB_TABKEY_STR("\016", "\000", "\000", "\000", "LABEL_REQUIRED"), UPB_TABVALUE_INT_INIT(2), &strentries[162]}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\016", "\000", "\000", "\000", "LABEL_REPEATED"), UPB_TABVALUE_INT_INIT(3), NULL}, |
|
{UPB_TABKEY_STR("\016", "\000", "\000", "\000", "LABEL_OPTIONAL"), UPB_TABVALUE_INT_INIT(1), NULL}, |
|
{UPB_TABKEY_STR("\014", "\000", "\000", "\000", "TYPE_FIXED64"), UPB_TABVALUE_INT_INIT(6), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\013", "\000", "\000", "\000", "TYPE_STRING"), UPB_TABVALUE_INT_INIT(9), NULL}, |
|
{UPB_TABKEY_STR("\012", "\000", "\000", "\000", "TYPE_FLOAT"), UPB_TABVALUE_INT_INIT(2), &strentries[193]}, |
|
{UPB_TABKEY_STR("\013", "\000", "\000", "\000", "TYPE_DOUBLE"), UPB_TABVALUE_INT_INIT(1), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\012", "\000", "\000", "\000", "TYPE_INT32"), UPB_TABVALUE_INT_INIT(5), NULL}, |
|
{UPB_TABKEY_STR("\015", "\000", "\000", "\000", "TYPE_SFIXED32"), UPB_TABVALUE_INT_INIT(15), NULL}, |
|
{UPB_TABKEY_STR("\014", "\000", "\000", "\000", "TYPE_FIXED32"), UPB_TABVALUE_INT_INIT(7), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\014", "\000", "\000", "\000", "TYPE_MESSAGE"), UPB_TABVALUE_INT_INIT(11), &strentries[194]}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\012", "\000", "\000", "\000", "TYPE_INT64"), UPB_TABVALUE_INT_INIT(3), &strentries[191]}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\011", "\000", "\000", "\000", "TYPE_ENUM"), UPB_TABVALUE_INT_INIT(14), NULL}, |
|
{UPB_TABKEY_STR("\013", "\000", "\000", "\000", "TYPE_UINT32"), UPB_TABVALUE_INT_INIT(13), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\013", "\000", "\000", "\000", "TYPE_UINT64"), UPB_TABVALUE_INT_INIT(4), &strentries[190]}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\015", "\000", "\000", "\000", "TYPE_SFIXED64"), UPB_TABVALUE_INT_INIT(16), NULL}, |
|
{UPB_TABKEY_STR("\012", "\000", "\000", "\000", "TYPE_BYTES"), UPB_TABVALUE_INT_INIT(12), NULL}, |
|
{UPB_TABKEY_STR("\013", "\000", "\000", "\000", "TYPE_SINT64"), UPB_TABVALUE_INT_INIT(18), NULL}, |
|
{UPB_TABKEY_STR("\011", "\000", "\000", "\000", "TYPE_BOOL"), UPB_TABVALUE_INT_INIT(8), NULL}, |
|
{UPB_TABKEY_STR("\012", "\000", "\000", "\000", "TYPE_GROUP"), UPB_TABVALUE_INT_INIT(10), NULL}, |
|
{UPB_TABKEY_STR("\013", "\000", "\000", "\000", "TYPE_SINT32"), UPB_TABVALUE_INT_INIT(17), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\004", "\000", "\000", "\000", "CORD"), UPB_TABVALUE_INT_INIT(1), NULL}, |
|
{UPB_TABKEY_STR("\006", "\000", "\000", "\000", "STRING"), UPB_TABVALUE_INT_INIT(0), &strentries[197]}, |
|
{UPB_TABKEY_STR("\014", "\000", "\000", "\000", "STRING_PIECE"), UPB_TABVALUE_INT_INIT(2), NULL}, |
|
{UPB_TABKEY_STR("\011", "\000", "\000", "\000", "CODE_SIZE"), UPB_TABVALUE_INT_INIT(2), NULL}, |
|
{UPB_TABKEY_STR("\005", "\000", "\000", "\000", "SPEED"), UPB_TABVALUE_INT_INIT(1), &strentries[203]}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\014", "\000", "\000", "\000", "LITE_RUNTIME"), UPB_TABVALUE_INT_INIT(3), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\047", "\000", "\000", "\000", "google.protobuf.SourceCodeInfo.Location"), UPB_TABVALUE_PTR_INIT(&msgs[17]), NULL}, |
|
{UPB_TABKEY_STR("\043", "\000", "\000", "\000", "google.protobuf.UninterpretedOption"), UPB_TABVALUE_PTR_INIT(&msgs[18]), NULL}, |
|
{UPB_TABKEY_STR("\043", "\000", "\000", "\000", "google.protobuf.FileDescriptorProto"), UPB_TABVALUE_PTR_INIT(&msgs[8]), NULL}, |
|
{UPB_TABKEY_STR("\045", "\000", "\000", "\000", "google.protobuf.MethodDescriptorProto"), UPB_TABVALUE_PTR_INIT(&msgs[12]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\040", "\000", "\000", "\000", "google.protobuf.EnumValueOptions"), UPB_TABVALUE_PTR_INIT(&msgs[5]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\037", "\000", "\000", "\000", "google.protobuf.DescriptorProto"), UPB_TABVALUE_PTR_INIT(&msgs[0]), &strentries[228]}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\036", "\000", "\000", "\000", "google.protobuf.SourceCodeInfo"), UPB_TABVALUE_PTR_INIT(&msgs[16]), NULL}, |
|
{UPB_TABKEY_STR("\051", "\000", "\000", "\000", "google.protobuf.FieldDescriptorProto.Type"), UPB_TABVALUE_PTR_INIT(&enums[1]), NULL}, |
|
{UPB_TABKEY_STR("\056", "\000", "\000", "\000", "google.protobuf.DescriptorProto.ExtensionRange"), UPB_TABVALUE_PTR_INIT(&msgs[1]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_STR("\050", "\000", "\000", "\000", "google.protobuf.EnumValueDescriptorProto"), UPB_TABVALUE_PTR_INIT(&msgs[4]), NULL}, |
|
{UPB_TABKEY_STR("\034", "\000", "\000", "\000", "google.protobuf.FieldOptions"), UPB_TABVALUE_PTR_INIT(&msgs[7]), NULL}, |
|
{UPB_TABKEY_STR("\033", "\000", "\000", "\000", "google.protobuf.FileOptions"), UPB_TABVALUE_PTR_INIT(&msgs[10]), NULL}, |
|
{UPB_TABKEY_STR("\043", "\000", "\000", "\000", "google.protobuf.EnumDescriptorProto"), UPB_TABVALUE_PTR_INIT(&msgs[2]), &strentries[233]}, |
|
{UPB_TABKEY_STR("\052", "\000", "\000", "\000", "google.protobuf.FieldDescriptorProto.Label"), UPB_TABVALUE_PTR_INIT(&enums[0]), NULL}, |
|
{UPB_TABKEY_STR("\046", "\000", "\000", "\000", "google.protobuf.ServiceDescriptorProto"), UPB_TABVALUE_PTR_INIT(&msgs[14]), NULL}, |
|
{UPB_TABKEY_STR("\042", "\000", "\000", "\000", "google.protobuf.FieldOptions.CType"), UPB_TABVALUE_PTR_INIT(&enums[2]), &strentries[229]}, |
|
{UPB_TABKEY_STR("\041", "\000", "\000", "\000", "google.protobuf.FileDescriptorSet"), UPB_TABVALUE_PTR_INIT(&msgs[9]), &strentries[235]}, |
|
{UPB_TABKEY_STR("\033", "\000", "\000", "\000", "google.protobuf.EnumOptions"), UPB_TABVALUE_PTR_INIT(&msgs[3]), NULL}, |
|
{UPB_TABKEY_STR("\044", "\000", "\000", "\000", "google.protobuf.FieldDescriptorProto"), UPB_TABVALUE_PTR_INIT(&msgs[6]), NULL}, |
|
{UPB_TABKEY_STR("\050", "\000", "\000", "\000", "google.protobuf.FileOptions.OptimizeMode"), UPB_TABVALUE_PTR_INIT(&enums[3]), &strentries[221]}, |
|
{UPB_TABKEY_STR("\036", "\000", "\000", "\000", "google.protobuf.ServiceOptions"), UPB_TABVALUE_PTR_INIT(&msgs[15]), NULL}, |
|
{UPB_TABKEY_STR("\036", "\000", "\000", "\000", "google.protobuf.MessageOptions"), UPB_TABVALUE_PTR_INIT(&msgs[11]), NULL}, |
|
{UPB_TABKEY_STR("\035", "\000", "\000", "\000", "google.protobuf.MethodOptions"), UPB_TABVALUE_PTR_INIT(&msgs[13]), &strentries[226]}, |
|
{UPB_TABKEY_STR("\054", "\000", "\000", "\000", "google.protobuf.UninterpretedOption.NamePart"), UPB_TABVALUE_PTR_INIT(&msgs[19]), NULL}, |
|
}; |
|
|
|
static const upb_tabent intentries[14] = { |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[73]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[71]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[77]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[75]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[76]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[74]), NULL}, |
|
{UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, |
|
{UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[72]), NULL}, |
|
}; |
|
|
|
static const upb_tabval arrays[232] = { |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[38]), |
|
UPB_TABVALUE_PTR_INIT(&fields[16]), |
|
UPB_TABVALUE_PTR_INIT(&fields[44]), |
|
UPB_TABVALUE_PTR_INIT(&fields[9]), |
|
UPB_TABVALUE_PTR_INIT(&fields[15]), |
|
UPB_TABVALUE_PTR_INIT(&fields[14]), |
|
UPB_TABVALUE_PTR_INIT(&fields[49]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[66]), |
|
UPB_TABVALUE_PTR_INIT(&fields[8]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[40]), |
|
UPB_TABVALUE_PTR_INIT(&fields[78]), |
|
UPB_TABVALUE_PTR_INIT(&fields[50]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[1]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[37]), |
|
UPB_TABVALUE_PTR_INIT(&fields[47]), |
|
UPB_TABVALUE_PTR_INIT(&fields[52]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[41]), |
|
UPB_TABVALUE_PTR_INIT(&fields[12]), |
|
UPB_TABVALUE_PTR_INIT(&fields[46]), |
|
UPB_TABVALUE_PTR_INIT(&fields[27]), |
|
UPB_TABVALUE_PTR_INIT(&fields[69]), |
|
UPB_TABVALUE_PTR_INIT(&fields[70]), |
|
UPB_TABVALUE_PTR_INIT(&fields[4]), |
|
UPB_TABVALUE_PTR_INIT(&fields[51]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[3]), |
|
UPB_TABVALUE_PTR_INIT(&fields[58]), |
|
UPB_TABVALUE_PTR_INIT(&fields[6]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[28]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[11]), |
|
UPB_TABVALUE_PTR_INIT(&fields[79]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[34]), |
|
UPB_TABVALUE_PTR_INIT(&fields[57]), |
|
UPB_TABVALUE_PTR_INIT(&fields[5]), |
|
UPB_TABVALUE_PTR_INIT(&fields[32]), |
|
UPB_TABVALUE_PTR_INIT(&fields[10]), |
|
UPB_TABVALUE_PTR_INIT(&fields[63]), |
|
UPB_TABVALUE_PTR_INIT(&fields[13]), |
|
UPB_TABVALUE_PTR_INIT(&fields[53]), |
|
UPB_TABVALUE_PTR_INIT(&fields[64]), |
|
UPB_TABVALUE_PTR_INIT(&fields[61]), |
|
UPB_TABVALUE_PTR_INIT(&fields[80]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[17]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[26]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[25]), |
|
UPB_TABVALUE_PTR_INIT(&fields[48]), |
|
UPB_TABVALUE_PTR_INIT(&fields[24]), |
|
UPB_TABVALUE_PTR_INIT(&fields[18]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[2]), |
|
UPB_TABVALUE_PTR_INIT(&fields[23]), |
|
UPB_TABVALUE_PTR_INIT(&fields[62]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[22]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[31]), |
|
UPB_TABVALUE_PTR_INIT(&fields[45]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[39]), |
|
UPB_TABVALUE_PTR_INIT(&fields[20]), |
|
UPB_TABVALUE_PTR_INIT(&fields[56]), |
|
UPB_TABVALUE_PTR_INIT(&fields[55]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[35]), |
|
UPB_TABVALUE_PTR_INIT(&fields[33]), |
|
UPB_TABVALUE_PTR_INIT(&fields[54]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[30]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[59]), |
|
UPB_TABVALUE_PTR_INIT(&fields[65]), |
|
UPB_TABVALUE_PTR_INIT(&fields[29]), |
|
UPB_TABVALUE_PTR_INIT(&fields[68]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[36]), |
|
UPB_TABVALUE_PTR_INIT(&fields[19]), |
|
UPB_TABVALUE_PTR_INIT(&fields[60]), |
|
UPB_TABVALUE_PTR_INIT(&fields[43]), |
|
UPB_TABVALUE_PTR_INIT(&fields[7]), |
|
UPB_TABVALUE_PTR_INIT(&fields[67]), |
|
UPB_TABVALUE_PTR_INIT(&fields[0]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT(&fields[42]), |
|
UPB_TABVALUE_PTR_INIT(&fields[21]), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT("LABEL_OPTIONAL"), |
|
UPB_TABVALUE_PTR_INIT("LABEL_REQUIRED"), |
|
UPB_TABVALUE_PTR_INIT("LABEL_REPEATED"), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT("TYPE_DOUBLE"), |
|
UPB_TABVALUE_PTR_INIT("TYPE_FLOAT"), |
|
UPB_TABVALUE_PTR_INIT("TYPE_INT64"), |
|
UPB_TABVALUE_PTR_INIT("TYPE_UINT64"), |
|
UPB_TABVALUE_PTR_INIT("TYPE_INT32"), |
|
UPB_TABVALUE_PTR_INIT("TYPE_FIXED64"), |
|
UPB_TABVALUE_PTR_INIT("TYPE_FIXED32"), |
|
UPB_TABVALUE_PTR_INIT("TYPE_BOOL"), |
|
UPB_TABVALUE_PTR_INIT("TYPE_STRING"), |
|
UPB_TABVALUE_PTR_INIT("TYPE_GROUP"), |
|
UPB_TABVALUE_PTR_INIT("TYPE_MESSAGE"), |
|
UPB_TABVALUE_PTR_INIT("TYPE_BYTES"), |
|
UPB_TABVALUE_PTR_INIT("TYPE_UINT32"), |
|
UPB_TABVALUE_PTR_INIT("TYPE_ENUM"), |
|
UPB_TABVALUE_PTR_INIT("TYPE_SFIXED32"), |
|
UPB_TABVALUE_PTR_INIT("TYPE_SFIXED64"), |
|
UPB_TABVALUE_PTR_INIT("TYPE_SINT32"), |
|
UPB_TABVALUE_PTR_INIT("TYPE_SINT64"), |
|
UPB_TABVALUE_PTR_INIT("STRING"), |
|
UPB_TABVALUE_PTR_INIT("CORD"), |
|
UPB_TABVALUE_PTR_INIT("STRING_PIECE"), |
|
UPB_TABVALUE_EMPTY_INIT, |
|
UPB_TABVALUE_PTR_INIT("SPEED"), |
|
UPB_TABVALUE_PTR_INIT("CODE_SIZE"), |
|
UPB_TABVALUE_PTR_INIT("LITE_RUNTIME"), |
|
}; |
|
|
|
static const upb_symtab symtab = UPB_SYMTAB_INIT(UPB_STRTABLE_INIT(24, 31, UPB_CTYPE_PTR, 5, &strentries[204]), &reftables[210], &reftables[211]); |
|
|
|
const upb_symtab *upbdefs_google_protobuf_descriptor(const void *owner) { |
|
upb_symtab_ref(&symtab, owner); |
|
return &symtab; |
|
} |
|
|
|
#ifdef UPB_DEBUG_REFS |
|
static upb_inttable reftables[212] = { |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), |
|
}; |
|
#endif |
|
|
|
/* |
|
** XXX: The routines in this file that consume a string do not currently |
|
** support having the string span buffers. In the future, as upb_sink and |
|
** its buffering/sharing functionality evolve there should be an easy and |
|
** idiomatic way of correctly handling this case. For now, we accept this |
|
** limitation since we currently only parse descriptors from single strings. |
|
*/ |
|
|
|
|
|
#include <errno.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
/* upb_deflist is an internal-only dynamic array for storing a growing list of |
|
* upb_defs. */ |
|
typedef struct { |
|
upb_def **defs; |
|
size_t len; |
|
size_t size; |
|
bool owned; |
|
} upb_deflist; |
|
|
|
/* We keep a stack of all the messages scopes we are currently in, as well as |
|
* the top-level file scope. This is necessary to correctly qualify the |
|
* definitions that are contained inside. "name" tracks the name of the |
|
* message or package (a bare name -- not qualified by any enclosing scopes). */ |
|
typedef struct { |
|
char *name; |
|
/* Index of the first def that is under this scope. For msgdefs, the |
|
* msgdef itself is at start-1. */ |
|
int start; |
|
} upb_descreader_frame; |
|
|
|
/* The maximum number of nested declarations that are allowed, ie. |
|
* message Foo { |
|
* message Bar { |
|
* message Baz { |
|
* } |
|
* } |
|
* } |
|
* |
|
* This is a resource limit that affects how big our runtime stack can grow. |
|
* TODO: make this a runtime-settable property of the Reader instance. */ |
|
#define UPB_MAX_MESSAGE_NESTING 64 |
|
|
|
struct upb_descreader { |
|
upb_sink sink; |
|
upb_deflist defs; |
|
upb_descreader_frame stack[UPB_MAX_MESSAGE_NESTING]; |
|
int stack_len; |
|
|
|
uint32_t number; |
|
char *name; |
|
bool saw_number; |
|
bool saw_name; |
|
|
|
char *default_string; |
|
|
|
upb_fielddef *f; |
|
}; |
|
|
|
static char *upb_strndup(const char *buf, size_t n) { |
|
char *ret = malloc(n + 1); |
|
if (!ret) return NULL; |
|
memcpy(ret, buf, n); |
|
ret[n] = '\0'; |
|
return ret; |
|
} |
|
|
|
/* Returns a newly allocated string that joins input strings together, for |
|
* example: |
|
* join("Foo.Bar", "Baz") -> "Foo.Bar.Baz" |
|
* join("", "Baz") -> "Baz" |
|
* Caller owns a ref on the returned string. */ |
|
static char *upb_join(const char *base, const char *name) { |
|
if (!base || strlen(base) == 0) { |
|
return upb_strdup(name); |
|
} else { |
|
char *ret = malloc(strlen(base) + strlen(name) + 2); |
|
ret[0] = '\0'; |
|
strcat(ret, base); |
|
strcat(ret, "."); |
|
strcat(ret, name); |
|
return ret; |
|
} |
|
} |
|
|
|
|
|
/* upb_deflist ****************************************************************/ |
|
|
|
void upb_deflist_init(upb_deflist *l) { |
|
l->size = 0; |
|
l->defs = NULL; |
|
l->len = 0; |
|
l->owned = true; |
|
} |
|
|
|
void upb_deflist_uninit(upb_deflist *l) { |
|
size_t i; |
|
if (l->owned) |
|
for(i = 0; i < l->len; i++) |
|
upb_def_unref(l->defs[i], l); |
|
free(l->defs); |
|
} |
|
|
|
bool upb_deflist_push(upb_deflist *l, upb_def *d) { |
|
if(++l->len >= l->size) { |
|
size_t new_size = UPB_MAX(l->size, 4); |
|
new_size *= 2; |
|
l->defs = realloc(l->defs, new_size * sizeof(void *)); |
|
if (!l->defs) return false; |
|
l->size = new_size; |
|
} |
|
l->defs[l->len - 1] = d; |
|
return true; |
|
} |
|
|
|
void upb_deflist_donaterefs(upb_deflist *l, void *owner) { |
|
size_t i; |
|
assert(l->owned); |
|
for (i = 0; i < l->len; i++) |
|
upb_def_donateref(l->defs[i], l, owner); |
|
l->owned = false; |
|
} |
|
|
|
static upb_def *upb_deflist_last(upb_deflist *l) { |
|
return l->defs[l->len-1]; |
|
} |
|
|
|
/* Qualify the defname for all defs starting with offset "start" with "str". */ |
|
static void upb_deflist_qualify(upb_deflist *l, char *str, int32_t start) { |
|
uint32_t i; |
|
for (i = start; i < l->len; i++) { |
|
upb_def *def = l->defs[i]; |
|
char *name = upb_join(str, upb_def_fullname(def)); |
|
upb_def_setfullname(def, name, NULL); |
|
free(name); |
|
} |
|
} |
|
|
|
|
|
/* upb_descreader ************************************************************/ |
|
|
|
static upb_msgdef *upb_descreader_top(upb_descreader *r) { |
|
int index; |
|
assert(r->stack_len > 1); |
|
index = r->stack[r->stack_len-1].start - 1; |
|
assert(index >= 0); |
|
return upb_downcast_msgdef_mutable(r->defs.defs[index]); |
|
} |
|
|
|
static upb_def *upb_descreader_last(upb_descreader *r) { |
|
return upb_deflist_last(&r->defs); |
|
} |
|
|
|
/* Start/end handlers for FileDescriptorProto and DescriptorProto (the two |
|
* entities that have names and can contain sub-definitions. */ |
|
void upb_descreader_startcontainer(upb_descreader *r) { |
|
upb_descreader_frame *f = &r->stack[r->stack_len++]; |
|
f->start = r->defs.len; |
|
f->name = NULL; |
|
} |
|
|
|
void upb_descreader_endcontainer(upb_descreader *r) { |
|
upb_descreader_frame *f = &r->stack[--r->stack_len]; |
|
upb_deflist_qualify(&r->defs, f->name, f->start); |
|
free(f->name); |
|
f->name = NULL; |
|
} |
|
|
|
void upb_descreader_setscopename(upb_descreader *r, char *str) { |
|
upb_descreader_frame *f = &r->stack[r->stack_len-1]; |
|
free(f->name); |
|
f->name = str; |
|
} |
|
|
|
/* Handlers for google.protobuf.FileDescriptorProto. */ |
|
static bool file_startmsg(void *r, const void *hd) { |
|
UPB_UNUSED(hd); |
|
upb_descreader_startcontainer(r); |
|
return true; |
|
} |
|
|
|
static bool file_endmsg(void *closure, const void *hd, upb_status *status) { |
|
upb_descreader *r = closure; |
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(status); |
|
upb_descreader_endcontainer(r); |
|
return true; |
|
} |
|
|
|
static size_t file_onpackage(void *closure, const void *hd, const char *buf, |
|
size_t n, const upb_bufhandle *handle) { |
|
upb_descreader *r = closure; |
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(handle); |
|
/* XXX: see comment at the top of the file. */ |
|
upb_descreader_setscopename(r, upb_strndup(buf, n)); |
|
return n; |
|
} |
|
|
|
/* Handlers for google.protobuf.EnumValueDescriptorProto. */ |
|
static bool enumval_startmsg(void *closure, const void *hd) { |
|
upb_descreader *r = closure; |
|
UPB_UNUSED(hd); |
|
r->saw_number = false; |
|
r->saw_name = false; |
|
return true; |
|
} |
|
|
|
static size_t enumval_onname(void *closure, const void *hd, const char *buf, |
|
size_t n, const upb_bufhandle *handle) { |
|
upb_descreader *r = closure; |
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(handle); |
|
/* XXX: see comment at the top of the file. */ |
|
free(r->name); |
|
r->name = upb_strndup(buf, n); |
|
r->saw_name = true; |
|
return n; |
|
} |
|
|
|
static bool enumval_onnumber(void *closure, const void *hd, int32_t val) { |
|
upb_descreader *r = closure; |
|
UPB_UNUSED(hd); |
|
r->number = val; |
|
r->saw_number = true; |
|
return true; |
|
} |
|
|
|
static bool enumval_endmsg(void *closure, const void *hd, upb_status *status) { |
|
upb_descreader *r = closure; |
|
upb_enumdef *e; |
|
UPB_UNUSED(hd); |
|
|
|
if(!r->saw_number || !r->saw_name) { |
|
upb_status_seterrmsg(status, "Enum value missing name or number."); |
|
return false; |
|
} |
|
e = upb_downcast_enumdef_mutable(upb_descreader_last(r)); |
|
upb_enumdef_addval(e, r->name, r->number, status); |
|
free(r->name); |
|
r->name = NULL; |
|
return true; |
|
} |
|
|
|
|
|
/* Handlers for google.protobuf.EnumDescriptorProto. */ |
|
static bool enum_startmsg(void *closure, const void *hd) { |
|
upb_descreader *r = closure; |
|
UPB_UNUSED(hd); |
|
upb_deflist_push(&r->defs, |
|
upb_enumdef_upcast_mutable(upb_enumdef_new(&r->defs))); |
|
return true; |
|
} |
|
|
|
static bool enum_endmsg(void *closure, const void *hd, upb_status *status) { |
|
upb_descreader *r = closure; |
|
upb_enumdef *e; |
|
UPB_UNUSED(hd); |
|
|
|
e = upb_downcast_enumdef_mutable(upb_descreader_last(r)); |
|
if (upb_def_fullname(upb_descreader_last(r)) == NULL) { |
|
upb_status_seterrmsg(status, "Enum had no name."); |
|
return false; |
|
} |
|
if (upb_enumdef_numvals(e) == 0) { |
|
upb_status_seterrmsg(status, "Enum had no values."); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
static size_t enum_onname(void *closure, const void *hd, const char *buf, |
|
size_t n, const upb_bufhandle *handle) { |
|
upb_descreader *r = closure; |
|
char *fullname = upb_strndup(buf, n); |
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(handle); |
|
/* XXX: see comment at the top of the file. */ |
|
upb_def_setfullname(upb_descreader_last(r), fullname, NULL); |
|
free(fullname); |
|
return n; |
|
} |
|
|
|
/* Handlers for google.protobuf.FieldDescriptorProto */ |
|
static bool field_startmsg(void *closure, const void *hd) { |
|
upb_descreader *r = closure; |
|
UPB_UNUSED(hd); |
|
r->f = upb_fielddef_new(&r->defs); |
|
free(r->default_string); |
|
r->default_string = NULL; |
|
|
|
/* fielddefs default to packed, but descriptors default to non-packed. */ |
|
upb_fielddef_setpacked(r->f, false); |
|
return true; |
|
} |
|
|
|
/* Converts the default value in string "str" into "d". Passes a ref on str. |
|
* Returns true on success. */ |
|
static bool parse_default(char *str, upb_fielddef *f) { |
|
bool success = true; |
|
char *end; |
|
switch (upb_fielddef_type(f)) { |
|
case UPB_TYPE_INT32: { |
|
long val = strtol(str, &end, 0); |
|
if (val > INT32_MAX || val < INT32_MIN || errno == ERANGE || *end) |
|
success = false; |
|
else |
|
upb_fielddef_setdefaultint32(f, val); |
|
break; |
|
} |
|
case UPB_TYPE_INT64: { |
|
/* XXX: Need to write our own strtoll, since it's not available in c89. */ |
|
long long val = strtol(str, &end, 0); |
|
if (val > INT64_MAX || val < INT64_MIN || errno == ERANGE || *end) |
|
success = false; |
|
else |
|
upb_fielddef_setdefaultint64(f, val); |
|
break; |
|
} |
|
case UPB_TYPE_UINT32: { |
|
unsigned long val = strtoul(str, &end, 0); |
|
if (val > UINT32_MAX || errno == ERANGE || *end) |
|
success = false; |
|
else |
|
upb_fielddef_setdefaultuint32(f, val); |
|
break; |
|
} |
|
case UPB_TYPE_UINT64: { |
|
/* XXX: Need to write our own strtoull, since it's not available in c89. */ |
|
unsigned long long val = strtoul(str, &end, 0); |
|
if (val > UINT64_MAX || errno == ERANGE || *end) |
|
success = false; |
|
else |
|
upb_fielddef_setdefaultuint64(f, val); |
|
break; |
|
} |
|
case UPB_TYPE_DOUBLE: { |
|
double val = strtod(str, &end); |
|
if (errno == ERANGE || *end) |
|
success = false; |
|
else |
|
upb_fielddef_setdefaultdouble(f, val); |
|
break; |
|
} |
|
case UPB_TYPE_FLOAT: { |
|
/* XXX: Need to write our own strtof, since it's not available in c89. */ |
|
float val = strtod(str, &end); |
|
if (errno == ERANGE || *end) |
|
success = false; |
|
else |
|
upb_fielddef_setdefaultfloat(f, val); |
|
break; |
|
} |
|
case UPB_TYPE_BOOL: { |
|
if (strcmp(str, "false") == 0) |
|
upb_fielddef_setdefaultbool(f, false); |
|
else if (strcmp(str, "true") == 0) |
|
upb_fielddef_setdefaultbool(f, true); |
|
else |
|
success = false; |
|
break; |
|
} |
|
default: abort(); |
|
} |
|
return success; |
|
} |
|
|
|
static bool field_endmsg(void *closure, const void *hd, upb_status *status) { |
|
upb_descreader *r = closure; |
|
upb_fielddef *f = r->f; |
|
UPB_UNUSED(hd); |
|
|
|
/* TODO: verify that all required fields were present. */ |
|
assert(upb_fielddef_number(f) != 0); |
|
assert(upb_fielddef_name(f) != NULL); |
|
assert((upb_fielddef_subdefname(f) != NULL) == upb_fielddef_hassubdef(f)); |
|
|
|
if (r->default_string) { |
|
if (upb_fielddef_issubmsg(f)) { |
|
upb_status_seterrmsg(status, "Submessages cannot have defaults."); |
|
return false; |
|
} |
|
if (upb_fielddef_isstring(f) || upb_fielddef_type(f) == UPB_TYPE_ENUM) { |
|
upb_fielddef_setdefaultcstr(f, r->default_string, NULL); |
|
} else { |
|
if (r->default_string && !parse_default(r->default_string, f)) { |
|
/* We don't worry too much about giving a great error message since the |
|
* compiler should have ensured this was correct. */ |
|
upb_status_seterrmsg(status, "Error converting default value."); |
|
return false; |
|
} |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
static bool field_onlazy(void *closure, const void *hd, bool val) { |
|
upb_descreader *r = closure; |
|
UPB_UNUSED(hd); |
|
|
|
upb_fielddef_setlazy(r->f, val); |
|
return true; |
|
} |
|
|
|
static bool field_onpacked(void *closure, const void *hd, bool val) { |
|
upb_descreader *r = closure; |
|
UPB_UNUSED(hd); |
|
|
|
upb_fielddef_setpacked(r->f, val); |
|
return true; |
|
} |
|
|
|
static bool field_ontype(void *closure, const void *hd, int32_t val) { |
|
upb_descreader *r = closure; |
|
UPB_UNUSED(hd); |
|
|
|
upb_fielddef_setdescriptortype(r->f, val); |
|
return true; |
|
} |
|
|
|
static bool field_onlabel(void *closure, const void *hd, int32_t val) { |
|
upb_descreader *r = closure; |
|
UPB_UNUSED(hd); |
|
|
|
upb_fielddef_setlabel(r->f, val); |
|
return true; |
|
} |
|
|
|
static bool field_onnumber(void *closure, const void *hd, int32_t val) { |
|
upb_descreader *r = closure; |
|
bool ok = upb_fielddef_setnumber(r->f, val, NULL); |
|
UPB_UNUSED(hd); |
|
|
|
UPB_ASSERT_VAR(ok, ok); |
|
return true; |
|
} |
|
|
|
static size_t field_onname(void *closure, const void *hd, const char *buf, |
|
size_t n, const upb_bufhandle *handle) { |
|
upb_descreader *r = closure; |
|
char *name = upb_strndup(buf, n); |
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(handle); |
|
|
|
/* XXX: see comment at the top of the file. */ |
|
upb_fielddef_setname(r->f, name, NULL); |
|
free(name); |
|
return n; |
|
} |
|
|
|
static size_t field_ontypename(void *closure, const void *hd, const char *buf, |
|
size_t n, const upb_bufhandle *handle) { |
|
upb_descreader *r = closure; |
|
char *name = upb_strndup(buf, n); |
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(handle); |
|
|
|
/* XXX: see comment at the top of the file. */ |
|
upb_fielddef_setsubdefname(r->f, name, NULL); |
|
free(name); |
|
return n; |
|
} |
|
|
|
static size_t field_onextendee(void *closure, const void *hd, const char *buf, |
|
size_t n, const upb_bufhandle *handle) { |
|
upb_descreader *r = closure; |
|
char *name = upb_strndup(buf, n); |
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(handle); |
|
|
|
/* XXX: see comment at the top of the file. */ |
|
upb_fielddef_setcontainingtypename(r->f, name, NULL); |
|
free(name); |
|
return n; |
|
} |
|
|
|
static size_t field_ondefaultval(void *closure, const void *hd, const char *buf, |
|
size_t n, const upb_bufhandle *handle) { |
|
upb_descreader *r = closure; |
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(handle); |
|
|
|
/* Have to convert from string to the correct type, but we might not know the |
|
* type yet, so we save it as a string until the end of the field. |
|
* XXX: see comment at the top of the file. */ |
|
free(r->default_string); |
|
r->default_string = upb_strndup(buf, n); |
|
return n; |
|
} |
|
|
|
/* Handlers for google.protobuf.DescriptorProto (representing a message). */ |
|
static bool msg_startmsg(void *closure, const void *hd) { |
|
upb_descreader *r = closure; |
|
UPB_UNUSED(hd); |
|
|
|
upb_deflist_push(&r->defs, |
|
upb_msgdef_upcast_mutable(upb_msgdef_new(&r->defs))); |
|
upb_descreader_startcontainer(r); |
|
return true; |
|
} |
|
|
|
static bool msg_endmsg(void *closure, const void *hd, upb_status *status) { |
|
upb_descreader *r = closure; |
|
upb_msgdef *m = upb_descreader_top(r); |
|
UPB_UNUSED(hd); |
|
|
|
if(!upb_def_fullname(upb_msgdef_upcast_mutable(m))) { |
|
upb_status_seterrmsg(status, "Encountered message with no name."); |
|
return false; |
|
} |
|
upb_descreader_endcontainer(r); |
|
return true; |
|
} |
|
|
|
static size_t msg_onname(void *closure, const void *hd, const char *buf, |
|
size_t n, const upb_bufhandle *handle) { |
|
upb_descreader *r = closure; |
|
upb_msgdef *m = upb_descreader_top(r); |
|
/* XXX: see comment at the top of the file. */ |
|
char *name = upb_strndup(buf, n); |
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(handle); |
|
|
|
upb_def_setfullname(upb_msgdef_upcast_mutable(m), name, NULL); |
|
upb_descreader_setscopename(r, name); /* Passes ownership of name. */ |
|
return n; |
|
} |
|
|
|
static bool msg_onendfield(void *closure, const void *hd) { |
|
upb_descreader *r = closure; |
|
upb_msgdef *m = upb_descreader_top(r); |
|
UPB_UNUSED(hd); |
|
|
|
upb_msgdef_addfield(m, r->f, &r->defs, NULL); |
|
r->f = NULL; |
|
return true; |
|
} |
|
|
|
static bool pushextension(void *closure, const void *hd) { |
|
upb_descreader *r = closure; |
|
UPB_UNUSED(hd); |
|
|
|
assert(upb_fielddef_containingtypename(r->f)); |
|
upb_fielddef_setisextension(r->f, true); |
|
upb_deflist_push(&r->defs, upb_fielddef_upcast_mutable(r->f)); |
|
r->f = NULL; |
|
return true; |
|
} |
|
|
|
#define D(name) upbdefs_google_protobuf_ ## name(s) |
|
|
|
static void reghandlers(const void *closure, upb_handlers *h) { |
|
const upb_symtab *s = closure; |
|
const upb_msgdef *m = upb_handlers_msgdef(h); |
|
|
|
if (m == D(DescriptorProto)) { |
|
upb_handlers_setstartmsg(h, &msg_startmsg, NULL); |
|
upb_handlers_setendmsg(h, &msg_endmsg, NULL); |
|
upb_handlers_setstring(h, D(DescriptorProto_name), &msg_onname, NULL); |
|
upb_handlers_setendsubmsg(h, D(DescriptorProto_field), &msg_onendfield, |
|
NULL); |
|
upb_handlers_setendsubmsg(h, D(DescriptorProto_extension), &pushextension, |
|
NULL); |
|
} else if (m == D(FileDescriptorProto)) { |
|
upb_handlers_setstartmsg(h, &file_startmsg, NULL); |
|
upb_handlers_setendmsg(h, &file_endmsg, NULL); |
|
upb_handlers_setstring(h, D(FileDescriptorProto_package), &file_onpackage, |
|
NULL); |
|
upb_handlers_setendsubmsg(h, D(FileDescriptorProto_extension), &pushextension, |
|
NULL); |
|
} else if (m == D(EnumValueDescriptorProto)) { |
|
upb_handlers_setstartmsg(h, &enumval_startmsg, NULL); |
|
upb_handlers_setendmsg(h, &enumval_endmsg, NULL); |
|
upb_handlers_setstring(h, D(EnumValueDescriptorProto_name), &enumval_onname, NULL); |
|
upb_handlers_setint32(h, D(EnumValueDescriptorProto_number), &enumval_onnumber, |
|
NULL); |
|
} else if (m == D(EnumDescriptorProto)) { |
|
upb_handlers_setstartmsg(h, &enum_startmsg, NULL); |
|
upb_handlers_setendmsg(h, &enum_endmsg, NULL); |
|
upb_handlers_setstring(h, D(EnumDescriptorProto_name), &enum_onname, NULL); |
|
} else if (m == D(FieldDescriptorProto)) { |
|
upb_handlers_setstartmsg(h, &field_startmsg, NULL); |
|
upb_handlers_setendmsg(h, &field_endmsg, NULL); |
|
upb_handlers_setint32(h, D(FieldDescriptorProto_type), &field_ontype, |
|
NULL); |
|
upb_handlers_setint32(h, D(FieldDescriptorProto_label), &field_onlabel, |
|
NULL); |
|
upb_handlers_setint32(h, D(FieldDescriptorProto_number), &field_onnumber, |
|
NULL); |
|
upb_handlers_setstring(h, D(FieldDescriptorProto_name), &field_onname, |
|
NULL); |
|
upb_handlers_setstring(h, D(FieldDescriptorProto_type_name), |
|
&field_ontypename, NULL); |
|
upb_handlers_setstring(h, D(FieldDescriptorProto_extendee), |
|
&field_onextendee, NULL); |
|
upb_handlers_setstring(h, D(FieldDescriptorProto_default_value), |
|
&field_ondefaultval, NULL); |
|
} else if (m == D(FieldOptions)) { |
|
upb_handlers_setbool(h, D(FieldOptions_lazy), &field_onlazy, NULL); |
|
upb_handlers_setbool(h, D(FieldOptions_packed), &field_onpacked, NULL); |
|
} |
|
} |
|
|
|
#undef D |
|
|
|
void descreader_cleanup(void *_r) { |
|
upb_descreader *r = _r; |
|
free(r->name); |
|
upb_deflist_uninit(&r->defs); |
|
free(r->default_string); |
|
while (r->stack_len > 0) { |
|
upb_descreader_frame *f = &r->stack[--r->stack_len]; |
|
free(f->name); |
|
} |
|
} |
|
|
|
|
|
/* Public API ****************************************************************/ |
|
|
|
upb_descreader *upb_descreader_create(upb_env *e, const upb_handlers *h) { |
|
upb_descreader *r = upb_env_malloc(e, sizeof(upb_descreader)); |
|
if (!r || !upb_env_addcleanup(e, descreader_cleanup, r)) { |
|
return NULL; |
|
} |
|
|
|
upb_deflist_init(&r->defs); |
|
upb_sink_reset(upb_descreader_input(r), h, r); |
|
r->stack_len = 0; |
|
r->name = NULL; |
|
r->default_string = NULL; |
|
|
|
return r; |
|
} |
|
|
|
upb_def **upb_descreader_getdefs(upb_descreader *r, void *owner, int *n) { |
|
*n = r->defs.len; |
|
upb_deflist_donaterefs(&r->defs, owner); |
|
return r->defs.defs; |
|
} |
|
|
|
upb_sink *upb_descreader_input(upb_descreader *r) { |
|
return &r->sink; |
|
} |
|
|
|
const upb_handlers *upb_descreader_newhandlers(const void *owner) { |
|
const upb_symtab *s = upbdefs_google_protobuf_descriptor(&s); |
|
const upb_handlers *h = upb_handlers_newfrozen( |
|
upbdefs_google_protobuf_FileDescriptorSet(s), owner, reghandlers, s); |
|
upb_symtab_unref(s, &s); |
|
return h; |
|
} |
|
/* |
|
** protobuf decoder bytecode compiler |
|
** |
|
** Code to compile a upb::Handlers into bytecode for decoding a protobuf |
|
** according to that specific schema and destination handlers. |
|
** |
|
** Compiling to bytecode is always the first step. If we are using the |
|
** interpreted decoder we leave it as bytecode and interpret that. If we are |
|
** using a JIT decoder we use a code generator to turn the bytecode into native |
|
** code, LLVM IR, etc. |
|
** |
|
** Bytecode definition is in decoder.int.h. |
|
*/ |
|
|
|
#include <stdarg.h> |
|
|
|
#ifdef UPB_DUMP_BYTECODE |
|
#include <stdio.h> |
|
#endif |
|
|
|
#define MAXLABEL 5 |
|
#define EMPTYLABEL -1 |
|
|
|
/* mgroup *********************************************************************/ |
|
|
|
static void freegroup(upb_refcounted *r) { |
|
mgroup *g = (mgroup*)r; |
|
upb_inttable_uninit(&g->methods); |
|
#ifdef UPB_USE_JIT_X64 |
|
upb_pbdecoder_freejit(g); |
|
#endif |
|
free(g->bytecode); |
|
free(g); |
|
} |
|
|
|
static void visitgroup(const upb_refcounted *r, upb_refcounted_visit *visit, |
|
void *closure) { |
|
const mgroup *g = (const mgroup*)r; |
|
upb_inttable_iter i; |
|
upb_inttable_begin(&i, &g->methods); |
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i)); |
|
visit(r, upb_pbdecodermethod_upcast(method), closure); |
|
} |
|
} |
|
|
|
mgroup *newgroup(const void *owner) { |
|
mgroup *g = malloc(sizeof(*g)); |
|
static const struct upb_refcounted_vtbl vtbl = {visitgroup, freegroup}; |
|
upb_refcounted_init(mgroup_upcast_mutable(g), &vtbl, owner); |
|
upb_inttable_init(&g->methods, UPB_CTYPE_PTR); |
|
g->bytecode = NULL; |
|
g->bytecode_end = NULL; |
|
return g; |
|
} |
|
|
|
|
|
/* upb_pbdecodermethod ********************************************************/ |
|
|
|
static void freemethod(upb_refcounted *r) { |
|
upb_pbdecodermethod *method = (upb_pbdecodermethod*)r; |
|
|
|
if (method->dest_handlers_) { |
|
upb_handlers_unref(method->dest_handlers_, method); |
|
} |
|
|
|
upb_inttable_uninit(&method->dispatch); |
|
free(method); |
|
} |
|
|
|
static void visitmethod(const upb_refcounted *r, upb_refcounted_visit *visit, |
|
void *closure) { |
|
const upb_pbdecodermethod *m = (const upb_pbdecodermethod*)r; |
|
visit(r, m->group, closure); |
|
} |
|
|
|
static upb_pbdecodermethod *newmethod(const upb_handlers *dest_handlers, |
|
mgroup *group) { |
|
static const struct upb_refcounted_vtbl vtbl = {visitmethod, freemethod}; |
|
upb_pbdecodermethod *ret = malloc(sizeof(*ret)); |
|
upb_refcounted_init(upb_pbdecodermethod_upcast_mutable(ret), &vtbl, &ret); |
|
upb_byteshandler_init(&ret->input_handler_); |
|
|
|
/* The method references the group and vice-versa, in a circular reference. */ |
|
upb_ref2(ret, group); |
|
upb_ref2(group, ret); |
|
upb_inttable_insertptr(&group->methods, dest_handlers, upb_value_ptr(ret)); |
|
upb_pbdecodermethod_unref(ret, &ret); |
|
|
|
ret->group = mgroup_upcast_mutable(group); |
|
ret->dest_handlers_ = dest_handlers; |
|
ret->is_native_ = false; /* If we JIT, it will update this later. */ |
|
upb_inttable_init(&ret->dispatch, UPB_CTYPE_UINT64); |
|
|
|
if (ret->dest_handlers_) { |
|
upb_handlers_ref(ret->dest_handlers_, ret); |
|
} |
|
return ret; |
|
} |
|
|
|
const upb_handlers *upb_pbdecodermethod_desthandlers( |
|
const upb_pbdecodermethod *m) { |
|
return m->dest_handlers_; |
|
} |
|
|
|
const upb_byteshandler *upb_pbdecodermethod_inputhandler( |
|
const upb_pbdecodermethod *m) { |
|
return &m->input_handler_; |
|
} |
|
|
|
bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m) { |
|
return m->is_native_; |
|
} |
|
|
|
const upb_pbdecodermethod *upb_pbdecodermethod_new( |
|
const upb_pbdecodermethodopts *opts, const void *owner) { |
|
const upb_pbdecodermethod *ret; |
|
upb_pbcodecache cache; |
|
|
|
upb_pbcodecache_init(&cache); |
|
ret = upb_pbcodecache_getdecodermethod(&cache, opts); |
|
upb_pbdecodermethod_ref(ret, owner); |
|
upb_pbcodecache_uninit(&cache); |
|
return ret; |
|
} |
|
|
|
|
|
/* bytecode compiler **********************************************************/ |
|
|
|
/* Data used only at compilation time. */ |
|
typedef struct { |
|
mgroup *group; |
|
|
|
uint32_t *pc; |
|
int fwd_labels[MAXLABEL]; |
|
int back_labels[MAXLABEL]; |
|
|
|
/* For fields marked "lazy", parse them lazily or eagerly? */ |
|
bool lazy; |
|
} compiler; |
|
|
|
static compiler *newcompiler(mgroup *group, bool lazy) { |
|
compiler *ret = malloc(sizeof(*ret)); |
|
int i; |
|
|
|
ret->group = group; |
|
ret->lazy = lazy; |
|
for (i = 0; i < MAXLABEL; i++) { |
|
ret->fwd_labels[i] = EMPTYLABEL; |
|
ret->back_labels[i] = EMPTYLABEL; |
|
} |
|
return ret; |
|
} |
|
|
|
static void freecompiler(compiler *c) { |
|
free(c); |
|
} |
|
|
|
const size_t ptr_words = sizeof(void*) / sizeof(uint32_t); |
|
|
|
/* How many words an instruction is. */ |
|
static int instruction_len(uint32_t instr) { |
|
switch (getop(instr)) { |
|
case OP_SETDISPATCH: return 1 + ptr_words; |
|
case OP_TAGN: return 3; |
|
case OP_SETBIGGROUPNUM: return 2; |
|
default: return 1; |
|
} |
|
} |
|
|
|
bool op_has_longofs(int32_t instruction) { |
|
switch (getop(instruction)) { |
|
case OP_CALL: |
|
case OP_BRANCH: |
|
case OP_CHECKDELIM: |
|
return true; |
|
/* The "tag" instructions only have 8 bytes available for the jump target, |
|
* but that is ok because these opcodes only require short jumps. */ |
|
case OP_TAG1: |
|
case OP_TAG2: |
|
case OP_TAGN: |
|
return false; |
|
default: |
|
assert(false); |
|
return false; |
|
} |
|
} |
|
|
|
static int32_t getofs(uint32_t instruction) { |
|
if (op_has_longofs(instruction)) { |
|
return (int32_t)instruction >> 8; |
|
} else { |
|
return (int8_t)(instruction >> 8); |
|
} |
|
} |
|
|
|
static void setofs(uint32_t *instruction, int32_t ofs) { |
|
if (op_has_longofs(*instruction)) { |
|
*instruction = getop(*instruction) | ofs << 8; |
|
} else { |
|
*instruction = (*instruction & ~0xff00) | ((ofs & 0xff) << 8); |
|
} |
|
assert(getofs(*instruction) == ofs); /* Would fail in cases of overflow. */ |
|
} |
|
|
|
static uint32_t pcofs(compiler *c) { return c->pc - c->group->bytecode; } |
|
|
|
/* Defines a local label at the current PC location. All previous forward |
|
* references are updated to point to this location. The location is noted |
|
* for any future backward references. */ |
|
static void label(compiler *c, unsigned int label) { |
|
int val; |
|
uint32_t *codep; |
|
|
|
assert(label < MAXLABEL); |
|
val = c->fwd_labels[label]; |
|
codep = (val == EMPTYLABEL) ? NULL : c->group->bytecode + val; |
|
while (codep) { |
|
int ofs = getofs(*codep); |
|
setofs(codep, c->pc - codep - instruction_len(*codep)); |
|
codep = ofs ? codep + ofs : NULL; |
|
} |
|
c->fwd_labels[label] = EMPTYLABEL; |
|
c->back_labels[label] = pcofs(c); |
|
} |
|
|
|
/* Creates a reference to a numbered label; either a forward reference |
|
* (positive arg) or backward reference (negative arg). For forward references |
|
* the value returned now is actually a "next" pointer into a linked list of all |
|
* instructions that use this label and will be patched later when the label is |
|
* defined with label(). |
|
* |
|
* The returned value is the offset that should be written into the instruction. |
|
*/ |
|
static int32_t labelref(compiler *c, int label) { |
|
assert(label < MAXLABEL); |
|
if (label == LABEL_DISPATCH) { |
|
/* No resolving required. */ |
|
return 0; |
|
} else if (label < 0) { |
|
/* Backward local label. Relative to the next instruction. */ |
|
uint32_t from = (c->pc + 1) - c->group->bytecode; |
|
return c->back_labels[-label] - from; |
|
} else { |
|
/* Forward local label: prepend to (possibly-empty) linked list. */ |
|
int *lptr = &c->fwd_labels[label]; |
|
int32_t ret = (*lptr == EMPTYLABEL) ? 0 : *lptr - pcofs(c); |
|
*lptr = pcofs(c); |
|
return ret; |
|
} |
|
} |
|
|
|
static void put32(compiler *c, uint32_t v) { |
|
mgroup *g = c->group; |
|
if (c->pc == g->bytecode_end) { |
|
int ofs = pcofs(c); |
|
size_t oldsize = g->bytecode_end - g->bytecode; |
|
size_t newsize = UPB_MAX(oldsize * 2, 64); |
|
/* TODO(haberman): handle OOM. */ |
|
g->bytecode = realloc(g->bytecode, newsize * sizeof(uint32_t)); |
|
g->bytecode_end = g->bytecode + newsize; |
|
c->pc = g->bytecode + ofs; |
|
} |
|
*c->pc++ = v; |
|
} |
|
|
|
static void putop(compiler *c, opcode op, ...) { |
|
va_list ap; |
|
va_start(ap, op); |
|
|
|
switch (op) { |
|
case OP_SETDISPATCH: { |
|
uintptr_t ptr = (uintptr_t)va_arg(ap, void*); |
|
put32(c, OP_SETDISPATCH); |
|
put32(c, ptr); |
|
if (sizeof(uintptr_t) > sizeof(uint32_t)) |
|
put32(c, (uint64_t)ptr >> 32); |
|
break; |
|
} |
|
case OP_STARTMSG: |
|
case OP_ENDMSG: |
|
case OP_PUSHLENDELIM: |
|
case OP_POP: |
|
case OP_SETDELIM: |
|
case OP_HALT: |
|
case OP_RET: |
|
case OP_DISPATCH: |
|
put32(c, op); |
|
break; |
|
case OP_PARSE_DOUBLE: |
|
case OP_PARSE_FLOAT: |
|
case OP_PARSE_INT64: |
|
case OP_PARSE_UINT64: |
|
case OP_PARSE_INT32: |
|
case OP_PARSE_FIXED64: |
|
case OP_PARSE_FIXED32: |
|
case OP_PARSE_BOOL: |
|
case OP_PARSE_UINT32: |
|
case OP_PARSE_SFIXED32: |
|
case OP_PARSE_SFIXED64: |
|
case OP_PARSE_SINT32: |
|
case OP_PARSE_SINT64: |
|
case OP_STARTSEQ: |
|
case OP_ENDSEQ: |
|
case OP_STARTSUBMSG: |
|
case OP_ENDSUBMSG: |
|
case OP_STARTSTR: |
|
case OP_STRING: |
|
case OP_ENDSTR: |
|
case OP_PUSHTAGDELIM: |
|
put32(c, op | va_arg(ap, upb_selector_t) << 8); |
|
break; |
|
case OP_SETBIGGROUPNUM: |
|
put32(c, op); |
|
put32(c, va_arg(ap, int)); |
|
break; |
|
case OP_CALL: { |
|
const upb_pbdecodermethod *method = va_arg(ap, upb_pbdecodermethod *); |
|
put32(c, op | (method->code_base.ofs - (pcofs(c) + 1)) << 8); |
|
break; |
|
} |
|
case OP_CHECKDELIM: |
|
case OP_BRANCH: { |
|
uint32_t instruction = op; |
|
int label = va_arg(ap, int); |
|
setofs(&instruction, labelref(c, label)); |
|
put32(c, instruction); |
|
break; |
|
} |
|
case OP_TAG1: |
|
case OP_TAG2: { |
|
int label = va_arg(ap, int); |
|
uint64_t tag = va_arg(ap, uint64_t); |
|
uint32_t instruction = op | (tag << 16); |
|
assert(tag <= 0xffff); |
|
setofs(&instruction, labelref(c, label)); |
|
put32(c, instruction); |
|
break; |
|
} |
|
case OP_TAGN: { |
|
int label = va_arg(ap, int); |
|
uint64_t tag = va_arg(ap, uint64_t); |
|
uint32_t instruction = op | (upb_value_size(tag) << 16); |
|
setofs(&instruction, labelref(c, label)); |
|
put32(c, instruction); |
|
put32(c, tag); |
|
put32(c, tag >> 32); |
|
break; |
|
} |
|
} |
|
|
|
va_end(ap); |
|
} |
|
|
|
#if defined(UPB_USE_JIT_X64) || defined(UPB_DUMP_BYTECODE) |
|
|
|
const char *upb_pbdecoder_getopname(unsigned int op) { |
|
#define QUOTE(x) #x |
|
#define EXPAND_AND_QUOTE(x) QUOTE(x) |
|
#define OPNAME(x) OP_##x |
|
#define OP(x) case OPNAME(x): return EXPAND_AND_QUOTE(OPNAME(x)); |
|
#define T(x) OP(PARSE_##x) |
|
/* Keep in sync with list in decoder.int.h. */ |
|
switch ((opcode)op) { |
|
T(DOUBLE) T(FLOAT) T(INT64) T(UINT64) T(INT32) T(FIXED64) T(FIXED32) |
|
T(BOOL) T(UINT32) T(SFIXED32) T(SFIXED64) T(SINT32) T(SINT64) |
|
OP(STARTMSG) OP(ENDMSG) OP(STARTSEQ) OP(ENDSEQ) OP(STARTSUBMSG) |
|
OP(ENDSUBMSG) OP(STARTSTR) OP(STRING) OP(ENDSTR) OP(CALL) OP(RET) |
|
OP(PUSHLENDELIM) OP(PUSHTAGDELIM) OP(SETDELIM) OP(CHECKDELIM) |
|
OP(BRANCH) OP(TAG1) OP(TAG2) OP(TAGN) OP(SETDISPATCH) OP(POP) |
|
OP(SETBIGGROUPNUM) OP(DISPATCH) OP(HALT) |
|
} |
|
return "<unknown op>"; |
|
#undef OP |
|
#undef T |
|
} |
|
|
|
#endif |
|
|
|
#ifdef UPB_DUMP_BYTECODE |
|
|
|
static void dumpbc(uint32_t *p, uint32_t *end, FILE *f) { |
|
|
|
uint32_t *begin = p; |
|
|
|
while (p < end) { |
|
fprintf(f, "%p %8tx", p, p - begin); |
|
uint32_t instr = *p++; |
|
uint8_t op = getop(instr); |
|
fprintf(f, " %s", upb_pbdecoder_getopname(op)); |
|
switch ((opcode)op) { |
|
case OP_SETDISPATCH: { |
|
const upb_inttable *dispatch; |
|
memcpy(&dispatch, p, sizeof(void*)); |
|
p += ptr_words; |
|
const upb_pbdecodermethod *method = |
|
(void *)((char *)dispatch - |
|
offsetof(upb_pbdecodermethod, dispatch)); |
|
fprintf(f, " %s", upb_msgdef_fullname( |
|
upb_handlers_msgdef(method->dest_handlers_))); |
|
break; |
|
} |
|
case OP_DISPATCH: |
|
case OP_STARTMSG: |
|
case OP_ENDMSG: |
|
case OP_PUSHLENDELIM: |
|
case OP_POP: |
|
case OP_SETDELIM: |
|
case OP_HALT: |
|
case OP_RET: |
|
break; |
|
case OP_PARSE_DOUBLE: |
|
case OP_PARSE_FLOAT: |
|
case OP_PARSE_INT64: |
|
case OP_PARSE_UINT64: |
|
case OP_PARSE_INT32: |
|
case OP_PARSE_FIXED64: |
|
case OP_PARSE_FIXED32: |
|
case OP_PARSE_BOOL: |
|
case OP_PARSE_UINT32: |
|
case OP_PARSE_SFIXED32: |
|
case OP_PARSE_SFIXED64: |
|
case OP_PARSE_SINT32: |
|
case OP_PARSE_SINT64: |
|
case OP_STARTSEQ: |
|
case OP_ENDSEQ: |
|
case OP_STARTSUBMSG: |
|
case OP_ENDSUBMSG: |
|
case OP_STARTSTR: |
|
case OP_STRING: |
|
case OP_ENDSTR: |
|
case OP_PUSHTAGDELIM: |
|
fprintf(f, " %d", instr >> 8); |
|
break; |
|
case OP_SETBIGGROUPNUM: |
|
fprintf(f, " %d", *p++); |
|
break; |
|
case OP_CHECKDELIM: |
|
case OP_CALL: |
|
case OP_BRANCH: |
|
fprintf(f, " =>0x%tx", p + getofs(instr) - begin); |
|
break; |
|
case OP_TAG1: |
|
case OP_TAG2: { |
|
fprintf(f, " tag:0x%x", instr >> 16); |
|
if (getofs(instr)) { |
|
fprintf(f, " =>0x%tx", p + getofs(instr) - begin); |
|
} |
|
break; |
|
} |
|
case OP_TAGN: { |
|
uint64_t tag = *p++; |
|
tag |= (uint64_t)*p++ << 32; |
|
fprintf(f, " tag:0x%llx", (long long)tag); |
|
fprintf(f, " n:%d", instr >> 16); |
|
if (getofs(instr)) { |
|
fprintf(f, " =>0x%tx", p + getofs(instr) - begin); |
|
} |
|
break; |
|
} |
|
} |
|
fputs("\n", f); |
|
} |
|
} |
|
|
|
#endif |
|
|
|
static uint64_t get_encoded_tag(const upb_fielddef *f, int wire_type) { |
|
uint32_t tag = (upb_fielddef_number(f) << 3) | wire_type; |
|
uint64_t encoded_tag = upb_vencode32(tag); |
|
/* No tag should be greater than 5 bytes. */ |
|
assert(encoded_tag <= 0xffffffffff); |
|
return encoded_tag; |
|
} |
|
|
|
static void putchecktag(compiler *c, const upb_fielddef *f, |
|
int wire_type, int dest) { |
|
uint64_t tag = get_encoded_tag(f, wire_type); |
|
switch (upb_value_size(tag)) { |
|
case 1: |
|
putop(c, OP_TAG1, dest, tag); |
|
break; |
|
case 2: |
|
putop(c, OP_TAG2, dest, tag); |
|
break; |
|
default: |
|
putop(c, OP_TAGN, dest, tag); |
|
break; |
|
} |
|
} |
|
|
|
static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) { |
|
upb_selector_t selector; |
|
bool ok = upb_handlers_getselector(f, type, &selector); |
|
UPB_ASSERT_VAR(ok, ok); |
|
return selector; |
|
} |
|
|
|
/* Takes an existing, primary dispatch table entry and repacks it with a |
|
* different alternate wire type. Called when we are inserting a secondary |
|
* dispatch table entry for an alternate wire type. */ |
|
static uint64_t repack(uint64_t dispatch, int new_wt2) { |
|
uint64_t ofs; |
|
uint8_t wt1; |
|
uint8_t old_wt2; |
|
upb_pbdecoder_unpackdispatch(dispatch, &ofs, &wt1, &old_wt2); |
|
assert(old_wt2 == NO_WIRE_TYPE); /* wt2 should not be set yet. */ |
|
return upb_pbdecoder_packdispatch(ofs, wt1, new_wt2); |
|
} |
|
|
|
/* Marks the current bytecode position as the dispatch target for this message, |
|
* field, and wire type. */ |
|
static void dispatchtarget(compiler *c, upb_pbdecodermethod *method, |
|
const upb_fielddef *f, int wire_type) { |
|
/* Offset is relative to msg base. */ |
|
uint64_t ofs = pcofs(c) - method->code_base.ofs; |
|
uint32_t fn = upb_fielddef_number(f); |
|
upb_inttable *d = &method->dispatch; |
|
upb_value v; |
|
if (upb_inttable_remove(d, fn, &v)) { |
|
/* TODO: prioritize based on packed setting in .proto file. */ |
|
uint64_t repacked = repack(upb_value_getuint64(v), wire_type); |
|
upb_inttable_insert(d, fn, upb_value_uint64(repacked)); |
|
upb_inttable_insert(d, fn + UPB_MAX_FIELDNUMBER, upb_value_uint64(ofs)); |
|
} else { |
|
uint64_t val = upb_pbdecoder_packdispatch(ofs, wire_type, NO_WIRE_TYPE); |
|
upb_inttable_insert(d, fn, upb_value_uint64(val)); |
|
} |
|
} |
|
|
|
static void putpush(compiler *c, const upb_fielddef *f) { |
|
if (upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE) { |
|
putop(c, OP_PUSHLENDELIM); |
|
} else { |
|
uint32_t fn = upb_fielddef_number(f); |
|
if (fn >= 1 << 24) { |
|
putop(c, OP_PUSHTAGDELIM, 0); |
|
putop(c, OP_SETBIGGROUPNUM, fn); |
|
} else { |
|
putop(c, OP_PUSHTAGDELIM, fn); |
|
} |
|
} |
|
} |
|
|
|
static upb_pbdecodermethod *find_submethod(const compiler *c, |
|
const upb_pbdecodermethod *method, |
|
const upb_fielddef *f) { |
|
const upb_handlers *sub = |
|
upb_handlers_getsubhandlers(method->dest_handlers_, f); |
|
upb_value v; |
|
return upb_inttable_lookupptr(&c->group->methods, sub, &v) |
|
? upb_value_getptr(v) |
|
: NULL; |
|
} |
|
|
|
static void putsel(compiler *c, opcode op, upb_selector_t sel, |
|
const upb_handlers *h) { |
|
if (upb_handlers_gethandler(h, sel)) { |
|
putop(c, op, sel); |
|
} |
|
} |
|
|
|
/* Puts an opcode to call a callback, but only if a callback actually exists for |
|
* this field and handler type. */ |
|
static void maybeput(compiler *c, opcode op, const upb_handlers *h, |
|
const upb_fielddef *f, upb_handlertype_t type) { |
|
putsel(c, op, getsel(f, type), h); |
|
} |
|
|
|
static bool haslazyhandlers(const upb_handlers *h, const upb_fielddef *f) { |
|
if (!upb_fielddef_lazy(f)) |
|
return false; |
|
|
|
return upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_STARTSTR)) || |
|
upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_STRING)) || |
|
upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_ENDSTR)); |
|
} |
|
|
|
|
|
/* bytecode compiler code generation ******************************************/ |
|
|
|
/* Symbolic names for our local labels. */ |
|
#define LABEL_LOOPSTART 1 /* Top of a repeated field loop. */ |
|
#define LABEL_LOOPBREAK 2 /* To jump out of a repeated loop */ |
|
#define LABEL_FIELD 3 /* Jump backward to find the most recent field. */ |
|
#define LABEL_ENDMSG 4 /* To reach the OP_ENDMSG instr for this msg. */ |
|
|
|
/* Generates bytecode to parse a single non-lazy message field. */ |
|
static void generate_msgfield(compiler *c, const upb_fielddef *f, |
|
upb_pbdecodermethod *method) { |
|
const upb_handlers *h = upb_pbdecodermethod_desthandlers(method); |
|
const upb_pbdecodermethod *sub_m = find_submethod(c, method, f); |
|
int wire_type; |
|
|
|
if (!sub_m) { |
|
/* Don't emit any code for this field at all; it will be parsed as an |
|
* unknown field. */ |
|
return; |
|
} |
|
|
|
label(c, LABEL_FIELD); |
|
|
|
wire_type = |
|
(upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE) |
|
? UPB_WIRE_TYPE_DELIMITED |
|
: UPB_WIRE_TYPE_START_GROUP; |
|
|
|
if (upb_fielddef_isseq(f)) { |
|
putop(c, OP_CHECKDELIM, LABEL_ENDMSG); |
|
putchecktag(c, f, wire_type, LABEL_DISPATCH); |
|
dispatchtarget(c, method, f, wire_type); |
|
putop(c, OP_PUSHTAGDELIM, 0); |
|
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); |
|
label(c, LABEL_LOOPSTART); |
|
putpush(c, f); |
|
putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG)); |
|
putop(c, OP_CALL, sub_m); |
|
putop(c, OP_POP); |
|
maybeput(c, OP_ENDSUBMSG, h, f, UPB_HANDLER_ENDSUBMSG); |
|
if (wire_type == UPB_WIRE_TYPE_DELIMITED) { |
|
putop(c, OP_SETDELIM); |
|
} |
|
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); |
|
putchecktag(c, f, wire_type, LABEL_LOOPBREAK); |
|
putop(c, OP_BRANCH, -LABEL_LOOPSTART); |
|
label(c, LABEL_LOOPBREAK); |
|
putop(c, OP_POP); |
|
maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ); |
|
} else { |
|
putop(c, OP_CHECKDELIM, LABEL_ENDMSG); |
|
putchecktag(c, f, wire_type, LABEL_DISPATCH); |
|
dispatchtarget(c, method, f, wire_type); |
|
putpush(c, f); |
|
putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG)); |
|
putop(c, OP_CALL, sub_m); |
|
putop(c, OP_POP); |
|
maybeput(c, OP_ENDSUBMSG, h, f, UPB_HANDLER_ENDSUBMSG); |
|
if (wire_type == UPB_WIRE_TYPE_DELIMITED) { |
|
putop(c, OP_SETDELIM); |
|
} |
|
} |
|
} |
|
|
|
/* Generates bytecode to parse a single string or lazy submessage field. */ |
|
static void generate_delimfield(compiler *c, const upb_fielddef *f, |
|
upb_pbdecodermethod *method) { |
|
const upb_handlers *h = upb_pbdecodermethod_desthandlers(method); |
|
|
|
label(c, LABEL_FIELD); |
|
if (upb_fielddef_isseq(f)) { |
|
putop(c, OP_CHECKDELIM, LABEL_ENDMSG); |
|
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH); |
|
dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED); |
|
putop(c, OP_PUSHTAGDELIM, 0); |
|
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); |
|
label(c, LABEL_LOOPSTART); |
|
putop(c, OP_PUSHLENDELIM); |
|
putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR)); |
|
/* Need to emit even if no handler to skip past the string. */ |
|
putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING)); |
|
putop(c, OP_POP); |
|
maybeput(c, OP_ENDSTR, h, f, UPB_HANDLER_ENDSTR); |
|
putop(c, OP_SETDELIM); |
|
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); |
|
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_LOOPBREAK); |
|
putop(c, OP_BRANCH, -LABEL_LOOPSTART); |
|
label(c, LABEL_LOOPBREAK); |
|
putop(c, OP_POP); |
|
maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ); |
|
} else { |
|
putop(c, OP_CHECKDELIM, LABEL_ENDMSG); |
|
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH); |
|
dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED); |
|
putop(c, OP_PUSHLENDELIM); |
|
putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR)); |
|
putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING)); |
|
putop(c, OP_POP); |
|
maybeput(c, OP_ENDSTR, h, f, UPB_HANDLER_ENDSTR); |
|
putop(c, OP_SETDELIM); |
|
} |
|
} |
|
|
|
/* Generates bytecode to parse a single primitive field. */ |
|
static void generate_primitivefield(compiler *c, const upb_fielddef *f, |
|
upb_pbdecodermethod *method) { |
|
const upb_handlers *h = upb_pbdecodermethod_desthandlers(method); |
|
upb_descriptortype_t descriptor_type = upb_fielddef_descriptortype(f); |
|
opcode parse_type; |
|
upb_selector_t sel; |
|
int wire_type; |
|
|
|
label(c, LABEL_FIELD); |
|
|
|
/* From a decoding perspective, ENUM is the same as INT32. */ |
|
if (descriptor_type == UPB_DESCRIPTOR_TYPE_ENUM) |
|
descriptor_type = UPB_DESCRIPTOR_TYPE_INT32; |
|
|
|
parse_type = (opcode)descriptor_type; |
|
|
|
/* TODO(haberman): generate packed or non-packed first depending on "packed" |
|
* setting in the fielddef. This will favor (in speed) whichever was |
|
* specified. */ |
|
|
|
assert((int)parse_type >= 0 && parse_type <= OP_MAX); |
|
sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); |
|
wire_type = upb_pb_native_wire_types[upb_fielddef_descriptortype(f)]; |
|
if (upb_fielddef_isseq(f)) { |
|
putop(c, OP_CHECKDELIM, LABEL_ENDMSG); |
|
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH); |
|
dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED); |
|
putop(c, OP_PUSHLENDELIM); |
|
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); /* Packed */ |
|
label(c, LABEL_LOOPSTART); |
|
putop(c, parse_type, sel); |
|
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); |
|
putop(c, OP_BRANCH, -LABEL_LOOPSTART); |
|
dispatchtarget(c, method, f, wire_type); |
|
putop(c, OP_PUSHTAGDELIM, 0); |
|
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); /* Non-packed */ |
|
label(c, LABEL_LOOPSTART); |
|
putop(c, parse_type, sel); |
|
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); |
|
putchecktag(c, f, wire_type, LABEL_LOOPBREAK); |
|
putop(c, OP_BRANCH, -LABEL_LOOPSTART); |
|
label(c, LABEL_LOOPBREAK); |
|
putop(c, OP_POP); /* Packed and non-packed join. */ |
|
maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ); |
|
putop(c, OP_SETDELIM); /* Could remove for non-packed by dup ENDSEQ. */ |
|
} else { |
|
putop(c, OP_CHECKDELIM, LABEL_ENDMSG); |
|
putchecktag(c, f, wire_type, LABEL_DISPATCH); |
|
dispatchtarget(c, method, f, wire_type); |
|
putop(c, parse_type, sel); |
|
} |
|
} |
|
|
|
/* Adds bytecode for parsing the given message to the given decoderplan, |
|
* while adding all dispatch targets to this message's dispatch table. */ |
|
static void compile_method(compiler *c, upb_pbdecodermethod *method) { |
|
const upb_handlers *h; |
|
const upb_msgdef *md; |
|
uint32_t* start_pc; |
|
upb_msg_field_iter i; |
|
upb_value val; |
|
|
|
assert(method); |
|
|
|
/* Clear all entries in the dispatch table. */ |
|
upb_inttable_uninit(&method->dispatch); |
|
upb_inttable_init(&method->dispatch, UPB_CTYPE_UINT64); |
|
|
|
h = upb_pbdecodermethod_desthandlers(method); |
|
md = upb_handlers_msgdef(h); |
|
|
|
method->code_base.ofs = pcofs(c); |
|
putop(c, OP_SETDISPATCH, &method->dispatch); |
|
putsel(c, OP_STARTMSG, UPB_STARTMSG_SELECTOR, h); |
|
label(c, LABEL_FIELD); |
|
start_pc = c->pc; |
|
for(upb_msg_field_begin(&i, md); |
|
!upb_msg_field_done(&i); |
|
upb_msg_field_next(&i)) { |
|
const upb_fielddef *f = upb_msg_iter_field(&i); |
|
upb_fieldtype_t type = upb_fielddef_type(f); |
|
|
|
if (type == UPB_TYPE_MESSAGE && !(haslazyhandlers(h, f) && c->lazy)) { |
|
generate_msgfield(c, f, method); |
|
} else if (type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES || |
|
type == UPB_TYPE_MESSAGE) { |
|
generate_delimfield(c, f, method); |
|
} else { |
|
generate_primitivefield(c, f, method); |
|
} |
|
} |
|
|
|
/* If there were no fields, or if no handlers were defined, we need to |
|
* generate a non-empty loop body so that we can at least dispatch for unknown |
|
* fields and check for the end of the message. */ |
|
if (c->pc == start_pc) { |
|
/* Check for end-of-message. */ |
|
putop(c, OP_CHECKDELIM, LABEL_ENDMSG); |
|
/* Unconditionally dispatch. */ |
|
putop(c, OP_DISPATCH, 0); |
|
} |
|
|
|
/* For now we just loop back to the last field of the message (or if none, |
|
* the DISPATCH opcode for the message). */ |
|
putop(c, OP_BRANCH, -LABEL_FIELD); |
|
|
|
/* Insert both a label and a dispatch table entry for this end-of-msg. */ |
|
label(c, LABEL_ENDMSG); |
|
val = upb_value_uint64(pcofs(c) - method->code_base.ofs); |
|
upb_inttable_insert(&method->dispatch, DISPATCH_ENDMSG, val); |
|
|
|
putsel(c, OP_ENDMSG, UPB_ENDMSG_SELECTOR, h); |
|
putop(c, OP_RET); |
|
|
|
upb_inttable_compact(&method->dispatch); |
|
} |
|
|
|
/* Populate "methods" with new upb_pbdecodermethod objects reachable from "h". |
|
* Returns the method for these handlers. |
|
* |
|
* Generates a new method for every destination handlers reachable from "h". */ |
|
static void find_methods(compiler *c, const upb_handlers *h) { |
|
upb_value v; |
|
upb_msg_field_iter i; |
|
const upb_msgdef *md; |
|
|
|
if (upb_inttable_lookupptr(&c->group->methods, h, &v)) |
|
return; |
|
newmethod(h, c->group); |
|
|
|
/* Find submethods. */ |
|
md = upb_handlers_msgdef(h); |
|
for(upb_msg_field_begin(&i, md); |
|
!upb_msg_field_done(&i); |
|
upb_msg_field_next(&i)) { |
|
const upb_fielddef *f = upb_msg_iter_field(&i); |
|
const upb_handlers *sub_h; |
|
if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE && |
|
(sub_h = upb_handlers_getsubhandlers(h, f)) != NULL) { |
|
/* We only generate a decoder method for submessages with handlers. |
|
* Others will be parsed as unknown fields. */ |
|
find_methods(c, sub_h); |
|
} |
|
} |
|
} |
|
|
|
/* (Re-)compile bytecode for all messages in "msgs." |
|
* Overwrites any existing bytecode in "c". */ |
|
static void compile_methods(compiler *c) { |
|
upb_inttable_iter i; |
|
|
|
/* Start over at the beginning of the bytecode. */ |
|
c->pc = c->group->bytecode; |
|
|
|
upb_inttable_begin(&i, &c->group->methods); |
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i)); |
|
compile_method(c, method); |
|
} |
|
} |
|
|
|
static void set_bytecode_handlers(mgroup *g) { |
|
upb_inttable_iter i; |
|
upb_inttable_begin(&i, &g->methods); |
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
upb_pbdecodermethod *m = upb_value_getptr(upb_inttable_iter_value(&i)); |
|
upb_byteshandler *h = &m->input_handler_; |
|
|
|
m->code_base.ptr = g->bytecode + m->code_base.ofs; |
|
|
|
upb_byteshandler_setstartstr(h, upb_pbdecoder_startbc, m->code_base.ptr); |
|
upb_byteshandler_setstring(h, upb_pbdecoder_decode, g); |
|
upb_byteshandler_setendstr(h, upb_pbdecoder_end, m); |
|
} |
|
} |
|
|
|
|
|
/* JIT setup. *****************************************************************/ |
|
|
|
#ifdef UPB_USE_JIT_X64 |
|
|
|
static void sethandlers(mgroup *g, bool allowjit) { |
|
g->jit_code = NULL; |
|
if (allowjit) { |
|
/* Compile byte-code into machine code, create handlers. */ |
|
upb_pbdecoder_jit(g); |
|
} else { |
|
set_bytecode_handlers(g); |
|
} |
|
} |
|
|
|
#else /* UPB_USE_JIT_X64 */ |
|
|
|
static void sethandlers(mgroup *g, bool allowjit) { |
|
/* No JIT compiled in; use bytecode handlers unconditionally. */ |
|
UPB_UNUSED(allowjit); |
|
set_bytecode_handlers(g); |
|
} |
|
|
|
#endif /* UPB_USE_JIT_X64 */ |
|
|
|
|
|
/* TODO(haberman): allow this to be constructed for an arbitrary set of dest |
|
* handlers and other mgroups (but verify we have a transitive closure). */ |
|
const mgroup *mgroup_new(const upb_handlers *dest, bool allowjit, bool lazy, |
|
const void *owner) { |
|
mgroup *g; |
|
compiler *c; |
|
|
|
UPB_UNUSED(allowjit); |
|
assert(upb_handlers_isfrozen(dest)); |
|
|
|
g = newgroup(owner); |
|
c = newcompiler(g, lazy); |
|
find_methods(c, dest); |
|
|
|
/* We compile in two passes: |
|
* 1. all messages are assigned relative offsets from the beginning of the |
|
* bytecode (saved in method->code_base). |
|
* 2. forwards OP_CALL instructions can be correctly linked since message |
|
* offsets have been previously assigned. |
|
* |
|
* Could avoid the second pass by linking OP_CALL instructions somehow. */ |
|
compile_methods(c); |
|
compile_methods(c); |
|
g->bytecode_end = c->pc; |
|
freecompiler(c); |
|
|
|
#ifdef UPB_DUMP_BYTECODE |
|
{ |
|
FILE *f = fopen("/tmp/upb-bytecode", "wb"); |
|
assert(f); |
|
dumpbc(g->bytecode, g->bytecode_end, stderr); |
|
dumpbc(g->bytecode, g->bytecode_end, f); |
|
fclose(f); |
|
} |
|
#endif |
|
|
|
sethandlers(g, allowjit); |
|
return g; |
|
} |
|
|
|
|
|
/* upb_pbcodecache ************************************************************/ |
|
|
|
void upb_pbcodecache_init(upb_pbcodecache *c) { |
|
upb_inttable_init(&c->groups, UPB_CTYPE_CONSTPTR); |
|
c->allow_jit_ = true; |
|
} |
|
|
|
void upb_pbcodecache_uninit(upb_pbcodecache *c) { |
|
upb_inttable_iter i; |
|
upb_inttable_begin(&i, &c->groups); |
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
const mgroup *group = upb_value_getconstptr(upb_inttable_iter_value(&i)); |
|
mgroup_unref(group, c); |
|
} |
|
upb_inttable_uninit(&c->groups); |
|
} |
|
|
|
bool upb_pbcodecache_allowjit(const upb_pbcodecache *c) { |
|
return c->allow_jit_; |
|
} |
|
|
|
bool upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow) { |
|
if (upb_inttable_count(&c->groups) > 0) |
|
return false; |
|
c->allow_jit_ = allow; |
|
return true; |
|
} |
|
|
|
const upb_pbdecodermethod *upb_pbcodecache_getdecodermethod( |
|
upb_pbcodecache *c, const upb_pbdecodermethodopts *opts) { |
|
upb_value v; |
|
bool ok; |
|
|
|
/* Right now we build a new DecoderMethod every time. |
|
* TODO(haberman): properly cache methods by their true key. */ |
|
const mgroup *g = mgroup_new(opts->handlers, c->allow_jit_, opts->lazy, c); |
|
upb_inttable_push(&c->groups, upb_value_constptr(g)); |
|
|
|
ok = upb_inttable_lookupptr(&g->methods, opts->handlers, &v); |
|
UPB_ASSERT_VAR(ok, ok); |
|
return upb_value_getptr(v); |
|
} |
|
|
|
|
|
/* upb_pbdecodermethodopts ****************************************************/ |
|
|
|
void upb_pbdecodermethodopts_init(upb_pbdecodermethodopts *opts, |
|
const upb_handlers *h) { |
|
opts->handlers = h; |
|
opts->lazy = false; |
|
} |
|
|
|
void upb_pbdecodermethodopts_setlazy(upb_pbdecodermethodopts *opts, bool lazy) { |
|
opts->lazy = lazy; |
|
} |
|
/* |
|
** upb::Decoder (Bytecode Decoder VM) |
|
** |
|
** Bytecode must previously have been generated using the bytecode compiler in |
|
** compile_decoder.c. This decoder then walks through the bytecode op-by-op to |
|
** parse the input. |
|
** |
|
** Decoding is fully resumable; we just keep a pointer to the current bytecode |
|
** instruction and resume from there. A fair amount of the logic here is to |
|
** handle the fact that values can span buffer seams and we have to be able to |
|
** be capable of suspending/resuming from any byte in the stream. This |
|
** sometimes requires keeping a few trailing bytes from the last buffer around |
|
** in the "residual" buffer. |
|
*/ |
|
|
|
#include <inttypes.h> |
|
#include <stddef.h> |
|
|
|
#ifdef UPB_DUMP_BYTECODE |
|
#include <stdio.h> |
|
#endif |
|
|
|
#define CHECK_SUSPEND(x) if (!(x)) return upb_pbdecoder_suspend(d); |
|
|
|
/* Error messages that are shared between the bytecode and JIT decoders. */ |
|
const char *kPbDecoderStackOverflow = "Nesting too deep."; |
|
const char *kPbDecoderSubmessageTooLong = |
|
"Submessage end extends past enclosing submessage."; |
|
|
|
/* Error messages shared within this file. */ |
|
static const char *kUnterminatedVarint = "Unterminated varint."; |
|
|
|
/* upb_pbdecoder **************************************************************/ |
|
|
|
static opcode halt = OP_HALT; |
|
|
|
/* Whether an op consumes any of the input buffer. */ |
|
static bool consumes_input(opcode op) { |
|
switch (op) { |
|
case OP_SETDISPATCH: |
|
case OP_STARTMSG: |
|
case OP_ENDMSG: |
|
case OP_STARTSEQ: |
|
case OP_ENDSEQ: |
|
case OP_STARTSUBMSG: |
|
case OP_ENDSUBMSG: |
|
case OP_STARTSTR: |
|
case OP_ENDSTR: |
|
case OP_PUSHTAGDELIM: |
|
case OP_POP: |
|
case OP_SETDELIM: |
|
case OP_SETBIGGROUPNUM: |
|
case OP_CHECKDELIM: |
|
case OP_CALL: |
|
case OP_RET: |
|
case OP_BRANCH: |
|
return false; |
|
default: |
|
return true; |
|
} |
|
} |
|
|
|
static size_t stacksize(upb_pbdecoder *d, size_t entries) { |
|
UPB_UNUSED(d); |
|
return entries * sizeof(upb_pbdecoder_frame); |
|
} |
|
|
|
static size_t callstacksize(upb_pbdecoder *d, size_t entries) { |
|
UPB_UNUSED(d); |
|
|
|
#ifdef UPB_USE_JIT_X64 |
|
if (d->method_->is_native_) { |
|
/* Each native stack frame needs two pointers, plus we need a few frames for |
|
* the enter/exit trampolines. */ |
|
size_t ret = entries * sizeof(void*) * 2; |
|
ret += sizeof(void*) * 10; |
|
return ret; |
|
} |
|
#endif |
|
|
|
return entries * sizeof(uint32_t*); |
|
} |
|
|
|
|
|
static bool in_residual_buf(const upb_pbdecoder *d, const char *p); |
|
|
|
/* It's unfortunate that we have to micro-manage the compiler with |
|
* UPB_FORCEINLINE and UPB_NOINLINE, especially since this tuning is necessarily |
|
* specific to one hardware configuration. But empirically on a Core i7, |
|
* performance increases 30-50% with these annotations. Every instance where |
|
* these appear, gcc 4.2.1 made the wrong decision and degraded performance in |
|
* benchmarks. */ |
|
|
|
static void seterr(upb_pbdecoder *d, const char *msg) { |
|
upb_status status = UPB_STATUS_INIT; |
|
upb_status_seterrmsg(&status, msg); |
|
upb_env_reporterror(d->env, &status); |
|
} |
|
|
|
void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg) { |
|
seterr(d, msg); |
|
} |
|
|
|
|
|
/* Buffering ******************************************************************/ |
|
|
|
/* We operate on one buffer at a time, which is either the user's buffer passed |
|
* to our "decode" callback or some residual bytes from the previous buffer. */ |
|
|
|
/* How many bytes can be safely read from d->ptr without reading past end-of-buf |
|
* or past the current delimited end. */ |
|
static size_t curbufleft(const upb_pbdecoder *d) { |
|
assert(d->data_end >= d->ptr); |
|
return d->data_end - d->ptr; |
|
} |
|
|
|
/* How many bytes are available before end-of-buffer. */ |
|
static size_t bufleft(const upb_pbdecoder *d) { |
|
return d->end - d->ptr; |
|
} |
|
|
|
/* Overall stream offset of d->ptr. */ |
|
uint64_t offset(const upb_pbdecoder *d) { |
|
return d->bufstart_ofs + (d->ptr - d->buf); |
|
} |
|
|
|
/* How many bytes are available before the end of this delimited region. */ |
|
size_t delim_remaining(const upb_pbdecoder *d) { |
|
return d->top->end_ofs - offset(d); |
|
} |
|
|
|
/* Advances d->ptr. */ |
|
static void advance(upb_pbdecoder *d, size_t len) { |
|
assert(curbufleft(d) >= len); |
|
d->ptr += len; |
|
} |
|
|
|
static bool in_buf(const char *p, const char *buf, const char *end) { |
|
return p >= buf && p <= end; |
|
} |
|
|
|
static bool in_residual_buf(const upb_pbdecoder *d, const char *p) { |
|
return in_buf(p, d->residual, d->residual_end); |
|
} |
|
|
|
/* Calculates the delim_end value, which is affected by both the current buffer |
|
* and the parsing stack, so must be called whenever either is updated. */ |
|
static void set_delim_end(upb_pbdecoder *d) { |
|
size_t delim_ofs = d->top->end_ofs - d->bufstart_ofs; |
|
if (delim_ofs <= (size_t)(d->end - d->buf)) { |
|
d->delim_end = d->buf + delim_ofs; |
|
d->data_end = d->delim_end; |
|
} else { |
|
d->data_end = d->end; |
|
d->delim_end = NULL; |
|
} |
|
} |
|
|
|
static void switchtobuf(upb_pbdecoder *d, const char *buf, const char *end) { |
|
d->ptr = buf; |
|
d->buf = buf; |
|
d->end = end; |
|
set_delim_end(d); |
|
} |
|
|
|
static void advancetobuf(upb_pbdecoder *d, const char *buf, size_t len) { |
|
assert(curbufleft(d) == 0); |
|
d->bufstart_ofs += (d->end - d->buf); |
|
switchtobuf(d, buf, buf + len); |
|
} |
|
|
|
static void checkpoint(upb_pbdecoder *d) { |
|
/* The assertion here is in the interests of efficiency, not correctness. |
|
* We are trying to ensure that we don't checkpoint() more often than |
|
* necessary. */ |
|
assert(d->checkpoint != d->ptr); |
|
d->checkpoint = d->ptr; |
|
} |
|
|
|
/* Skips "bytes" bytes in the stream, which may be more than available. If we |
|
* skip more bytes than are available, we return a long read count to the caller |
|
* indicating how many bytes can be skipped over before passing actual data |
|
* again. Skipped bytes can pass a NULL buffer and the decoder guarantees they |
|
* won't actually be read. |
|
*/ |
|
static int32_t skip(upb_pbdecoder *d, size_t bytes) { |
|
assert(!in_residual_buf(d, d->ptr) || d->size_param == 0); |
|
assert(d->skip == 0); |
|
if (bytes > delim_remaining(d)) { |
|
seterr(d, "Skipped value extended beyond enclosing submessage."); |
|
return upb_pbdecoder_suspend(d); |
|
} else if (bufleft(d) > bytes) { |
|
/* Skipped data is all in current buffer, and more is still available. */ |
|
advance(d, bytes); |
|
d->skip = 0; |
|
return DECODE_OK; |
|
} else { |
|
/* Skipped data extends beyond currently available buffers. */ |
|
d->pc = d->last; |
|
d->skip = bytes - curbufleft(d); |
|
d->bufstart_ofs += (d->end - d->buf); |
|
d->residual_end = d->residual; |
|
switchtobuf(d, d->residual, d->residual_end); |
|
return d->size_param + d->skip; |
|
} |
|
} |
|
|
|
|
|
/* Resumes the decoder from an initial state or from a previous suspend. */ |
|
int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf, |
|
size_t size, const upb_bufhandle *handle) { |
|
UPB_UNUSED(p); /* Useless; just for the benefit of the JIT. */ |
|
|
|
d->buf_param = buf; |
|
d->size_param = size; |
|
d->handle = handle; |
|
|
|
if (d->residual_end > d->residual) { |
|
/* We have residual bytes from the last buffer. */ |
|
assert(d->ptr == d->residual); |
|
} else { |
|
switchtobuf(d, buf, buf + size); |
|
} |
|
|
|
d->checkpoint = d->ptr; |
|
|
|
if (d->skip) { |
|
size_t skip_bytes = d->skip; |
|
d->skip = 0; |
|
CHECK_RETURN(skip(d, skip_bytes)); |
|
d->checkpoint = d->ptr; |
|
} |
|
|
|
if (!buf) { |
|
/* NULL buf is ok if its entire span is covered by the "skip" above, but |
|
* by this point we know that "skip" doesn't cover the buffer. */ |
|
seterr(d, "Passed NULL buffer over non-skippable region."); |
|
return upb_pbdecoder_suspend(d); |
|
} |
|
|
|
if (d->top->groupnum < 0) { |
|
CHECK_RETURN(upb_pbdecoder_skipunknown(d, -1, 0)); |
|
d->checkpoint = d->ptr; |
|
} |
|
|
|
return DECODE_OK; |
|
} |
|
|
|
/* Suspends the decoder at the last checkpoint, without saving any residual |
|
* bytes. If there are any unconsumed bytes, returns a short byte count. */ |
|
size_t upb_pbdecoder_suspend(upb_pbdecoder *d) { |
|
d->pc = d->last; |
|
if (d->checkpoint == d->residual) { |
|
/* Checkpoint was in residual buf; no user bytes were consumed. */ |
|
d->ptr = d->residual; |
|
return 0; |
|
} else { |
|
size_t consumed; |
|
assert(!in_residual_buf(d, d->checkpoint)); |
|
assert(d->buf == d->buf_param); |
|
|
|
consumed = d->checkpoint - d->buf; |
|
d->bufstart_ofs += consumed; |
|
d->residual_end = d->residual; |
|
switchtobuf(d, d->residual, d->residual_end); |
|
return consumed; |
|
} |
|
} |
|
|
|
/* Suspends the decoder at the last checkpoint, and saves any unconsumed |
|
* bytes in our residual buffer. This is necessary if we need more user |
|
* bytes to form a complete value, which might not be contiguous in the |
|
* user's buffers. Always consumes all user bytes. */ |
|
static size_t suspend_save(upb_pbdecoder *d) { |
|
/* We hit end-of-buffer before we could parse a full value. |
|
* Save any unconsumed bytes (if any) to the residual buffer. */ |
|
d->pc = d->last; |
|
|
|
if (d->checkpoint == d->residual) { |
|
/* Checkpoint was in residual buf; append user byte(s) to residual buf. */ |
|
assert((d->residual_end - d->residual) + d->size_param <= |
|
sizeof(d->residual)); |
|
if (!in_residual_buf(d, d->ptr)) { |
|
d->bufstart_ofs -= (d->residual_end - d->residual); |
|
} |
|
memcpy(d->residual_end, d->buf_param, d->size_param); |
|
d->residual_end += d->size_param; |
|
} else { |
|
/* Checkpoint was in user buf; old residual bytes not needed. */ |
|
size_t save; |
|
assert(!in_residual_buf(d, d->checkpoint)); |
|
|
|
d->ptr = d->checkpoint; |
|
save = curbufleft(d); |
|
assert(save <= sizeof(d->residual)); |
|
memcpy(d->residual, d->ptr, save); |
|
d->residual_end = d->residual + save; |
|
d->bufstart_ofs = offset(d); |
|
} |
|
|
|
switchtobuf(d, d->residual, d->residual_end); |
|
return d->size_param; |
|
} |
|
|
|
/* Copies the next "bytes" bytes into "buf" and advances the stream. |
|
* Requires that this many bytes are available in the current buffer. */ |
|
UPB_FORCEINLINE static void consumebytes(upb_pbdecoder *d, void *buf, |
|
size_t bytes) { |
|
assert(bytes <= curbufleft(d)); |
|
memcpy(buf, d->ptr, bytes); |
|
advance(d, bytes); |
|
} |
|
|
|
/* Slow path for getting the next "bytes" bytes, regardless of whether they are |
|
* available in the current buffer or not. Returns a status code as described |
|
* in decoder.int.h. */ |
|
UPB_NOINLINE static int32_t getbytes_slow(upb_pbdecoder *d, void *buf, |
|
size_t bytes) { |
|
const size_t avail = curbufleft(d); |
|
consumebytes(d, buf, avail); |
|
bytes -= avail; |
|
assert(bytes > 0); |
|
if (in_residual_buf(d, d->ptr)) { |
|
advancetobuf(d, d->buf_param, d->size_param); |
|
} |
|
if (curbufleft(d) >= bytes) { |
|
consumebytes(d, (char *)buf + avail, bytes); |
|
return DECODE_OK; |
|
} else if (d->data_end == d->delim_end) { |
|
seterr(d, "Submessage ended in the middle of a value or group"); |
|
return upb_pbdecoder_suspend(d); |
|
} else { |
|
return suspend_save(d); |
|
} |
|
} |
|
|
|
/* Gets the next "bytes" bytes, regardless of whether they are available in the |
|
* current buffer or not. Returns a status code as described in decoder.int.h. |
|
*/ |
|
UPB_FORCEINLINE static int32_t getbytes(upb_pbdecoder *d, void *buf, |
|
size_t bytes) { |
|
if (curbufleft(d) >= bytes) { |
|
/* Buffer has enough data to satisfy. */ |
|
consumebytes(d, buf, bytes); |
|
return DECODE_OK; |
|
} else { |
|
return getbytes_slow(d, buf, bytes); |
|
} |
|
} |
|
|
|
UPB_NOINLINE static size_t peekbytes_slow(upb_pbdecoder *d, void *buf, |
|
size_t bytes) { |
|
size_t ret = curbufleft(d); |
|
memcpy(buf, d->ptr, ret); |
|
if (in_residual_buf(d, d->ptr)) { |
|
size_t copy = UPB_MIN(bytes - ret, d->size_param); |
|
memcpy((char *)buf + ret, d->buf_param, copy); |
|
ret += copy; |
|
} |
|
return ret; |
|
} |
|
|
|
UPB_FORCEINLINE static size_t peekbytes(upb_pbdecoder *d, void *buf, |
|
size_t bytes) { |
|
if (curbufleft(d) >= bytes) { |
|
memcpy(buf, d->ptr, bytes); |
|
return bytes; |
|
} else { |
|
return peekbytes_slow(d, buf, bytes); |
|
} |
|
} |
|
|
|
|
|
/* Decoding of wire types *****************************************************/ |
|
|
|
/* Slow path for decoding a varint from the current buffer position. |
|
* Returns a status code as described in decoder.int.h. */ |
|
UPB_NOINLINE int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d, |
|
uint64_t *u64) { |
|
uint8_t byte = 0x80; |
|
int bitpos; |
|
*u64 = 0; |
|
for(bitpos = 0; bitpos < 70 && (byte & 0x80); bitpos += 7) { |
|
int32_t ret = getbytes(d, &byte, 1); |
|
if (ret >= 0) return ret; |
|
*u64 |= (uint64_t)(byte & 0x7F) << bitpos; |
|
} |
|
if(bitpos == 70 && (byte & 0x80)) { |
|
seterr(d, kUnterminatedVarint); |
|
return upb_pbdecoder_suspend(d); |
|
} |
|
return DECODE_OK; |
|
} |
|
|
|
/* Decodes a varint from the current buffer position. |
|
* Returns a status code as described in decoder.int.h. */ |
|
UPB_FORCEINLINE static int32_t decode_varint(upb_pbdecoder *d, uint64_t *u64) { |
|
if (curbufleft(d) > 0 && !(*d->ptr & 0x80)) { |
|
*u64 = *d->ptr; |
|
advance(d, 1); |
|
return DECODE_OK; |
|
} else if (curbufleft(d) >= 10) { |
|
/* Fast case. */ |
|
upb_decoderet r = upb_vdecode_fast(d->ptr); |
|
if (r.p == NULL) { |
|
seterr(d, kUnterminatedVarint); |
|
return upb_pbdecoder_suspend(d); |
|
} |
|
advance(d, r.p - d->ptr); |
|
*u64 = r.val; |
|
return DECODE_OK; |
|
} else { |
|
/* Slow case -- varint spans buffer seam. */ |
|
return upb_pbdecoder_decode_varint_slow(d, u64); |
|
} |
|
} |
|
|
|
/* Decodes a 32-bit varint from the current buffer position. |
|
* Returns a status code as described in decoder.int.h. */ |
|
UPB_FORCEINLINE static int32_t decode_v32(upb_pbdecoder *d, uint32_t *u32) { |
|
uint64_t u64; |
|
int32_t ret = decode_varint(d, &u64); |
|
if (ret >= 0) return ret; |
|
if (u64 > UINT32_MAX) { |
|
seterr(d, "Unterminated 32-bit varint"); |
|
/* TODO(haberman) guarantee that this function return is >= 0 somehow, |
|
* so we know this path will always be treated as error by our caller. |
|
* Right now the size_t -> int32_t can overflow and produce negative values. |
|
*/ |
|
*u32 = 0; |
|
return upb_pbdecoder_suspend(d); |
|
} |
|
*u32 = u64; |
|
return DECODE_OK; |
|
} |
|
|
|
/* Decodes a fixed32 from the current buffer position. |
|
* Returns a status code as described in decoder.int.h. |
|
* TODO: proper byte swapping for big-endian machines. */ |
|
UPB_FORCEINLINE static int32_t decode_fixed32(upb_pbdecoder *d, uint32_t *u32) { |
|
return getbytes(d, u32, 4); |
|
} |
|
|
|
/* Decodes a fixed64 from the current buffer position. |
|
* Returns a status code as described in decoder.int.h. |
|
* TODO: proper byte swapping for big-endian machines. */ |
|
UPB_FORCEINLINE static int32_t decode_fixed64(upb_pbdecoder *d, uint64_t *u64) { |
|
return getbytes(d, u64, 8); |
|
} |
|
|
|
/* Non-static versions of the above functions. |
|
* These are called by the JIT for fallback paths. */ |
|
int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32) { |
|
return decode_fixed32(d, u32); |
|
} |
|
|
|
int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64) { |
|
return decode_fixed64(d, u64); |
|
} |
|
|
|
static double as_double(uint64_t n) { double d; memcpy(&d, &n, 8); return d; } |
|
static float as_float(uint32_t n) { float f; memcpy(&f, &n, 4); return f; } |
|
|
|
/* Pushes a frame onto the decoder stack. */ |
|
static bool decoder_push(upb_pbdecoder *d, uint64_t end) { |
|
upb_pbdecoder_frame *fr = d->top; |
|
|
|
if (end > fr->end_ofs) { |
|
seterr(d, kPbDecoderSubmessageTooLong); |
|
return false; |
|
} else if (fr == d->limit) { |
|
seterr(d, kPbDecoderStackOverflow); |
|
return false; |
|
} |
|
|
|
fr++; |
|
fr->end_ofs = end; |
|
fr->dispatch = NULL; |
|
fr->groupnum = 0; |
|
d->top = fr; |
|
return true; |
|
} |
|
|
|
static bool pushtagdelim(upb_pbdecoder *d, uint32_t arg) { |
|
/* While we expect to see an "end" tag (either ENDGROUP or a non-sequence |
|
* field number) prior to hitting any enclosing submessage end, pushing our |
|
* existing delim end prevents us from continuing to parse values from a |
|
* corrupt proto that doesn't give us an END tag in time. */ |
|
if (!decoder_push(d, d->top->end_ofs)) |
|
return false; |
|
d->top->groupnum = arg; |
|
return true; |
|
} |
|
|
|
/* Pops a frame from the decoder stack. */ |
|
static void decoder_pop(upb_pbdecoder *d) { d->top--; } |
|
|
|
UPB_NOINLINE int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d, |
|
uint64_t expected) { |
|
uint64_t data = 0; |
|
size_t bytes = upb_value_size(expected); |
|
size_t read = peekbytes(d, &data, bytes); |
|
if (read == bytes && data == expected) { |
|
/* Advance past matched bytes. */ |
|
int32_t ok = getbytes(d, &data, read); |
|
UPB_ASSERT_VAR(ok, ok < 0); |
|
return DECODE_OK; |
|
} else if (read < bytes && memcmp(&data, &expected, read) == 0) { |
|
return suspend_save(d); |
|
} else { |
|
return DECODE_MISMATCH; |
|
} |
|
} |
|
|
|
int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum, |
|
uint8_t wire_type) { |
|
if (fieldnum >= 0) |
|
goto have_tag; |
|
|
|
while (true) { |
|
uint32_t tag; |
|
CHECK_RETURN(decode_v32(d, &tag)); |
|
wire_type = tag & 0x7; |
|
fieldnum = tag >> 3; |
|
|
|
have_tag: |
|
if (fieldnum == 0) { |
|
seterr(d, "Saw invalid field number (0)"); |
|
return upb_pbdecoder_suspend(d); |
|
} |
|
|
|
/* TODO: deliver to unknown field callback. */ |
|
switch (wire_type) { |
|
case UPB_WIRE_TYPE_32BIT: |
|
CHECK_RETURN(skip(d, 4)); |
|
break; |
|
case UPB_WIRE_TYPE_64BIT: |
|
CHECK_RETURN(skip(d, 8)); |
|
break; |
|
case UPB_WIRE_TYPE_VARINT: { |
|
uint64_t u64; |
|
CHECK_RETURN(decode_varint(d, &u64)); |
|
break; |
|
} |
|
case UPB_WIRE_TYPE_DELIMITED: { |
|
uint32_t len; |
|
CHECK_RETURN(decode_v32(d, &len)); |
|
CHECK_RETURN(skip(d, len)); |
|
break; |
|
} |
|
case UPB_WIRE_TYPE_START_GROUP: |
|
CHECK_SUSPEND(pushtagdelim(d, -fieldnum)); |
|
break; |
|
case UPB_WIRE_TYPE_END_GROUP: |
|
if (fieldnum == -d->top->groupnum) { |
|
decoder_pop(d); |
|
} else if (fieldnum == d->top->groupnum) { |
|
return DECODE_ENDGROUP; |
|
} else { |
|
seterr(d, "Unmatched ENDGROUP tag."); |
|
return upb_pbdecoder_suspend(d); |
|
} |
|
break; |
|
default: |
|
seterr(d, "Invalid wire type"); |
|
return upb_pbdecoder_suspend(d); |
|
} |
|
|
|
if (d->top->groupnum >= 0) { |
|
return DECODE_OK; |
|
} |
|
|
|
/* Unknown group -- continue looping over unknown fields. */ |
|
checkpoint(d); |
|
} |
|
} |
|
|
|
static void goto_endmsg(upb_pbdecoder *d) { |
|
upb_value v; |
|
bool found = upb_inttable_lookup32(d->top->dispatch, DISPATCH_ENDMSG, &v); |
|
UPB_ASSERT_VAR(found, found); |
|
d->pc = d->top->base + upb_value_getuint64(v); |
|
} |
|
|
|
/* Parses a tag and jumps to the corresponding bytecode instruction for this |
|
* field. |
|
* |
|
* If the tag is unknown (or the wire type doesn't match), parses the field as |
|
* unknown. If the tag is a valid ENDGROUP tag, jumps to the bytecode |
|
* instruction for the end of message. */ |
|
static int32_t dispatch(upb_pbdecoder *d) { |
|
upb_inttable *dispatch = d->top->dispatch; |
|
uint32_t tag; |
|
uint8_t wire_type; |
|
uint32_t fieldnum; |
|
upb_value val; |
|
int32_t retval; |
|
|
|
/* Decode tag. */ |
|
CHECK_RETURN(decode_v32(d, &tag)); |
|
wire_type = tag & 0x7; |
|
fieldnum = tag >> 3; |
|
|
|
/* Lookup tag. Because of packed/non-packed compatibility, we have to |
|
* check the wire type against two possibilities. */ |
|
if (fieldnum != DISPATCH_ENDMSG && |
|
upb_inttable_lookup32(dispatch, fieldnum, &val)) { |
|
uint64_t v = upb_value_getuint64(val); |
|
if (wire_type == (v & 0xff)) { |
|
d->pc = d->top->base + (v >> 16); |
|
return DECODE_OK; |
|
} else if (wire_type == ((v >> 8) & 0xff)) { |
|
bool found = |
|
upb_inttable_lookup(dispatch, fieldnum + UPB_MAX_FIELDNUMBER, &val); |
|
UPB_ASSERT_VAR(found, found); |
|
d->pc = d->top->base + upb_value_getuint64(val); |
|
return DECODE_OK; |
|
} |
|
} |
|
|
|
/* We have some unknown fields (or ENDGROUP) to parse. The DISPATCH or TAG |
|
* bytecode that triggered this is preceded by a CHECKDELIM bytecode which |
|
* we need to back up to, so that when we're done skipping unknown data we |
|
* can re-check the delimited end. */ |
|
d->last--; /* Necessary if we get suspended */ |
|
d->pc = d->last; |
|
assert(getop(*d->last) == OP_CHECKDELIM); |
|
|
|
/* Unknown field or ENDGROUP. */ |
|
retval = upb_pbdecoder_skipunknown(d, fieldnum, wire_type); |
|
|
|
CHECK_RETURN(retval); |
|
|
|
if (retval == DECODE_ENDGROUP) { |
|
goto_endmsg(d); |
|
return DECODE_OK; |
|
} |
|
|
|
return DECODE_OK; |
|
} |
|
|
|
/* Callers know that the stack is more than one deep because the opcodes that |
|
* call this only occur after PUSH operations. */ |
|
upb_pbdecoder_frame *outer_frame(upb_pbdecoder *d) { |
|
assert(d->top != d->stack); |
|
return d->top - 1; |
|
} |
|
|
|
|
|
/* The main decoding loop *****************************************************/ |
|
|
|
/* The main decoder VM function. Uses traditional bytecode dispatch loop with a |
|
* switch() statement. */ |
|
size_t run_decoder_vm(upb_pbdecoder *d, const mgroup *group, |
|
const upb_bufhandle* handle) { |
|
|
|
#define VMCASE(op, code) \ |
|
case op: { code; if (consumes_input(op)) checkpoint(d); break; } |
|
#define PRIMITIVE_OP(type, wt, name, convfunc, ctype) \ |
|
VMCASE(OP_PARSE_ ## type, { \ |
|
ctype val; \ |
|
CHECK_RETURN(decode_ ## wt(d, &val)); \ |
|
upb_sink_put ## name(&d->top->sink, arg, (convfunc)(val)); \ |
|
}) |
|
|
|
while(1) { |
|
int32_t instruction; |
|
opcode op; |
|
uint32_t arg; |
|
int32_t longofs; |
|
|
|
d->last = d->pc; |
|
instruction = *d->pc++; |
|
op = getop(instruction); |
|
arg = instruction >> 8; |
|
longofs = arg; |
|
assert(d->ptr != d->residual_end); |
|
UPB_UNUSED(group); |
|
#ifdef UPB_DUMP_BYTECODE |
|
fprintf(stderr, "s_ofs=%d buf_ofs=%d data_rem=%d buf_rem=%d delim_rem=%d " |
|
"%x %s (%d)\n", |
|
(int)offset(d), |
|
(int)(d->ptr - d->buf), |
|
(int)(d->data_end - d->ptr), |
|
(int)(d->end - d->ptr), |
|
(int)((d->top->end_ofs - d->bufstart_ofs) - (d->ptr - d->buf)), |
|
(int)(d->pc - 1 - group->bytecode), |
|
upb_pbdecoder_getopname(op), |
|
arg); |
|
#endif |
|
switch (op) { |
|
/* Technically, we are losing data if we see a 32-bit varint that is not |
|
* properly sign-extended. We could detect this and error about the data |
|
* loss, but proto2 does not do this, so we pass. */ |
|
PRIMITIVE_OP(INT32, varint, int32, int32_t, uint64_t) |
|
PRIMITIVE_OP(INT64, varint, int64, int64_t, uint64_t) |
|
PRIMITIVE_OP(UINT32, varint, uint32, uint32_t, uint64_t) |
|
PRIMITIVE_OP(UINT64, varint, uint64, uint64_t, uint64_t) |
|
PRIMITIVE_OP(FIXED32, fixed32, uint32, uint32_t, uint32_t) |
|
PRIMITIVE_OP(FIXED64, fixed64, uint64, uint64_t, uint64_t) |
|
PRIMITIVE_OP(SFIXED32, fixed32, int32, int32_t, uint32_t) |
|
PRIMITIVE_OP(SFIXED64, fixed64, int64, int64_t, uint64_t) |
|
PRIMITIVE_OP(BOOL, varint, bool, bool, uint64_t) |
|
PRIMITIVE_OP(DOUBLE, fixed64, double, as_double, uint64_t) |
|
PRIMITIVE_OP(FLOAT, fixed32, float, as_float, uint32_t) |
|
PRIMITIVE_OP(SINT32, varint, int32, upb_zzdec_32, uint64_t) |
|
PRIMITIVE_OP(SINT64, varint, int64, upb_zzdec_64, uint64_t) |
|
|
|
VMCASE(OP_SETDISPATCH, |
|
d->top->base = d->pc - 1; |
|
memcpy(&d->top->dispatch, d->pc, sizeof(void*)); |
|
d->pc += sizeof(void*) / sizeof(uint32_t); |
|
) |
|
VMCASE(OP_STARTMSG, |
|
CHECK_SUSPEND(upb_sink_startmsg(&d->top->sink)); |
|
) |
|
VMCASE(OP_ENDMSG, |
|
CHECK_SUSPEND(upb_sink_endmsg(&d->top->sink, d->status)); |
|
) |
|
VMCASE(OP_STARTSEQ, |
|
upb_pbdecoder_frame *outer = outer_frame(d); |
|
CHECK_SUSPEND(upb_sink_startseq(&outer->sink, arg, &d->top->sink)); |
|
) |
|
VMCASE(OP_ENDSEQ, |
|
CHECK_SUSPEND(upb_sink_endseq(&d->top->sink, arg)); |
|
) |
|
VMCASE(OP_STARTSUBMSG, |
|
upb_pbdecoder_frame *outer = outer_frame(d); |
|
CHECK_SUSPEND(upb_sink_startsubmsg(&outer->sink, arg, &d->top->sink)); |
|
) |
|
VMCASE(OP_ENDSUBMSG, |
|
CHECK_SUSPEND(upb_sink_endsubmsg(&d->top->sink, arg)); |
|
) |
|
VMCASE(OP_STARTSTR, |
|
uint32_t len = delim_remaining(d); |
|
upb_pbdecoder_frame *outer = outer_frame(d); |
|
CHECK_SUSPEND(upb_sink_startstr(&outer->sink, arg, len, &d->top->sink)); |
|
if (len == 0) { |
|
d->pc++; /* Skip OP_STRING. */ |
|
} |
|
) |
|
VMCASE(OP_STRING, |
|
uint32_t len = curbufleft(d); |
|
size_t n = upb_sink_putstring(&d->top->sink, arg, d->ptr, len, handle); |
|
if (n > len) { |
|
if (n > delim_remaining(d)) { |
|
seterr(d, "Tried to skip past end of string."); |
|
return upb_pbdecoder_suspend(d); |
|
} else { |
|
int32_t ret = skip(d, n); |
|
/* This shouldn't return DECODE_OK, because n > len. */ |
|
assert(ret >= 0); |
|
return ret; |
|
} |
|
} |
|
advance(d, n); |
|
if (n < len || d->delim_end == NULL) { |
|
/* We aren't finished with this string yet. */ |
|
d->pc--; /* Repeat OP_STRING. */ |
|
if (n > 0) checkpoint(d); |
|
return upb_pbdecoder_suspend(d); |
|
} |
|
) |
|
VMCASE(OP_ENDSTR, |
|
CHECK_SUSPEND(upb_sink_endstr(&d->top->sink, arg)); |
|
) |
|
VMCASE(OP_PUSHTAGDELIM, |
|
CHECK_SUSPEND(pushtagdelim(d, arg)); |
|
) |
|
VMCASE(OP_SETBIGGROUPNUM, |
|
d->top->groupnum = *d->pc++; |
|
) |
|
VMCASE(OP_POP, |
|
assert(d->top > d->stack); |
|
decoder_pop(d); |
|
) |
|
VMCASE(OP_PUSHLENDELIM, |
|
uint32_t len; |
|
CHECK_RETURN(decode_v32(d, &len)); |
|
CHECK_SUSPEND(decoder_push(d, offset(d) + len)); |
|
set_delim_end(d); |
|
) |
|
VMCASE(OP_SETDELIM, |
|
set_delim_end(d); |
|
) |
|
VMCASE(OP_CHECKDELIM, |
|
/* We are guaranteed of this assert because we never allow ourselves to |
|
* consume bytes beyond data_end, which covers delim_end when non-NULL. |
|
*/ |
|
assert(!(d->delim_end && d->ptr > d->delim_end)); |
|
if (d->ptr == d->delim_end) |
|
d->pc += longofs; |
|
) |
|
VMCASE(OP_CALL, |
|
d->callstack[d->call_len++] = d->pc; |
|
d->pc += longofs; |
|
) |
|
VMCASE(OP_RET, |
|
assert(d->call_len > 0); |
|
d->pc = d->callstack[--d->call_len]; |
|
) |
|
VMCASE(OP_BRANCH, |
|
d->pc += longofs; |
|
) |
|
VMCASE(OP_TAG1, |
|
uint8_t expected; |
|
CHECK_SUSPEND(curbufleft(d) > 0); |
|
expected = (arg >> 8) & 0xff; |
|
if (*d->ptr == expected) { |
|
advance(d, 1); |
|
} else { |
|
int8_t shortofs; |
|
badtag: |
|
shortofs = arg; |
|
if (shortofs == LABEL_DISPATCH) { |
|
CHECK_RETURN(dispatch(d)); |
|
} else { |
|
d->pc += shortofs; |
|
break; /* Avoid checkpoint(). */ |
|
} |
|
} |
|
) |
|
VMCASE(OP_TAG2, |
|
uint16_t expected; |
|
CHECK_SUSPEND(curbufleft(d) > 0); |
|
expected = (arg >> 8) & 0xffff; |
|
if (curbufleft(d) >= 2) { |
|
uint16_t actual; |
|
memcpy(&actual, d->ptr, 2); |
|
if (expected == actual) { |
|
advance(d, 2); |
|
} else { |
|
goto badtag; |
|
} |
|
} else { |
|
int32_t result = upb_pbdecoder_checktag_slow(d, expected); |
|
if (result == DECODE_MISMATCH) goto badtag; |
|
if (result >= 0) return result; |
|
} |
|
) |
|
VMCASE(OP_TAGN, { |
|
uint64_t expected; |
|
int32_t result; |
|
memcpy(&expected, d->pc, 8); |
|
d->pc += 2; |
|
result = upb_pbdecoder_checktag_slow(d, expected); |
|
if (result == DECODE_MISMATCH) goto badtag; |
|
if (result >= 0) return result; |
|
}) |
|
VMCASE(OP_DISPATCH, { |
|
CHECK_RETURN(dispatch(d)); |
|
}) |
|
VMCASE(OP_HALT, { |
|
return d->size_param; |
|
}) |
|
} |
|
} |
|
} |
|
|
|
|
|
/* BytesHandler handlers ******************************************************/ |
|
|
|
void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint) { |
|
upb_pbdecoder *d = closure; |
|
UPB_UNUSED(size_hint); |
|
d->top->end_ofs = UINT64_MAX; |
|
d->bufstart_ofs = 0; |
|
d->call_len = 1; |
|
d->callstack[0] = &halt; |
|
d->pc = pc; |
|
d->skip = 0; |
|
return d; |
|
} |
|
|
|
void *upb_pbdecoder_startjit(void *closure, const void *hd, size_t size_hint) { |
|
upb_pbdecoder *d = closure; |
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(size_hint); |
|
d->top->end_ofs = UINT64_MAX; |
|
d->bufstart_ofs = 0; |
|
d->call_len = 0; |
|
d->skip = 0; |
|
return d; |
|
} |
|
|
|
bool upb_pbdecoder_end(void *closure, const void *handler_data) { |
|
upb_pbdecoder *d = closure; |
|
const upb_pbdecodermethod *method = handler_data; |
|
uint64_t end; |
|
char dummy; |
|
|
|
if (d->residual_end > d->residual) { |
|
seterr(d, "Unexpected EOF: decoder still has buffered unparsed data"); |
|
return false; |
|
} |
|
|
|
if (d->skip) { |
|
seterr(d, "Unexpected EOF inside skipped data"); |
|
return false; |
|
} |
|
|
|
if (d->top->end_ofs != UINT64_MAX) { |
|
seterr(d, "Unexpected EOF inside delimited string"); |
|
return false; |
|
} |
|
|
|
/* The user's end() call indicates that the message ends here. */ |
|
end = offset(d); |
|
d->top->end_ofs = end; |
|
|
|
#ifdef UPB_USE_JIT_X64 |
|
if (method->is_native_) { |
|
const mgroup *group = (const mgroup*)method->group; |
|
if (d->top != d->stack) |
|
d->stack->end_ofs = 0; |
|
group->jit_code(closure, method->code_base.ptr, &dummy, 0, NULL); |
|
} else |
|
#endif |
|
{ |
|
const uint32_t *p = d->pc; |
|
d->stack->end_ofs = end; |
|
/* Check the previous bytecode, but guard against beginning. */ |
|
if (p != method->code_base.ptr) p--; |
|
if (getop(*p) == OP_CHECKDELIM) { |
|
/* Rewind from OP_TAG* to OP_CHECKDELIM. */ |
|
assert(getop(*d->pc) == OP_TAG1 || |
|
getop(*d->pc) == OP_TAG2 || |
|
getop(*d->pc) == OP_TAGN || |
|
getop(*d->pc) == OP_DISPATCH); |
|
d->pc = p; |
|
} |
|
upb_pbdecoder_decode(closure, handler_data, &dummy, 0, NULL); |
|
} |
|
|
|
if (d->call_len != 0) { |
|
seterr(d, "Unexpected EOF inside submessage or group"); |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
size_t upb_pbdecoder_decode(void *decoder, const void *group, const char *buf, |
|
size_t size, const upb_bufhandle *handle) { |
|
int32_t result = upb_pbdecoder_resume(decoder, NULL, buf, size, handle); |
|
|
|
if (result == DECODE_ENDGROUP) goto_endmsg(decoder); |
|
CHECK_RETURN(result); |
|
|
|
return run_decoder_vm(decoder, group, handle); |
|
} |
|
|
|
|
|
/* Public API *****************************************************************/ |
|
|
|
void upb_pbdecoder_reset(upb_pbdecoder *d) { |
|
d->top = d->stack; |
|
d->top->groupnum = 0; |
|
d->ptr = d->residual; |
|
d->buf = d->residual; |
|
d->end = d->residual; |
|
d->residual_end = d->residual; |
|
} |
|
|
|
upb_pbdecoder *upb_pbdecoder_create(upb_env *e, const upb_pbdecodermethod *m, |
|
upb_sink *sink) { |
|
const size_t default_max_nesting = 64; |
|
#ifndef NDEBUG |
|
size_t size_before = upb_env_bytesallocated(e); |
|
#endif |
|
|
|
upb_pbdecoder *d = upb_env_malloc(e, sizeof(upb_pbdecoder)); |
|
if (!d) return NULL; |
|
|
|
d->method_ = m; |
|
d->callstack = upb_env_malloc(e, callstacksize(d, default_max_nesting)); |
|
d->stack = upb_env_malloc(e, stacksize(d, default_max_nesting)); |
|
if (!d->stack || !d->callstack) { |
|
return NULL; |
|
} |
|
|
|
d->env = e; |
|
d->limit = d->stack + default_max_nesting - 1; |
|
d->stack_size = default_max_nesting; |
|
|
|
upb_pbdecoder_reset(d); |
|
upb_bytessink_reset(&d->input_, &m->input_handler_, d); |
|
|
|
assert(sink); |
|
if (d->method_->dest_handlers_) { |
|
if (sink->handlers != d->method_->dest_handlers_) |
|
return NULL; |
|
} |
|
upb_sink_reset(&d->top->sink, sink->handlers, sink->closure); |
|
|
|
/* If this fails, increase the value in decoder.h. */ |
|
assert(upb_env_bytesallocated(e) - size_before <= UPB_PB_DECODER_SIZE); |
|
return d; |
|
} |
|
|
|
uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d) { |
|
return offset(d); |
|
} |
|
|
|
const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d) { |
|
return d->method_; |
|
} |
|
|
|
upb_bytessink *upb_pbdecoder_input(upb_pbdecoder *d) { |
|
return &d->input_; |
|
} |
|
|
|
size_t upb_pbdecoder_maxnesting(const upb_pbdecoder *d) { |
|
return d->stack_size; |
|
} |
|
|
|
bool upb_pbdecoder_setmaxnesting(upb_pbdecoder *d, size_t max) { |
|
assert(d->top >= d->stack); |
|
|
|
if (max < (size_t)(d->top - d->stack)) { |
|
/* Can't set a limit smaller than what we are currently at. */ |
|
return false; |
|
} |
|
|
|
if (max > d->stack_size) { |
|
/* Need to reallocate stack and callstack to accommodate. */ |
|
size_t old_size = stacksize(d, d->stack_size); |
|
size_t new_size = stacksize(d, max); |
|
void *p = upb_env_realloc(d->env, d->stack, old_size, new_size); |
|
if (!p) { |
|
return false; |
|
} |
|
d->stack = p; |
|
|
|
old_size = callstacksize(d, d->stack_size); |
|
new_size = callstacksize(d, max); |
|
p = upb_env_realloc(d->env, d->callstack, old_size, new_size); |
|
if (!p) { |
|
return false; |
|
} |
|
d->callstack = p; |
|
|
|
d->stack_size = max; |
|
} |
|
|
|
d->limit = d->stack + max - 1; |
|
return true; |
|
} |
|
/* |
|
** upb::Encoder |
|
** |
|
** Since we are implementing pure handlers (ie. without any out-of-band access |
|
** to pre-computed lengths), we have to buffer all submessages before we can |
|
** emit even their first byte. |
|
** |
|
** Not knowing the size of submessages also means we can't write a perfect |
|
** zero-copy implementation, even with buffering. Lengths are stored as |
|
** varints, which means that we don't know how many bytes to reserve for the |
|
** length until we know what the length is. |
|
** |
|
** This leaves us with three main choices: |
|
** |
|
** 1. buffer all submessage data in a temporary buffer, then copy it exactly |
|
** once into the output buffer. |
|
** |
|
** 2. attempt to buffer data directly into the output buffer, estimating how |
|
** many bytes each length will take. When our guesses are wrong, use |
|
** memmove() to grow or shrink the allotted space. |
|
** |
|
** 3. buffer directly into the output buffer, allocating a max length |
|
** ahead-of-time for each submessage length. If we overallocated, we waste |
|
** space, but no memcpy() or memmove() is required. This approach requires |
|
** defining a maximum size for submessages and rejecting submessages that |
|
** exceed that size. |
|
** |
|
** (2) and (3) have the potential to have better performance, but they are more |
|
** complicated and subtle to implement: |
|
** |
|
** (3) requires making an arbitrary choice of the maximum message size; it |
|
** wastes space when submessages are shorter than this and fails |
|
** completely when they are longer. This makes it more finicky and |
|
** requires configuration based on the input. It also makes it impossible |
|
** to perfectly match the output of reference encoders that always use the |
|
** optimal amount of space for each length. |
|
** |
|
** (2) requires guessing the the size upfront, and if multiple lengths are |
|
** guessed wrong the minimum required number of memmove() operations may |
|
** be complicated to compute correctly. Implemented properly, it may have |
|
** a useful amortized or average cost, but more investigation is required |
|
** to determine this and what the optimal algorithm is to achieve it. |
|
** |
|
** (1) makes you always pay for exactly one copy, but its implementation is |
|
** the simplest and its performance is predictable. |
|
** |
|
** So for now, we implement (1) only. If we wish to optimize later, we should |
|
** be able to do it without affecting users. |
|
** |
|
** The strategy is to buffer the segments of data that do *not* depend on |
|
** unknown lengths in one buffer, and keep a separate buffer of segment pointers |
|
** and lengths. When the top-level submessage ends, we can go beginning to end, |
|
** alternating the writing of lengths with memcpy() of the rest of the data. |
|
** At the top level though, no buffering is required. |
|
*/ |
|
|
|
|
|
#include <stdlib.h> |
|
|
|
/* The output buffer is divided into segments; a segment is a string of data |
|
* that is "ready to go" -- it does not need any varint lengths inserted into |
|
* the middle. The seams between segments are where varints will be inserted |
|
* once they are known. |
|
* |
|
* We also use the concept of a "run", which is a range of encoded bytes that |
|
* occur at a single submessage level. Every segment contains one or more runs. |
|
* |
|
* A segment can span messages. Consider: |
|
* |
|
* .--Submessage lengths---------. |
|
* | | | |
|
* | V V |
|
* V | |--------------- | |----------------- |
|
* Submessages: | |----------------------------------------------- |
|
* Top-level msg: ------------------------------------------------------------ |
|
* |
|
* Segments: ----- ------------------- ----------------- |
|
* Runs: *---- *--------------*--- *---------------- |
|
* (* marks the start) |
|
* |
|
* Note that the top-level menssage is not in any segment because it does not |
|
* have any length preceding it. |
|
* |
|
* A segment is only interrupted when another length needs to be inserted. So |
|
* observe how the second segment spans both the inner submessage and part of |
|
* the next enclosing message. */ |
|
typedef struct { |
|
uint32_t msglen; /* The length to varint-encode before this segment. */ |
|
uint32_t seglen; /* Length of the segment. */ |
|
} upb_pb_encoder_segment; |
|
|
|
struct upb_pb_encoder { |
|
upb_env *env; |
|
|
|
/* Our input and output. */ |
|
upb_sink input_; |
|
upb_bytessink *output_; |
|
|
|
/* The "subclosure" -- used as the inner closure as part of the bytessink |
|
* protocol. */ |
|
void *subc; |
|
|
|
/* The output buffer and limit, and our current write position. "buf" |
|
* initially points to "initbuf", but is dynamically allocated if we need to |
|
* grow beyond the initial size. */ |
|
char *buf, *ptr, *limit; |
|
|
|
/* The beginning of the current run, or undefined if we are at the top |
|
* level. */ |
|
char *runbegin; |
|
|
|
/* The list of segments we are accumulating. */ |
|
upb_pb_encoder_segment *segbuf, *segptr, *seglimit; |
|
|
|
/* The stack of enclosing submessages. Each entry in the stack points to the |
|
* segment where this submessage's length is being accumulated. */ |
|
int *stack, *top, *stacklimit; |
|
|
|
/* Depth of startmsg/endmsg calls. */ |
|
int depth; |
|
}; |
|
|
|
/* low-level buffering ********************************************************/ |
|
|
|
/* Low-level functions for interacting with the output buffer. */ |
|
|
|
/* TODO(haberman): handle pushback */ |
|
static void putbuf(upb_pb_encoder *e, const char *buf, size_t len) { |
|
size_t n = upb_bytessink_putbuf(e->output_, e->subc, buf, len, NULL); |
|
UPB_ASSERT_VAR(n, n == len); |
|
} |
|
|
|
static upb_pb_encoder_segment *top(upb_pb_encoder *e) { |
|
return &e->segbuf[*e->top]; |
|
} |
|
|
|
/* Call to ensure that at least "bytes" bytes are available for writing at |
|
* e->ptr. Returns false if the bytes could not be allocated. */ |
|
static bool reserve(upb_pb_encoder *e, size_t bytes) { |
|
if ((size_t)(e->limit - e->ptr) < bytes) { |
|
/* Grow buffer. */ |
|
char *new_buf; |
|
size_t needed = bytes + (e->ptr - e->buf); |
|
size_t old_size = e->limit - e->buf; |
|
|
|
size_t new_size = old_size; |
|
|
|
while (new_size < needed) { |
|
new_size *= 2; |
|
} |
|
|
|
new_buf = upb_env_realloc(e->env, e->buf, old_size, new_size); |
|
|
|
if (new_buf == NULL) { |
|
return false; |
|
} |
|
|
|
e->ptr = new_buf + (e->ptr - e->buf); |
|
e->runbegin = new_buf + (e->runbegin - e->buf); |
|
e->limit = new_buf + new_size; |
|
e->buf = new_buf; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/* Call when "bytes" bytes have been writte at e->ptr. The caller *must* have |
|
* previously called reserve() with at least this many bytes. */ |
|
static void encoder_advance(upb_pb_encoder *e, size_t bytes) { |
|
assert((size_t)(e->limit - e->ptr) >= bytes); |
|
e->ptr += bytes; |
|
} |
|
|
|
/* Call when all of the bytes for a handler have been written. Flushes the |
|
* bytes if possible and necessary, returning false if this failed. */ |
|
static bool commit(upb_pb_encoder *e) { |
|
if (!e->top) { |
|
/* We aren't inside a delimited region. Flush our accumulated bytes to |
|
* the output. |
|
* |
|
* TODO(haberman): in the future we may want to delay flushing for |
|
* efficiency reasons. */ |
|
putbuf(e, e->buf, e->ptr - e->buf); |
|
e->ptr = e->buf; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/* Writes the given bytes to the buffer, handling reserve/advance. */ |
|
static bool encode_bytes(upb_pb_encoder *e, const void *data, size_t len) { |
|
if (!reserve(e, len)) { |
|
return false; |
|
} |
|
|
|
memcpy(e->ptr, data, len); |
|
encoder_advance(e, len); |
|
return true; |
|
} |
|
|
|
/* Finish the current run by adding the run totals to the segment and message |
|
* length. */ |
|
static void accumulate(upb_pb_encoder *e) { |
|
size_t run_len; |
|
assert(e->ptr >= e->runbegin); |
|
run_len = e->ptr - e->runbegin; |
|
e->segptr->seglen += run_len; |
|
top(e)->msglen += run_len; |
|
e->runbegin = e->ptr; |
|
} |
|
|
|
/* Call to indicate the start of delimited region for which the full length is |
|
* not yet known. All data will be buffered until the length is known. |
|
* Delimited regions may be nested; their lengths will all be tracked properly. */ |
|
static bool start_delim(upb_pb_encoder *e) { |
|
if (e->top) { |
|
/* We are already buffering, advance to the next segment and push it on the |
|
* stack. */ |
|
accumulate(e); |
|
|
|
if (++e->top == e->stacklimit) { |
|
/* TODO(haberman): grow stack? */ |
|
return false; |
|
} |
|
|
|
if (++e->segptr == e->seglimit) { |
|
/* Grow segment buffer. */ |
|
size_t old_size = |
|
(e->seglimit - e->segbuf) * sizeof(upb_pb_encoder_segment); |
|
size_t new_size = old_size * 2; |
|
upb_pb_encoder_segment *new_buf = |
|
upb_env_realloc(e->env, e->segbuf, old_size, new_size); |
|
|
|
if (new_buf == NULL) { |
|
return false; |
|
} |
|
|
|
e->segptr = new_buf + (e->segptr - e->segbuf); |
|
e->seglimit = new_buf + (new_size / sizeof(upb_pb_encoder_segment)); |
|
e->segbuf = new_buf; |
|
} |
|
} else { |
|
/* We were previously at the top level, start buffering. */ |
|
e->segptr = e->segbuf; |
|
e->top = e->stack; |
|
e->runbegin = e->ptr; |
|
} |
|
|
|
*e->top = e->segptr - e->segbuf; |
|
e->segptr->seglen = 0; |
|
e->segptr->msglen = 0; |
|
|
|
return true; |
|
} |
|
|
|
/* Call to indicate the end of a delimited region. We now know the length of |
|
* the delimited region. If we are not nested inside any other delimited |
|
* regions, we can now emit all of the buffered data we accumulated. */ |
|
static bool end_delim(upb_pb_encoder *e) { |
|
size_t msglen; |
|
accumulate(e); |
|
msglen = top(e)->msglen; |
|
|
|
if (e->top == e->stack) { |
|
/* All lengths are now available, emit all buffered data. */ |
|
char buf[UPB_PB_VARINT_MAX_LEN]; |
|
upb_pb_encoder_segment *s; |
|
const char *ptr = e->buf; |
|
for (s = e->segbuf; s <= e->segptr; s++) { |
|
size_t lenbytes = upb_vencode64(s->msglen, buf); |
|
putbuf(e, buf, lenbytes); |
|
putbuf(e, ptr, s->seglen); |
|
ptr += s->seglen; |
|
} |
|
|
|
e->ptr = e->buf; |
|
e->top = NULL; |
|
} else { |
|
/* Need to keep buffering; propagate length info into enclosing |
|
* submessages. */ |
|
--e->top; |
|
top(e)->msglen += msglen + upb_varint_size(msglen); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
|
|
/* tag_t **********************************************************************/ |
|
|
|
/* A precomputed (pre-encoded) tag and length. */ |
|
|
|
typedef struct { |
|
uint8_t bytes; |
|
char tag[7]; |
|
} tag_t; |
|
|
|
/* Allocates a new tag for this field, and sets it in these handlerattr. */ |
|
static void new_tag(upb_handlers *h, const upb_fielddef *f, upb_wiretype_t wt, |
|
upb_handlerattr *attr) { |
|
uint32_t n = upb_fielddef_number(f); |
|
|
|
tag_t *tag = malloc(sizeof(tag_t)); |
|
tag->bytes = upb_vencode64((n << 3) | wt, tag->tag); |
|
|
|
upb_handlerattr_init(attr); |
|
upb_handlerattr_sethandlerdata(attr, tag); |
|
upb_handlers_addcleanup(h, tag, free); |
|
} |
|
|
|
static bool encode_tag(upb_pb_encoder *e, const tag_t *tag) { |
|
return encode_bytes(e, tag->tag, tag->bytes); |
|
} |
|
|
|
|
|
/* encoding of wire types *****************************************************/ |
|
|
|
static bool encode_fixed64(upb_pb_encoder *e, uint64_t val) { |
|
/* TODO(haberman): byte-swap for big endian. */ |
|
return encode_bytes(e, &val, sizeof(uint64_t)); |
|
} |
|
|
|
static bool encode_fixed32(upb_pb_encoder *e, uint32_t val) { |
|
/* TODO(haberman): byte-swap for big endian. */ |
|
return encode_bytes(e, &val, sizeof(uint32_t)); |
|
} |
|
|
|
static bool encode_varint(upb_pb_encoder *e, uint64_t val) { |
|
if (!reserve(e, UPB_PB_VARINT_MAX_LEN)) { |
|
return false; |
|
} |
|
|
|
encoder_advance(e, upb_vencode64(val, e->ptr)); |
|
return true; |
|
} |
|
|
|
static uint64_t dbl2uint64(double d) { |
|
uint64_t ret; |
|
memcpy(&ret, &d, sizeof(uint64_t)); |
|
return ret; |
|
} |
|
|
|
static uint32_t flt2uint32(float d) { |
|
uint32_t ret; |
|
memcpy(&ret, &d, sizeof(uint32_t)); |
|
return ret; |
|
} |
|
|
|
|
|
/* encoding of proto types ****************************************************/ |
|
|
|
static bool startmsg(void *c, const void *hd) { |
|
upb_pb_encoder *e = c; |
|
UPB_UNUSED(hd); |
|
if (e->depth++ == 0) { |
|
upb_bytessink_start(e->output_, 0, &e->subc); |
|
} |
|
return true; |
|
} |
|
|
|
static bool endmsg(void *c, const void *hd, upb_status *status) { |
|
upb_pb_encoder *e = c; |
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(status); |
|
if (--e->depth == 0) { |
|
upb_bytessink_end(e->output_); |
|
} |
|
return true; |
|
} |
|
|
|
static void *encode_startdelimfield(void *c, const void *hd) { |
|
bool ok = encode_tag(c, hd) && commit(c) && start_delim(c); |
|
return ok ? c : UPB_BREAK; |
|
} |
|
|
|
static bool encode_enddelimfield(void *c, const void *hd) { |
|
UPB_UNUSED(hd); |
|
return end_delim(c); |
|
} |
|
|
|
static void *encode_startgroup(void *c, const void *hd) { |
|
return (encode_tag(c, hd) && commit(c)) ? c : UPB_BREAK; |
|
} |
|
|
|
static bool encode_endgroup(void *c, const void *hd) { |
|
return encode_tag(c, hd) && commit(c); |
|
} |
|
|
|
static void *encode_startstr(void *c, const void *hd, size_t size_hint) { |
|
UPB_UNUSED(size_hint); |
|
return encode_startdelimfield(c, hd); |
|
} |
|
|
|
static size_t encode_strbuf(void *c, const void *hd, const char *buf, |
|
size_t len, const upb_bufhandle *h) { |
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(h); |
|
return encode_bytes(c, buf, len) ? len : 0; |
|
} |
|
|
|
#define T(type, ctype, convert, encode) \ |
|
static bool encode_scalar_##type(void *e, const void *hd, ctype val) { \ |
|
return encode_tag(e, hd) && encode(e, (convert)(val)) && commit(e); \ |
|
} \ |
|
static bool encode_packed_##type(void *e, const void *hd, ctype val) { \ |
|
UPB_UNUSED(hd); \ |
|
return encode(e, (convert)(val)); \ |
|
} |
|
|
|
T(double, double, dbl2uint64, encode_fixed64) |
|
T(float, float, flt2uint32, encode_fixed32) |
|
T(int64, int64_t, uint64_t, encode_varint) |
|
T(int32, int32_t, uint32_t, encode_varint) |
|
T(fixed64, uint64_t, uint64_t, encode_fixed64) |
|
T(fixed32, uint32_t, uint32_t, encode_fixed32) |
|
T(bool, bool, bool, encode_varint) |
|
T(uint32, uint32_t, uint32_t, encode_varint) |
|
T(uint64, uint64_t, uint64_t, encode_varint) |
|
T(enum, int32_t, uint32_t, encode_varint) |
|
T(sfixed32, int32_t, uint32_t, encode_fixed32) |
|
T(sfixed64, int64_t, uint64_t, encode_fixed64) |
|
T(sint32, int32_t, upb_zzenc_32, encode_varint) |
|
T(sint64, int64_t, upb_zzenc_64, encode_varint) |
|
|
|
#undef T |
|
|
|
|
|
/* code to build the handlers *************************************************/ |
|
|
|
static void newhandlers_callback(const void *closure, upb_handlers *h) { |
|
const upb_msgdef *m; |
|
upb_msg_field_iter i; |
|
|
|
UPB_UNUSED(closure); |
|
|
|
upb_handlers_setstartmsg(h, startmsg, NULL); |
|
upb_handlers_setendmsg(h, endmsg, NULL); |
|
|
|
m = upb_handlers_msgdef(h); |
|
for(upb_msg_field_begin(&i, m); |
|
!upb_msg_field_done(&i); |
|
upb_msg_field_next(&i)) { |
|
const upb_fielddef *f = upb_msg_iter_field(&i); |
|
bool packed = upb_fielddef_isseq(f) && upb_fielddef_isprimitive(f) && |
|
upb_fielddef_packed(f); |
|
upb_handlerattr attr; |
|
upb_wiretype_t wt = |
|
packed ? UPB_WIRE_TYPE_DELIMITED |
|
: upb_pb_native_wire_types[upb_fielddef_descriptortype(f)]; |
|
|
|
/* Pre-encode the tag for this field. */ |
|
new_tag(h, f, wt, &attr); |
|
|
|
if (packed) { |
|
upb_handlers_setstartseq(h, f, encode_startdelimfield, &attr); |
|
upb_handlers_setendseq(h, f, encode_enddelimfield, &attr); |
|
} |
|
|
|
#define T(upper, lower, upbtype) \ |
|
case UPB_DESCRIPTOR_TYPE_##upper: \ |
|
if (packed) { \ |
|
upb_handlers_set##upbtype(h, f, encode_packed_##lower, &attr); \ |
|
} else { \ |
|
upb_handlers_set##upbtype(h, f, encode_scalar_##lower, &attr); \ |
|
} \ |
|
break; |
|
|
|
switch (upb_fielddef_descriptortype(f)) { |
|
T(DOUBLE, double, double); |
|
T(FLOAT, float, float); |
|
T(INT64, int64, int64); |
|
T(INT32, int32, int32); |
|
T(FIXED64, fixed64, uint64); |
|
T(FIXED32, fixed32, uint32); |
|
T(BOOL, bool, bool); |
|
T(UINT32, uint32, uint32); |
|
T(UINT64, uint64, uint64); |
|
T(ENUM, enum, int32); |
|
T(SFIXED32, sfixed32, int32); |
|
T(SFIXED64, sfixed64, int64); |
|
T(SINT32, sint32, int32); |
|
T(SINT64, sint64, int64); |
|
case UPB_DESCRIPTOR_TYPE_STRING: |
|
case UPB_DESCRIPTOR_TYPE_BYTES: |
|
upb_handlers_setstartstr(h, f, encode_startstr, &attr); |
|
upb_handlers_setendstr(h, f, encode_enddelimfield, &attr); |
|
upb_handlers_setstring(h, f, encode_strbuf, &attr); |
|
break; |
|
case UPB_DESCRIPTOR_TYPE_MESSAGE: |
|
upb_handlers_setstartsubmsg(h, f, encode_startdelimfield, &attr); |
|
upb_handlers_setendsubmsg(h, f, encode_enddelimfield, &attr); |
|
break; |
|
case UPB_DESCRIPTOR_TYPE_GROUP: { |
|
/* Endgroup takes a different tag (wire_type = END_GROUP). */ |
|
upb_handlerattr attr2; |
|
new_tag(h, f, UPB_WIRE_TYPE_END_GROUP, &attr2); |
|
|
|
upb_handlers_setstartsubmsg(h, f, encode_startgroup, &attr); |
|
upb_handlers_setendsubmsg(h, f, encode_endgroup, &attr2); |
|
|
|
upb_handlerattr_uninit(&attr2); |
|
break; |
|
} |
|
} |
|
|
|
#undef T |
|
|
|
upb_handlerattr_uninit(&attr); |
|
} |
|
} |
|
|
|
void upb_pb_encoder_reset(upb_pb_encoder *e) { |
|
e->segptr = NULL; |
|
e->top = NULL; |
|
e->depth = 0; |
|
} |
|
|
|
|
|
/* public API *****************************************************************/ |
|
|
|
const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m, |
|
const void *owner) { |
|
return upb_handlers_newfrozen(m, owner, newhandlers_callback, NULL); |
|
} |
|
|
|
upb_pb_encoder *upb_pb_encoder_create(upb_env *env, const upb_handlers *h, |
|
upb_bytessink *output) { |
|
const size_t initial_bufsize = 256; |
|
const size_t initial_segbufsize = 16; |
|
/* TODO(haberman): make this configurable. */ |
|
const size_t stack_size = 64; |
|
#ifndef NDEBUG |
|
const size_t size_before = upb_env_bytesallocated(env); |
|
#endif |
|
|
|
upb_pb_encoder *e = upb_env_malloc(env, sizeof(upb_pb_encoder)); |
|
if (!e) return NULL; |
|
|
|
e->buf = upb_env_malloc(env, initial_bufsize); |
|
e->segbuf = upb_env_malloc(env, initial_segbufsize * sizeof(*e->segbuf)); |
|
e->stack = upb_env_malloc(env, stack_size * sizeof(*e->stack)); |
|
|
|
if (!e->buf || !e->segbuf || !e->stack) { |
|
return NULL; |
|
} |
|
|
|
e->limit = e->buf + initial_bufsize; |
|
e->seglimit = e->segbuf + initial_segbufsize; |
|
e->stacklimit = e->stack + stack_size; |
|
|
|
upb_pb_encoder_reset(e); |
|
upb_sink_reset(&e->input_, h, e); |
|
|
|
e->env = env; |
|
e->output_ = output; |
|
e->subc = output->closure; |
|
e->ptr = e->buf; |
|
|
|
/* If this fails, increase the value in encoder.h. */ |
|
assert(upb_env_bytesallocated(env) - size_before <= UPB_PB_ENCODER_SIZE); |
|
return e; |
|
} |
|
|
|
upb_sink *upb_pb_encoder_input(upb_pb_encoder *e) { return &e->input_; } |
|
|
|
|
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
upb_def **upb_load_defs_from_descriptor(const char *str, size_t len, int *n, |
|
void *owner, upb_status *status) { |
|
/* Create handlers. */ |
|
const upb_pbdecodermethod *decoder_m; |
|
const upb_handlers *reader_h = upb_descreader_newhandlers(&reader_h); |
|
upb_env env; |
|
upb_pbdecodermethodopts opts; |
|
upb_pbdecoder *decoder; |
|
upb_descreader *reader; |
|
bool ok; |
|
upb_def **ret = NULL; |
|
upb_def **defs; |
|
|
|
upb_pbdecodermethodopts_init(&opts, reader_h); |
|
decoder_m = upb_pbdecodermethod_new(&opts, &decoder_m); |
|
|
|
upb_env_init(&env); |
|
upb_env_reporterrorsto(&env, status); |
|
|
|
reader = upb_descreader_create(&env, reader_h); |
|
decoder = upb_pbdecoder_create(&env, decoder_m, upb_descreader_input(reader)); |
|
|
|
/* Push input data. */ |
|
ok = upb_bufsrc_putbuf(str, len, upb_pbdecoder_input(decoder)); |
|
|
|
if (!ok) goto cleanup; |
|
defs = upb_descreader_getdefs(reader, owner, n); |
|
ret = malloc(sizeof(upb_def*) * (*n)); |
|
memcpy(ret, defs, sizeof(upb_def*) * (*n)); |
|
|
|
cleanup: |
|
upb_env_uninit(&env); |
|
upb_handlers_unref(reader_h, &reader_h); |
|
upb_pbdecodermethod_unref(decoder_m, &decoder_m); |
|
return ret; |
|
} |
|
|
|
bool upb_load_descriptor_into_symtab(upb_symtab *s, const char *str, size_t len, |
|
upb_status *status) { |
|
int n; |
|
bool success; |
|
upb_def **defs = upb_load_defs_from_descriptor(str, len, &n, &defs, status); |
|
if (!defs) return false; |
|
success = upb_symtab_add(s, defs, n, &defs, status); |
|
free(defs); |
|
return success; |
|
} |
|
|
|
char *upb_readfile(const char *filename, size_t *len) { |
|
long size; |
|
char *buf; |
|
FILE *f = fopen(filename, "rb"); |
|
if(!f) return NULL; |
|
if(fseek(f, 0, SEEK_END) != 0) goto error; |
|
size = ftell(f); |
|
if(size < 0) goto error; |
|
if(fseek(f, 0, SEEK_SET) != 0) goto error; |
|
buf = malloc(size + 1); |
|
if(size && fread(buf, size, 1, f) != 1) goto error; |
|
fclose(f); |
|
if (len) *len = size; |
|
return buf; |
|
|
|
error: |
|
fclose(f); |
|
return NULL; |
|
} |
|
|
|
bool upb_load_descriptor_file_into_symtab(upb_symtab *symtab, const char *fname, |
|
upb_status *status) { |
|
size_t len; |
|
bool success; |
|
char *data = upb_readfile(fname, &len); |
|
if (!data) { |
|
if (status) upb_status_seterrf(status, "Couldn't read file: %s", fname); |
|
return false; |
|
} |
|
success = upb_load_descriptor_into_symtab(symtab, data, len, status); |
|
free(data); |
|
return success; |
|
} |
|
/* |
|
* upb::pb::TextPrinter |
|
* |
|
* OPT: This is not optimized at all. It uses printf() which parses the format |
|
* string every time, and it allocates memory for every put. |
|
*/ |
|
|
|
|
|
#include <ctype.h> |
|
#include <float.h> |
|
#include <inttypes.h> |
|
#include <stdarg.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
|
|
struct upb_textprinter { |
|
upb_sink input_; |
|
upb_bytessink *output_; |
|
int indent_depth_; |
|
bool single_line_; |
|
void *subc; |
|
}; |
|
|
|
#define CHECK(x) if ((x) < 0) goto err; |
|
|
|
static const char *shortname(const char *longname) { |
|
const char *last = strrchr(longname, '.'); |
|
return last ? last + 1 : longname; |
|
} |
|
|
|
static int indent(upb_textprinter *p) { |
|
int i; |
|
if (!p->single_line_) |
|
for (i = 0; i < p->indent_depth_; i++) |
|
upb_bytessink_putbuf(p->output_, p->subc, " ", 2, NULL); |
|
return 0; |
|
} |
|
|
|
static int endfield(upb_textprinter *p) { |
|
const char ch = (p->single_line_ ? ' ' : '\n'); |
|
upb_bytessink_putbuf(p->output_, p->subc, &ch, 1, NULL); |
|
return 0; |
|
} |
|
|
|
static int putescaped(upb_textprinter *p, const char *buf, size_t len, |
|
bool preserve_utf8) { |
|
/* Based on CEscapeInternal() from Google's protobuf release. */ |
|
char dstbuf[4096], *dst = dstbuf, *dstend = dstbuf + sizeof(dstbuf); |
|
const char *end = buf + len; |
|
|
|
/* I think hex is prettier and more useful, but proto2 uses octal; should |
|
* investigate whether it can parse hex also. */ |
|
const bool use_hex = false; |
|
bool last_hex_escape = false; /* true if last output char was \xNN */ |
|
|
|
for (; buf < end; buf++) { |
|
bool is_hex_escape; |
|
|
|
if (dstend - dst < 4) { |
|
upb_bytessink_putbuf(p->output_, p->subc, dstbuf, dst - dstbuf, NULL); |
|
dst = dstbuf; |
|
} |
|
|
|
is_hex_escape = false; |
|
switch (*buf) { |
|
case '\n': *(dst++) = '\\'; *(dst++) = 'n'; break; |
|
case '\r': *(dst++) = '\\'; *(dst++) = 'r'; break; |
|
case '\t': *(dst++) = '\\'; *(dst++) = 't'; break; |
|
case '\"': *(dst++) = '\\'; *(dst++) = '\"'; break; |
|
case '\'': *(dst++) = '\\'; *(dst++) = '\''; break; |
|
case '\\': *(dst++) = '\\'; *(dst++) = '\\'; break; |
|
default: |
|
/* Note that if we emit \xNN and the buf character after that is a hex |
|
* digit then that digit must be escaped too to prevent it being |
|
* interpreted as part of the character code by C. */ |
|
if ((!preserve_utf8 || (uint8_t)*buf < 0x80) && |
|
(!isprint(*buf) || (last_hex_escape && isxdigit(*buf)))) { |
|
sprintf(dst, (use_hex ? "\\x%02x" : "\\%03o"), (uint8_t)*buf); |
|
is_hex_escape = use_hex; |
|
dst += 4; |
|
} else { |
|
*(dst++) = *buf; break; |
|
} |
|
} |
|
last_hex_escape = is_hex_escape; |
|
} |
|
/* Flush remaining data. */ |
|
upb_bytessink_putbuf(p->output_, p->subc, dstbuf, dst - dstbuf, NULL); |
|
return 0; |
|
} |
|
|
|
bool putf(upb_textprinter *p, const char *fmt, ...) { |
|
va_list args; |
|
va_list args_copy; |
|
char *str; |
|
int written; |
|
int len; |
|
bool ok; |
|
|
|
va_start(args, fmt); |
|
|
|
/* Run once to get the length of the string. */ |
|
_upb_va_copy(args_copy, args); |
|
len = _upb_vsnprintf(NULL, 0, fmt, args_copy); |
|
va_end(args_copy); |
|
|
|
/* + 1 for NULL terminator (vsprintf() requires it even if we don't). */ |
|
str = malloc(len + 1); |
|
if (!str) return false; |
|
written = vsprintf(str, fmt, args); |
|
va_end(args); |
|
UPB_ASSERT_VAR(written, written == len); |
|
|
|
ok = upb_bytessink_putbuf(p->output_, p->subc, str, len, NULL); |
|
free(str); |
|
return ok; |
|
} |
|
|
|
|
|
/* handlers *******************************************************************/ |
|
|
|
static bool textprinter_startmsg(void *c, const void *hd) { |
|
upb_textprinter *p = c; |
|
UPB_UNUSED(hd); |
|
if (p->indent_depth_ == 0) { |
|
upb_bytessink_start(p->output_, 0, &p->subc); |
|
} |
|
return true; |
|
} |
|
|
|
static bool textprinter_endmsg(void *c, const void *hd, upb_status *s) { |
|
upb_textprinter *p = c; |
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(s); |
|
if (p->indent_depth_ == 0) { |
|
upb_bytessink_end(p->output_); |
|
} |
|
return true; |
|
} |
|
|
|
#define TYPE(name, ctype, fmt) \ |
|
static bool textprinter_put ## name(void *closure, const void *handler_data, \ |
|
ctype val) { \ |
|
upb_textprinter *p = closure; \ |
|
const upb_fielddef *f = handler_data; \ |
|
CHECK(indent(p)); \ |
|
putf(p, "%s: " fmt, upb_fielddef_name(f), val); \ |
|
CHECK(endfield(p)); \ |
|
return true; \ |
|
err: \ |
|
return false; \ |
|
} |
|
|
|
static bool textprinter_putbool(void *closure, const void *handler_data, |
|
bool val) { |
|
upb_textprinter *p = closure; |
|
const upb_fielddef *f = handler_data; |
|
CHECK(indent(p)); |
|
putf(p, "%s: %s", upb_fielddef_name(f), val ? "true" : "false"); |
|
CHECK(endfield(p)); |
|
return true; |
|
err: |
|
return false; |
|
} |
|
|
|
#define STRINGIFY_HELPER(x) #x |
|
#define STRINGIFY_MACROVAL(x) STRINGIFY_HELPER(x) |
|
|
|
TYPE(int32, int32_t, "%" PRId32) |
|
TYPE(int64, int64_t, "%" PRId64) |
|
TYPE(uint32, uint32_t, "%" PRIu32) |
|
TYPE(uint64, uint64_t, "%" PRIu64) |
|
TYPE(float, float, "%." STRINGIFY_MACROVAL(FLT_DIG) "g") |
|
TYPE(double, double, "%." STRINGIFY_MACROVAL(DBL_DIG) "g") |
|
|
|
#undef TYPE |
|
|
|
/* Output a symbolic value from the enum if found, else just print as int32. */ |
|
static bool textprinter_putenum(void *closure, const void *handler_data, |
|
int32_t val) { |
|
upb_textprinter *p = closure; |
|
const upb_fielddef *f = handler_data; |
|
const upb_enumdef *enum_def = upb_downcast_enumdef(upb_fielddef_subdef(f)); |
|
const char *label = upb_enumdef_iton(enum_def, val); |
|
if (label) { |
|
indent(p); |
|
putf(p, "%s: %s", upb_fielddef_name(f), label); |
|
endfield(p); |
|
} else { |
|
if (!textprinter_putint32(closure, handler_data, val)) |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
static void *textprinter_startstr(void *closure, const void *handler_data, |
|
size_t size_hint) { |
|
upb_textprinter *p = closure; |
|
const upb_fielddef *f = handler_data; |
|
UPB_UNUSED(size_hint); |
|
indent(p); |
|
putf(p, "%s: \"", upb_fielddef_name(f)); |
|
return p; |
|
} |
|
|
|
static bool textprinter_endstr(void *closure, const void *handler_data) { |
|
upb_textprinter *p = closure; |
|
UPB_UNUSED(handler_data); |
|
putf(p, "\""); |
|
endfield(p); |
|
return true; |
|
} |
|
|
|
static size_t textprinter_putstr(void *closure, const void *hd, const char *buf, |
|
size_t len, const upb_bufhandle *handle) { |
|
upb_textprinter *p = closure; |
|
const upb_fielddef *f = hd; |
|
UPB_UNUSED(handle); |
|
CHECK(putescaped(p, buf, len, upb_fielddef_type(f) == UPB_TYPE_STRING)); |
|
return len; |
|
err: |
|
return 0; |
|
} |
|
|
|
static void *textprinter_startsubmsg(void *closure, const void *handler_data) { |
|
upb_textprinter *p = closure; |
|
const char *name = handler_data; |
|
CHECK(indent(p)); |
|
putf(p, "%s {%c", name, p->single_line_ ? ' ' : '\n'); |
|
p->indent_depth_++; |
|
return p; |
|
err: |
|
return UPB_BREAK; |
|
} |
|
|
|
static bool textprinter_endsubmsg(void *closure, const void *handler_data) { |
|
upb_textprinter *p = closure; |
|
UPB_UNUSED(handler_data); |
|
p->indent_depth_--; |
|
CHECK(indent(p)); |
|
upb_bytessink_putbuf(p->output_, p->subc, "}", 1, NULL); |
|
CHECK(endfield(p)); |
|
return true; |
|
err: |
|
return false; |
|
} |
|
|
|
static void onmreg(const void *c, upb_handlers *h) { |
|
const upb_msgdef *m = upb_handlers_msgdef(h); |
|
upb_msg_field_iter i; |
|
UPB_UNUSED(c); |
|
|
|
upb_handlers_setstartmsg(h, textprinter_startmsg, NULL); |
|
upb_handlers_setendmsg(h, textprinter_endmsg, NULL); |
|
|
|
for(upb_msg_field_begin(&i, m); |
|
!upb_msg_field_done(&i); |
|
upb_msg_field_next(&i)) { |
|
upb_fielddef *f = upb_msg_iter_field(&i); |
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
|
upb_handlerattr_sethandlerdata(&attr, f); |
|
switch (upb_fielddef_type(f)) { |
|
case UPB_TYPE_INT32: |
|
upb_handlers_setint32(h, f, textprinter_putint32, &attr); |
|
break; |
|
case UPB_TYPE_INT64: |
|
upb_handlers_setint64(h, f, textprinter_putint64, &attr); |
|
break; |
|
case UPB_TYPE_UINT32: |
|
upb_handlers_setuint32(h, f, textprinter_putuint32, &attr); |
|
break; |
|
case UPB_TYPE_UINT64: |
|
upb_handlers_setuint64(h, f, textprinter_putuint64, &attr); |
|
break; |
|
case UPB_TYPE_FLOAT: |
|
upb_handlers_setfloat(h, f, textprinter_putfloat, &attr); |
|
break; |
|
case UPB_TYPE_DOUBLE: |
|
upb_handlers_setdouble(h, f, textprinter_putdouble, &attr); |
|
break; |
|
case UPB_TYPE_BOOL: |
|
upb_handlers_setbool(h, f, textprinter_putbool, &attr); |
|
break; |
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: |
|
upb_handlers_setstartstr(h, f, textprinter_startstr, &attr); |
|
upb_handlers_setstring(h, f, textprinter_putstr, &attr); |
|
upb_handlers_setendstr(h, f, textprinter_endstr, &attr); |
|
break; |
|
case UPB_TYPE_MESSAGE: { |
|
const char *name = |
|
upb_fielddef_istagdelim(f) |
|
? shortname(upb_msgdef_fullname(upb_fielddef_msgsubdef(f))) |
|
: upb_fielddef_name(f); |
|
upb_handlerattr_sethandlerdata(&attr, name); |
|
upb_handlers_setstartsubmsg(h, f, textprinter_startsubmsg, &attr); |
|
upb_handlers_setendsubmsg(h, f, textprinter_endsubmsg, &attr); |
|
break; |
|
} |
|
case UPB_TYPE_ENUM: |
|
upb_handlers_setint32(h, f, textprinter_putenum, &attr); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
static void textprinter_reset(upb_textprinter *p, bool single_line) { |
|
p->single_line_ = single_line; |
|
p->indent_depth_ = 0; |
|
} |
|
|
|
|
|
/* Public API *****************************************************************/ |
|
|
|
upb_textprinter *upb_textprinter_create(upb_env *env, const upb_handlers *h, |
|
upb_bytessink *output) { |
|
upb_textprinter *p = upb_env_malloc(env, sizeof(upb_textprinter)); |
|
if (!p) return NULL; |
|
|
|
p->output_ = output; |
|
upb_sink_reset(&p->input_, h, p); |
|
textprinter_reset(p, false); |
|
|
|
return p; |
|
} |
|
|
|
const upb_handlers *upb_textprinter_newhandlers(const upb_msgdef *m, |
|
const void *owner) { |
|
return upb_handlers_newfrozen(m, owner, &onmreg, NULL); |
|
} |
|
|
|
upb_sink *upb_textprinter_input(upb_textprinter *p) { return &p->input_; } |
|
|
|
void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line) { |
|
p->single_line_ = single_line; |
|
} |
|
|
|
|
|
/* Index is descriptor type. */ |
|
const uint8_t upb_pb_native_wire_types[] = { |
|
UPB_WIRE_TYPE_END_GROUP, /* ENDGROUP */ |
|
UPB_WIRE_TYPE_64BIT, /* DOUBLE */ |
|
UPB_WIRE_TYPE_32BIT, /* FLOAT */ |
|
UPB_WIRE_TYPE_VARINT, /* INT64 */ |
|
UPB_WIRE_TYPE_VARINT, /* UINT64 */ |
|
UPB_WIRE_TYPE_VARINT, /* INT32 */ |
|
UPB_WIRE_TYPE_64BIT, /* FIXED64 */ |
|
UPB_WIRE_TYPE_32BIT, /* FIXED32 */ |
|
UPB_WIRE_TYPE_VARINT, /* BOOL */ |
|
UPB_WIRE_TYPE_DELIMITED, /* STRING */ |
|
UPB_WIRE_TYPE_START_GROUP, /* GROUP */ |
|
UPB_WIRE_TYPE_DELIMITED, /* MESSAGE */ |
|
UPB_WIRE_TYPE_DELIMITED, /* BYTES */ |
|
UPB_WIRE_TYPE_VARINT, /* UINT32 */ |
|
UPB_WIRE_TYPE_VARINT, /* ENUM */ |
|
UPB_WIRE_TYPE_32BIT, /* SFIXED32 */ |
|
UPB_WIRE_TYPE_64BIT, /* SFIXED64 */ |
|
UPB_WIRE_TYPE_VARINT, /* SINT32 */ |
|
UPB_WIRE_TYPE_VARINT, /* SINT64 */ |
|
}; |
|
|
|
/* A basic branch-based decoder, uses 32-bit values to get good performance |
|
* on 32-bit architectures (but performs well on 64-bits also). |
|
* This scheme comes from the original Google Protobuf implementation |
|
* (proto2). */ |
|
upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r) { |
|
upb_decoderet err = {NULL, 0}; |
|
const char *p = r.p; |
|
uint32_t low = (uint32_t)r.val; |
|
uint32_t high = 0; |
|
uint32_t b; |
|
b = *(p++); low |= (b & 0x7fU) << 14; if (!(b & 0x80)) goto done; |
|
b = *(p++); low |= (b & 0x7fU) << 21; if (!(b & 0x80)) goto done; |
|
b = *(p++); low |= (b & 0x7fU) << 28; |
|
high = (b & 0x7fU) >> 4; if (!(b & 0x80)) goto done; |
|
b = *(p++); high |= (b & 0x7fU) << 3; if (!(b & 0x80)) goto done; |
|
b = *(p++); high |= (b & 0x7fU) << 10; if (!(b & 0x80)) goto done; |
|
b = *(p++); high |= (b & 0x7fU) << 17; if (!(b & 0x80)) goto done; |
|
b = *(p++); high |= (b & 0x7fU) << 24; if (!(b & 0x80)) goto done; |
|
b = *(p++); high |= (b & 0x7fU) << 31; if (!(b & 0x80)) goto done; |
|
return err; |
|
|
|
done: |
|
r.val = ((uint64_t)high << 32) | low; |
|
r.p = p; |
|
return r; |
|
} |
|
|
|
/* Like the previous, but uses 64-bit values. */ |
|
upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r) { |
|
const char *p = r.p; |
|
uint64_t val = r.val; |
|
uint64_t b; |
|
upb_decoderet err = {NULL, 0}; |
|
b = *(p++); val |= (b & 0x7fU) << 14; if (!(b & 0x80)) goto done; |
|
b = *(p++); val |= (b & 0x7fU) << 21; if (!(b & 0x80)) goto done; |
|
b = *(p++); val |= (b & 0x7fU) << 28; if (!(b & 0x80)) goto done; |
|
b = *(p++); val |= (b & 0x7fU) << 35; if (!(b & 0x80)) goto done; |
|
b = *(p++); val |= (b & 0x7fU) << 42; if (!(b & 0x80)) goto done; |
|
b = *(p++); val |= (b & 0x7fU) << 49; if (!(b & 0x80)) goto done; |
|
b = *(p++); val |= (b & 0x7fU) << 56; if (!(b & 0x80)) goto done; |
|
b = *(p++); val |= (b & 0x7fU) << 63; if (!(b & 0x80)) goto done; |
|
return err; |
|
|
|
done: |
|
r.val = val; |
|
r.p = p; |
|
return r; |
|
} |
|
|
|
/* Given an encoded varint v, returns an integer with a single bit set that |
|
* indicates the end of the varint. Subtracting one from this value will |
|
* yield a mask that leaves only bits that are part of the varint. Returns |
|
* 0 if the varint is unterminated. */ |
|
static uint64_t upb_get_vstopbit(uint64_t v) { |
|
uint64_t cbits = v | 0x7f7f7f7f7f7f7f7fULL; |
|
return ~cbits & (cbits+1); |
|
} |
|
|
|
/* A branchless decoder. Credit to Pascal Massimino for the bit-twiddling. */ |
|
upb_decoderet upb_vdecode_max8_massimino(upb_decoderet r) { |
|
uint64_t b; |
|
uint64_t stop_bit; |
|
upb_decoderet my_r; |
|
memcpy(&b, r.p, sizeof(b)); |
|
stop_bit = upb_get_vstopbit(b); |
|
b = (b & 0x7f7f7f7f7f7f7f7fULL) & (stop_bit - 1); |
|
b += b & 0x007f007f007f007fULL; |
|
b += 3 * (b & 0x0000ffff0000ffffULL); |
|
b += 15 * (b & 0x00000000ffffffffULL); |
|
if (stop_bit == 0) { |
|
/* Error: unterminated varint. */ |
|
upb_decoderet err_r = {(void*)0, 0}; |
|
return err_r; |
|
} |
|
my_r = upb_decoderet_make(r.p + ((__builtin_ctzll(stop_bit) + 1) / 8), |
|
r.val | (b << 7)); |
|
return my_r; |
|
} |
|
|
|
/* A branchless decoder. Credit to Daniel Wright for the bit-twiddling. */ |
|
upb_decoderet upb_vdecode_max8_wright(upb_decoderet r) { |
|
uint64_t b; |
|
uint64_t stop_bit; |
|
upb_decoderet my_r; |
|
memcpy(&b, r.p, sizeof(b)); |
|
stop_bit = upb_get_vstopbit(b); |
|
b &= (stop_bit - 1); |
|
b = ((b & 0x7f007f007f007f00ULL) >> 1) | (b & 0x007f007f007f007fULL); |
|
b = ((b & 0xffff0000ffff0000ULL) >> 2) | (b & 0x0000ffff0000ffffULL); |
|
b = ((b & 0xffffffff00000000ULL) >> 4) | (b & 0x00000000ffffffffULL); |
|
if (stop_bit == 0) { |
|
/* Error: unterminated varint. */ |
|
upb_decoderet err_r = {(void*)0, 0}; |
|
return err_r; |
|
} |
|
my_r = upb_decoderet_make(r.p + ((__builtin_ctzll(stop_bit) + 1) / 8), |
|
r.val | (b << 14)); |
|
return my_r; |
|
} |
|
|
|
#line 1 "upb/json/parser.rl" |
|
/* |
|
** upb::json::Parser (upb_json_parser) |
|
** |
|
** A parser that uses the Ragel State Machine Compiler to generate |
|
** the finite automata. |
|
** |
|
** Ragel only natively handles regular languages, but we can manually |
|
** program it a bit to handle context-free languages like JSON, by using |
|
** the "fcall" and "fret" constructs. |
|
** |
|
** This parser can handle the basics, but needs several things to be fleshed |
|
** out: |
|
** |
|
** - handling of unicode escape sequences (including high surrogate pairs). |
|
** - properly check and report errors for unknown fields, stack overflow, |
|
** improper array nesting (or lack of nesting). |
|
** - handling of base64 sequences with padding characters. |
|
** - handling of push-back (non-success returns from sink functions). |
|
** - handling of keys/escape-sequences/etc that span input buffers. |
|
*/ |
|
|
|
#include <stdio.h> |
|
#include <stdint.h> |
|
#include <assert.h> |
|
#include <string.h> |
|
#include <stdlib.h> |
|
#include <errno.h> |
|
|
|
|
|
#define UPB_JSON_MAX_DEPTH 64 |
|
|
|
typedef struct { |
|
upb_sink sink; |
|
|
|
/* The current message in which we're parsing, and the field whose value we're |
|
* expecting next. */ |
|
const upb_msgdef *m; |
|
const upb_fielddef *f; |
|
|
|
/* We are in a repeated-field context, ready to emit mapentries as |
|
* submessages. This flag alters the start-of-object (open-brace) behavior to |
|
* begin a sequence of mapentry messages rather than a single submessage. */ |
|
bool is_map; |
|
|
|
/* We are in a map-entry message context. This flag is set when parsing the |
|
* value field of a single map entry and indicates to all value-field parsers |
|
* (subobjects, strings, numbers, and bools) that the map-entry submessage |
|
* should end as soon as the value is parsed. */ |
|
bool is_mapentry; |
|
|
|
/* If |is_map| or |is_mapentry| is true, |mapfield| refers to the parent |
|
* message's map field that we're currently parsing. This differs from |f| |
|
* because |f| is the field in the *current* message (i.e., the map-entry |
|
* message itself), not the parent's field that leads to this map. */ |
|
const upb_fielddef *mapfield; |
|
} upb_jsonparser_frame; |
|
|
|
struct upb_json_parser { |
|
upb_env *env; |
|
upb_byteshandler input_handler_; |
|
upb_bytessink input_; |
|
|
|
/* Stack to track the JSON scopes we are in. */ |
|
upb_jsonparser_frame stack[UPB_JSON_MAX_DEPTH]; |
|
upb_jsonparser_frame *top; |
|
upb_jsonparser_frame *limit; |
|
|
|
upb_status status; |
|
|
|
/* Ragel's internal parsing stack for the parsing state machine. */ |
|
int current_state; |
|
int parser_stack[UPB_JSON_MAX_DEPTH]; |
|
int parser_top; |
|
|
|
/* The handle for the current buffer. */ |
|
const upb_bufhandle *handle; |
|
|
|
/* Accumulate buffer. See details in parser.rl. */ |
|
const char *accumulated; |
|
size_t accumulated_len; |
|
char *accumulate_buf; |
|
size_t accumulate_buf_size; |
|
|
|
/* Multi-part text data. See details in parser.rl. */ |
|
int multipart_state; |
|
upb_selector_t string_selector; |
|
|
|
/* Input capture. See details in parser.rl. */ |
|
const char *capture; |
|
|
|
/* Intermediate result of parsing a unicode escape sequence. */ |
|
uint32_t digit; |
|
}; |
|
|
|
#define PARSER_CHECK_RETURN(x) if (!(x)) return false |
|
|
|
/* Used to signal that a capture has been suspended. */ |
|
static char suspend_capture; |
|
|
|
static upb_selector_t getsel_for_handlertype(upb_json_parser *p, |
|
upb_handlertype_t type) { |
|
upb_selector_t sel; |
|
bool ok = upb_handlers_getselector(p->top->f, type, &sel); |
|
UPB_ASSERT_VAR(ok, ok); |
|
return sel; |
|
} |
|
|
|
static upb_selector_t parser_getsel(upb_json_parser *p) { |
|
return getsel_for_handlertype( |
|
p, upb_handlers_getprimitivehandlertype(p->top->f)); |
|
} |
|
|
|
static bool check_stack(upb_json_parser *p) { |
|
if ((p->top + 1) == p->limit) { |
|
upb_status_seterrmsg(&p->status, "Nesting too deep"); |
|
upb_env_reporterror(p->env, &p->status); |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/* There are GCC/Clang built-ins for overflow checking which we could start |
|
* using if there was any performance benefit to it. */ |
|
|
|
static bool checked_add(size_t a, size_t b, size_t *c) { |
|
if (SIZE_MAX - a < b) return false; |
|
*c = a + b; |
|
return true; |
|
} |
|
|
|
static size_t saturating_multiply(size_t a, size_t b) { |
|
/* size_t is unsigned, so this is defined behavior even on overflow. */ |
|
size_t ret = a * b; |
|
if (b != 0 && ret / b != a) { |
|
ret = SIZE_MAX; |
|
} |
|
return ret; |
|
} |
|
|
|
|
|
/* Base64 decoding ************************************************************/ |
|
|
|
/* TODO(haberman): make this streaming. */ |
|
|
|
static const signed char b64table[] = { |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */, |
|
52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/, |
|
60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1, |
|
-1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/, |
|
07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/, |
|
15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/, |
|
23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1, |
|
-1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/, |
|
33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/, |
|
41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/, |
|
49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1 |
|
}; |
|
|
|
/* Returns the table value sign-extended to 32 bits. Knowing that the upper |
|
* bits will be 1 for unrecognized characters makes it easier to check for |
|
* this error condition later (see below). */ |
|
int32_t b64lookup(unsigned char ch) { return b64table[ch]; } |
|
|
|
/* Returns true if the given character is not a valid base64 character or |
|
* padding. */ |
|
bool nonbase64(unsigned char ch) { return b64lookup(ch) == -1 && ch != '='; } |
|
|
|
static bool base64_push(upb_json_parser *p, upb_selector_t sel, const char *ptr, |
|
size_t len) { |
|
const char *limit = ptr + len; |
|
for (; ptr < limit; ptr += 4) { |
|
uint32_t val; |
|
char output[3]; |
|
|
|
if (limit - ptr < 4) { |
|
upb_status_seterrf(&p->status, |
|
"Base64 input for bytes field not a multiple of 4: %s", |
|
upb_fielddef_name(p->top->f)); |
|
upb_env_reporterror(p->env, &p->status); |
|
return false; |
|
} |
|
|
|
val = b64lookup(ptr[0]) << 18 | |
|
b64lookup(ptr[1]) << 12 | |
|
b64lookup(ptr[2]) << 6 | |
|
b64lookup(ptr[3]); |
|
|
|
/* Test the upper bit; returns true if any of the characters returned -1. */ |
|
if (val & 0x80000000) { |
|
goto otherchar; |
|
} |
|
|
|
output[0] = val >> 16; |
|
output[1] = (val >> 8) & 0xff; |
|
output[2] = val & 0xff; |
|
upb_sink_putstring(&p->top->sink, sel, output, 3, NULL); |
|
} |
|
return true; |
|
|
|
otherchar: |
|
if (nonbase64(ptr[0]) || nonbase64(ptr[1]) || nonbase64(ptr[2]) || |
|
nonbase64(ptr[3]) ) { |
|
upb_status_seterrf(&p->status, |
|
"Non-base64 characters in bytes field: %s", |
|
upb_fielddef_name(p->top->f)); |
|
upb_env_reporterror(p->env, &p->status); |
|
return false; |
|
} if (ptr[2] == '=') { |
|
uint32_t val; |
|
char output; |
|
|
|
/* Last group contains only two input bytes, one output byte. */ |
|
if (ptr[0] == '=' || ptr[1] == '=' || ptr[3] != '=') { |
|
goto badpadding; |
|
} |
|
|
|
val = b64lookup(ptr[0]) << 18 | |
|
b64lookup(ptr[1]) << 12; |
|
|
|
assert(!(val & 0x80000000)); |
|
output = val >> 16; |
|
upb_sink_putstring(&p->top->sink, sel, &output, 1, NULL); |
|
return true; |
|
} else { |
|
uint32_t val; |
|
char output[2]; |
|
|
|
/* Last group contains only three input bytes, two output bytes. */ |
|
if (ptr[0] == '=' || ptr[1] == '=' || ptr[2] == '=') { |
|
goto badpadding; |
|
} |
|
|
|
val = b64lookup(ptr[0]) << 18 | |
|
b64lookup(ptr[1]) << 12 | |
|
b64lookup(ptr[2]) << 6; |
|
|
|
output[0] = val >> 16; |
|
output[1] = (val >> 8) & 0xff; |
|
upb_sink_putstring(&p->top->sink, sel, output, 2, NULL); |
|
return true; |
|
} |
|
|
|
badpadding: |
|
upb_status_seterrf(&p->status, |
|
"Incorrect base64 padding for field: %s (%.*s)", |
|
upb_fielddef_name(p->top->f), |
|
4, ptr); |
|
upb_env_reporterror(p->env, &p->status); |
|
return false; |
|
} |
|
|
|
|
|
/* Accumulate buffer **********************************************************/ |
|
|
|
/* Functionality for accumulating a buffer. |
|
* |
|
* Some parts of the parser need an entire value as a contiguous string. For |
|
* example, to look up a member name in a hash table, or to turn a string into |
|
* a number, the relevant library routines need the input string to be in |
|
* contiguous memory, even if the value spanned two or more buffers in the |
|
* input. These routines handle that. |
|
* |
|
* In the common case we can just point to the input buffer to get this |
|
* contiguous string and avoid any actual copy. So we optimistically begin |
|
* this way. But there are a few cases where we must instead copy into a |
|
* separate buffer: |
|
* |
|
* 1. The string was not contiguous in the input (it spanned buffers). |
|
* |
|
* 2. The string included escape sequences that need to be interpreted to get |
|
* the true value in a contiguous buffer. */ |
|
|
|
static void assert_accumulate_empty(upb_json_parser *p) { |
|
UPB_UNUSED(p); |
|
assert(p->accumulated == NULL); |
|
assert(p->accumulated_len == 0); |
|
} |
|
|
|
static void accumulate_clear(upb_json_parser *p) { |
|
p->accumulated = NULL; |
|
p->accumulated_len = 0; |
|
} |
|
|
|
/* Used internally by accumulate_append(). */ |
|
static bool accumulate_realloc(upb_json_parser *p, size_t need) { |
|
void *mem; |
|
size_t old_size = p->accumulate_buf_size; |
|
size_t new_size = UPB_MAX(old_size, 128); |
|
while (new_size < need) { |
|
new_size = saturating_multiply(new_size, 2); |
|
} |
|
|
|
mem = upb_env_realloc(p->env, p->accumulate_buf, old_size, new_size); |
|
if (!mem) { |
|
upb_status_seterrmsg(&p->status, "Out of memory allocating buffer."); |
|
upb_env_reporterror(p->env, &p->status); |
|
return false; |
|
} |
|
|
|
p->accumulate_buf = mem; |
|
p->accumulate_buf_size = new_size; |
|
return true; |
|
} |
|
|
|
/* Logically appends the given data to the append buffer. |
|
* If "can_alias" is true, we will try to avoid actually copying, but the buffer |
|
* must be valid until the next accumulate_append() call (if any). */ |
|
static bool accumulate_append(upb_json_parser *p, const char *buf, size_t len, |
|
bool can_alias) { |
|
size_t need; |
|
|
|
if (!p->accumulated && can_alias) { |
|
p->accumulated = buf; |
|
p->accumulated_len = len; |
|
return true; |
|
} |
|
|
|
if (!checked_add(p->accumulated_len, len, &need)) { |
|
upb_status_seterrmsg(&p->status, "Integer overflow."); |
|
upb_env_reporterror(p->env, &p->status); |
|
return false; |
|
} |
|
|
|
if (need > p->accumulate_buf_size && !accumulate_realloc(p, need)) { |
|
return false; |
|
} |
|
|
|
if (p->accumulated != p->accumulate_buf) { |
|
memcpy(p->accumulate_buf, p->accumulated, p->accumulated_len); |
|
p->accumulated = p->accumulate_buf; |
|
} |
|
|
|
memcpy(p->accumulate_buf + p->accumulated_len, buf, len); |
|
p->accumulated_len += len; |
|
return true; |
|
} |
|
|
|
/* Returns a pointer to the data accumulated since the last accumulate_clear() |
|
* call, and writes the length to *len. This with point either to the input |
|
* buffer or a temporary accumulate buffer. */ |
|
static const char *accumulate_getptr(upb_json_parser *p, size_t *len) { |
|
assert(p->accumulated); |
|
*len = p->accumulated_len; |
|
return p->accumulated; |
|
} |
|
|
|
|
|
/* Mult-part text data ********************************************************/ |
|
|
|
/* When we have text data in the input, it can often come in multiple segments. |
|
* For example, there may be some raw string data followed by an escape |
|
* sequence. The two segments are processed with different logic. Also buffer |
|
* seams in the input can cause multiple segments. |
|
* |
|
* As we see segments, there are two main cases for how we want to process them: |
|
* |
|
* 1. we want to push the captured input directly to string handlers. |
|
* |
|
* 2. we need to accumulate all the parts into a contiguous buffer for further |
|
* processing (field name lookup, string->number conversion, etc). */ |
|
|
|
/* This is the set of states for p->multipart_state. */ |
|
enum { |
|
/* We are not currently processing multipart data. */ |
|
MULTIPART_INACTIVE = 0, |
|
|
|
/* We are processing multipart data by accumulating it into a contiguous |
|
* buffer. */ |
|
MULTIPART_ACCUMULATE = 1, |
|
|
|
/* We are processing multipart data by pushing each part directly to the |
|
* current string handlers. */ |
|
MULTIPART_PUSHEAGERLY = 2 |
|
}; |
|
|
|
/* Start a multi-part text value where we accumulate the data for processing at |
|
* the end. */ |
|
static void multipart_startaccum(upb_json_parser *p) { |
|
assert_accumulate_empty(p); |
|
assert(p->multipart_state == MULTIPART_INACTIVE); |
|
p->multipart_state = MULTIPART_ACCUMULATE; |
|
} |
|
|
|
/* Start a multi-part text value where we immediately push text data to a string |
|
* value with the given selector. */ |
|
static void multipart_start(upb_json_parser *p, upb_selector_t sel) { |
|
assert_accumulate_empty(p); |
|
assert(p->multipart_state == MULTIPART_INACTIVE); |
|
p->multipart_state = MULTIPART_PUSHEAGERLY; |
|
p->string_selector = sel; |
|
} |
|
|
|
static bool multipart_text(upb_json_parser *p, const char *buf, size_t len, |
|
bool can_alias) { |
|
switch (p->multipart_state) { |
|
case MULTIPART_INACTIVE: |
|
upb_status_seterrmsg( |
|
&p->status, "Internal error: unexpected state MULTIPART_INACTIVE"); |
|
upb_env_reporterror(p->env, &p->status); |
|
return false; |
|
|
|
case MULTIPART_ACCUMULATE: |
|
if (!accumulate_append(p, buf, len, can_alias)) { |
|
return false; |
|
} |
|
break; |
|
|
|
case MULTIPART_PUSHEAGERLY: { |
|
const upb_bufhandle *handle = can_alias ? p->handle : NULL; |
|
upb_sink_putstring(&p->top->sink, p->string_selector, buf, len, handle); |
|
break; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/* Note: this invalidates the accumulate buffer! Call only after reading its |
|
* contents. */ |
|
static void multipart_end(upb_json_parser *p) { |
|
assert(p->multipart_state != MULTIPART_INACTIVE); |
|
p->multipart_state = MULTIPART_INACTIVE; |
|
accumulate_clear(p); |
|
} |
|
|
|
|
|
/* Input capture **************************************************************/ |
|
|
|
/* Functionality for capturing a region of the input as text. Gracefully |
|
* handles the case where a buffer seam occurs in the middle of the captured |
|
* region. */ |
|
|
|
static void capture_begin(upb_json_parser *p, const char *ptr) { |
|
assert(p->multipart_state != MULTIPART_INACTIVE); |
|
assert(p->capture == NULL); |
|
p->capture = ptr; |
|
} |
|
|
|
static bool capture_end(upb_json_parser *p, const char *ptr) { |
|
assert(p->capture); |
|
if (multipart_text(p, p->capture, ptr - p->capture, true)) { |
|
p->capture = NULL; |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
/* This is called at the end of each input buffer (ie. when we have hit a |
|
* buffer seam). If we are in the middle of capturing the input, this |
|
* processes the unprocessed capture region. */ |
|
static void capture_suspend(upb_json_parser *p, const char **ptr) { |
|
if (!p->capture) return; |
|
|
|
if (multipart_text(p, p->capture, *ptr - p->capture, false)) { |
|
/* We use this as a signal that we were in the middle of capturing, and |
|
* that capturing should resume at the beginning of the next buffer. |
|
* |
|
* We can't use *ptr here, because we have no guarantee that this pointer |
|
* will be valid when we resume (if the underlying memory is freed, then |
|
* using the pointer at all, even to compare to NULL, is likely undefined |
|
* behavior). */ |
|
p->capture = &suspend_capture; |
|
} else { |
|
/* Need to back up the pointer to the beginning of the capture, since |
|
* we were not able to actually preserve it. */ |
|
*ptr = p->capture; |
|
} |
|
} |
|
|
|
static void capture_resume(upb_json_parser *p, const char *ptr) { |
|
if (p->capture) { |
|
assert(p->capture == &suspend_capture); |
|
p->capture = ptr; |
|
} |
|
} |
|
|
|
|
|
/* Callbacks from the parser **************************************************/ |
|
|
|
/* These are the functions called directly from the parser itself. |
|
* We define these in the same order as their declarations in the parser. */ |
|
|
|
static char escape_char(char in) { |
|
switch (in) { |
|
case 'r': return '\r'; |
|
case 't': return '\t'; |
|
case 'n': return '\n'; |
|
case 'f': return '\f'; |
|
case 'b': return '\b'; |
|
case '/': return '/'; |
|
case '"': return '"'; |
|
case '\\': return '\\'; |
|
default: |
|
assert(0); |
|
return 'x'; |
|
} |
|
} |
|
|
|
static bool escape(upb_json_parser *p, const char *ptr) { |
|
char ch = escape_char(*ptr); |
|
return multipart_text(p, &ch, 1, false); |
|
} |
|
|
|
static void start_hex(upb_json_parser *p) { |
|
p->digit = 0; |
|
} |
|
|
|
static void hexdigit(upb_json_parser *p, const char *ptr) { |
|
char ch = *ptr; |
|
|
|
p->digit <<= 4; |
|
|
|
if (ch >= '0' && ch <= '9') { |
|
p->digit += (ch - '0'); |
|
} else if (ch >= 'a' && ch <= 'f') { |
|
p->digit += ((ch - 'a') + 10); |
|
} else { |
|
assert(ch >= 'A' && ch <= 'F'); |
|
p->digit += ((ch - 'A') + 10); |
|
} |
|
} |
|
|
|
static bool end_hex(upb_json_parser *p) { |
|
uint32_t codepoint = p->digit; |
|
|
|
/* emit the codepoint as UTF-8. */ |
|
char utf8[3]; /* support \u0000 -- \uFFFF -- need only three bytes. */ |
|
int length = 0; |
|
if (codepoint <= 0x7F) { |
|
utf8[0] = codepoint; |
|
length = 1; |
|
} else if (codepoint <= 0x07FF) { |
|
utf8[1] = (codepoint & 0x3F) | 0x80; |
|
codepoint >>= 6; |
|
utf8[0] = (codepoint & 0x1F) | 0xC0; |
|
length = 2; |
|
} else /* codepoint <= 0xFFFF */ { |
|
utf8[2] = (codepoint & 0x3F) | 0x80; |
|
codepoint >>= 6; |
|
utf8[1] = (codepoint & 0x3F) | 0x80; |
|
codepoint >>= 6; |
|
utf8[0] = (codepoint & 0x0F) | 0xE0; |
|
length = 3; |
|
} |
|
/* TODO(haberman): Handle high surrogates: if codepoint is a high surrogate |
|
* we have to wait for the next escape to get the full code point). */ |
|
|
|
return multipart_text(p, utf8, length, false); |
|
} |
|
|
|
static void start_text(upb_json_parser *p, const char *ptr) { |
|
capture_begin(p, ptr); |
|
} |
|
|
|
static bool end_text(upb_json_parser *p, const char *ptr) { |
|
return capture_end(p, ptr); |
|
} |
|
|
|
static void start_number(upb_json_parser *p, const char *ptr) { |
|
multipart_startaccum(p); |
|
capture_begin(p, ptr); |
|
} |
|
|
|
static bool parse_number(upb_json_parser *p); |
|
|
|
static bool end_number(upb_json_parser *p, const char *ptr) { |
|
if (!capture_end(p, ptr)) { |
|
return false; |
|
} |
|
|
|
return parse_number(p); |
|
} |
|
|
|
static bool parse_number(upb_json_parser *p) { |
|
size_t len; |
|
const char *buf; |
|
const char *myend; |
|
char *end; |
|
|
|
/* strtol() and friends unfortunately do not support specifying the length of |
|
* the input string, so we need to force a copy into a NULL-terminated buffer. */ |
|
if (!multipart_text(p, "\0", 1, false)) { |
|
return false; |
|
} |
|
|
|
buf = accumulate_getptr(p, &len); |
|
myend = buf + len - 1; /* One for NULL. */ |
|
|
|
/* XXX: We are using strtol to parse integers, but this is wrong as even |
|
* integers can be represented as 1e6 (for example), which strtol can't |
|
* handle correctly. |
|
* |
|
* XXX: Also, we can't handle large integers properly because strto[u]ll |
|
* isn't in C89. |
|
* |
|
* XXX: Also, we don't properly check floats for overflow, since strtof |
|
* isn't in C89. */ |
|
switch (upb_fielddef_type(p->top->f)) { |
|
case UPB_TYPE_ENUM: |
|
case UPB_TYPE_INT32: { |
|
long val = strtol(p->accumulated, &end, 0); |
|
if (val > INT32_MAX || val < INT32_MIN || errno == ERANGE || end != myend) |
|
goto err; |
|
else |
|
upb_sink_putint32(&p->top->sink, parser_getsel(p), val); |
|
break; |
|
} |
|
case UPB_TYPE_INT64: { |
|
long long val = strtol(p->accumulated, &end, 0); |
|
if (val > INT64_MAX || val < INT64_MIN || errno == ERANGE || end != myend) |
|
goto err; |
|
else |
|
upb_sink_putint64(&p->top->sink, parser_getsel(p), val); |
|
break; |
|
} |
|
case UPB_TYPE_UINT32: { |
|
unsigned long val = strtoul(p->accumulated, &end, 0); |
|
if (val > UINT32_MAX || errno == ERANGE || end != myend) |
|
goto err; |
|
else |
|
upb_sink_putuint32(&p->top->sink, parser_getsel(p), val); |
|
break; |
|
} |
|
case UPB_TYPE_UINT64: { |
|
unsigned long long val = strtoul(p->accumulated, &end, 0); |
|
if (val > UINT64_MAX || errno == ERANGE || end != myend) |
|
goto err; |
|
else |
|
upb_sink_putuint64(&p->top->sink, parser_getsel(p), val); |
|
break; |
|
} |
|
case UPB_TYPE_DOUBLE: { |
|
double val = strtod(p->accumulated, &end); |
|
if (errno == ERANGE || end != myend) |
|
goto err; |
|
else |
|
upb_sink_putdouble(&p->top->sink, parser_getsel(p), val); |
|
break; |
|
} |
|
case UPB_TYPE_FLOAT: { |
|
float val = strtod(p->accumulated, &end); |
|
if (errno == ERANGE || end != myend) |
|
goto err; |
|
else |
|
upb_sink_putfloat(&p->top->sink, parser_getsel(p), val); |
|
break; |
|
} |
|
default: |
|
assert(false); |
|
} |
|
|
|
multipart_end(p); |
|
|
|
return true; |
|
|
|
err: |
|
upb_status_seterrf(&p->status, "error parsing number: %s", buf); |
|
upb_env_reporterror(p->env, &p->status); |
|
multipart_end(p); |
|
return false; |
|
} |
|
|
|
static bool parser_putbool(upb_json_parser *p, bool val) { |
|
bool ok; |
|
|
|
if (upb_fielddef_type(p->top->f) != UPB_TYPE_BOOL) { |
|
upb_status_seterrf(&p->status, |
|
"Boolean value specified for non-bool field: %s", |
|
upb_fielddef_name(p->top->f)); |
|
upb_env_reporterror(p->env, &p->status); |
|
return false; |
|
} |
|
|
|
ok = upb_sink_putbool(&p->top->sink, parser_getsel(p), val); |
|
UPB_ASSERT_VAR(ok, ok); |
|
|
|
return true; |
|
} |
|
|
|
static bool start_stringval(upb_json_parser *p) { |
|
assert(p->top->f); |
|
|
|
if (upb_fielddef_isstring(p->top->f)) { |
|
upb_jsonparser_frame *inner; |
|
upb_selector_t sel; |
|
|
|
if (!check_stack(p)) return false; |
|
|
|
/* Start a new parser frame: parser frames correspond one-to-one with |
|
* handler frames, and string events occur in a sub-frame. */ |
|
inner = p->top + 1; |
|
sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR); |
|
upb_sink_startstr(&p->top->sink, sel, 0, &inner->sink); |
|
inner->m = p->top->m; |
|
inner->f = p->top->f; |
|
inner->is_map = false; |
|
inner->is_mapentry = false; |
|
p->top = inner; |
|
|
|
if (upb_fielddef_type(p->top->f) == UPB_TYPE_STRING) { |
|
/* For STRING fields we push data directly to the handlers as it is |
|
* parsed. We don't do this yet for BYTES fields, because our base64 |
|
* decoder is not streaming. |
|
* |
|
* TODO(haberman): make base64 decoding streaming also. */ |
|
multipart_start(p, getsel_for_handlertype(p, UPB_HANDLER_STRING)); |
|
return true; |
|
} else { |
|
multipart_startaccum(p); |
|
return true; |
|
} |
|
} else if (upb_fielddef_type(p->top->f) == UPB_TYPE_ENUM) { |
|
/* No need to push a frame -- symbolic enum names in quotes remain in the |
|
* current parser frame. |
|
* |
|
* Enum string values must accumulate so we can look up the value in a table |
|
* once it is complete. */ |
|
multipart_startaccum(p); |
|
return true; |
|
} else { |
|
upb_status_seterrf(&p->status, |
|
"String specified for non-string/non-enum field: %s", |
|
upb_fielddef_name(p->top->f)); |
|
upb_env_reporterror(p->env, &p->status); |
|
return false; |
|
} |
|
} |
|
|
|
static bool end_stringval(upb_json_parser *p) { |
|
bool ok = true; |
|
|
|
switch (upb_fielddef_type(p->top->f)) { |
|
case UPB_TYPE_BYTES: |
|
if (!base64_push(p, getsel_for_handlertype(p, UPB_HANDLER_STRING), |
|
p->accumulated, p->accumulated_len)) { |
|
return false; |
|
} |
|
/* Fall through. */ |
|
|
|
case UPB_TYPE_STRING: { |
|
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR); |
|
upb_sink_endstr(&p->top->sink, sel); |
|
p->top--; |
|
break; |
|
} |
|
|
|
case UPB_TYPE_ENUM: { |
|
/* Resolve enum symbolic name to integer value. */ |
|
const upb_enumdef *enumdef = |
|
(const upb_enumdef*)upb_fielddef_subdef(p->top->f); |
|
|
|
size_t len; |
|
const char *buf = accumulate_getptr(p, &len); |
|
|
|
int32_t int_val = 0; |
|
ok = upb_enumdef_ntoi(enumdef, buf, len, &int_val); |
|
|
|
if (ok) { |
|
upb_selector_t sel = parser_getsel(p); |
|
upb_sink_putint32(&p->top->sink, sel, int_val); |
|
} else { |
|
upb_status_seterrf(&p->status, "Enum value unknown: '%.*s'", len, buf); |
|
upb_env_reporterror(p->env, &p->status); |
|
} |
|
|
|
break; |
|
} |
|
|
|
default: |
|
assert(false); |
|
upb_status_seterrmsg(&p->status, "Internal error in JSON decoder"); |
|
upb_env_reporterror(p->env, &p->status); |
|
ok = false; |
|
break; |
|
} |
|
|
|
multipart_end(p); |
|
|
|
return ok; |
|
} |
|
|
|
static void start_member(upb_json_parser *p) { |
|
assert(!p->top->f); |
|
multipart_startaccum(p); |
|
} |
|
|
|
/* Helper: invoked during parse_mapentry() to emit the mapentry message's key |
|
* field based on the current contents of the accumulate buffer. */ |
|
static bool parse_mapentry_key(upb_json_parser *p) { |
|
|
|
size_t len; |
|
const char *buf = accumulate_getptr(p, &len); |
|
|
|
/* Emit the key field. We do a bit of ad-hoc parsing here because the |
|
* parser state machine has already decided that this is a string field |
|
* name, and we are reinterpreting it as some arbitrary key type. In |
|
* particular, integer and bool keys are quoted, so we need to parse the |
|
* quoted string contents here. */ |
|
|
|
p->top->f = upb_msgdef_itof(p->top->m, UPB_MAPENTRY_KEY); |
|
if (p->top->f == NULL) { |
|
upb_status_seterrmsg(&p->status, "mapentry message has no key"); |
|
upb_env_reporterror(p->env, &p->status); |
|
return false; |
|
} |
|
switch (upb_fielddef_type(p->top->f)) { |
|
case UPB_TYPE_INT32: |
|
case UPB_TYPE_INT64: |
|
case UPB_TYPE_UINT32: |
|
case UPB_TYPE_UINT64: |
|
/* Invoke end_number. The accum buffer has the number's text already. */ |
|
if (!parse_number(p)) { |
|
return false; |
|
} |
|
break; |
|
case UPB_TYPE_BOOL: |
|
if (len == 4 && !strncmp(buf, "true", 4)) { |
|
if (!parser_putbool(p, true)) { |
|
return false; |
|
} |
|
} else if (len == 5 && !strncmp(buf, "false", 5)) { |
|
if (!parser_putbool(p, false)) { |
|
return false; |
|
} |
|
} else { |
|
upb_status_seterrmsg(&p->status, |
|
"Map bool key not 'true' or 'false'"); |
|
upb_env_reporterror(p->env, &p->status); |
|
return false; |
|
} |
|
multipart_end(p); |
|
break; |
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: { |
|
upb_sink subsink; |
|
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR); |
|
upb_sink_startstr(&p->top->sink, sel, len, &subsink); |
|
sel = getsel_for_handlertype(p, UPB_HANDLER_STRING); |
|
upb_sink_putstring(&subsink, sel, buf, len, NULL); |
|
sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR); |
|
upb_sink_endstr(&subsink, sel); |
|
multipart_end(p); |
|
break; |
|
} |
|
default: |
|
upb_status_seterrmsg(&p->status, "Invalid field type for map key"); |
|
upb_env_reporterror(p->env, &p->status); |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/* Helper: emit one map entry (as a submessage in the map field sequence). This |
|
* is invoked from end_membername(), at the end of the map entry's key string, |
|
* with the map key in the accumulate buffer. It parses the key from that |
|
* buffer, emits the handler calls to start the mapentry submessage (setting up |
|
* its subframe in the process), and sets up state in the subframe so that the |
|
* value parser (invoked next) will emit the mapentry's value field and then |
|
* end the mapentry message. */ |
|
|
|
static bool handle_mapentry(upb_json_parser *p) { |
|
const upb_fielddef *mapfield; |
|
const upb_msgdef *mapentrymsg; |
|
upb_jsonparser_frame *inner; |
|
upb_selector_t sel; |
|
|
|
/* Map entry: p->top->sink is the seq frame, so we need to start a frame |
|
* for the mapentry itself, and then set |f| in that frame so that the map |
|
* value field is parsed, and also set a flag to end the frame after the |
|
* map-entry value is parsed. */ |
|
if (!check_stack(p)) return false; |
|
|
|
mapfield = p->top->mapfield; |
|
mapentrymsg = upb_fielddef_msgsubdef(mapfield); |
|
|
|
inner = p->top + 1; |
|
p->top->f = mapfield; |
|
sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG); |
|
upb_sink_startsubmsg(&p->top->sink, sel, &inner->sink); |
|
inner->m = mapentrymsg; |
|
inner->mapfield = mapfield; |
|
inner->is_map = false; |
|
|
|
/* Don't set this to true *yet* -- we reuse parsing handlers below to push |
|
* the key field value to the sink, and these handlers will pop the frame |
|
* if they see is_mapentry (when invoked by the parser state machine, they |
|
* would have just seen the map-entry value, not key). */ |
|
inner->is_mapentry = false; |
|
p->top = inner; |
|
|
|
/* send STARTMSG in submsg frame. */ |
|
upb_sink_startmsg(&p->top->sink); |
|
|
|
parse_mapentry_key(p); |
|
|
|
/* Set up the value field to receive the map-entry value. */ |
|
p->top->f = upb_msgdef_itof(p->top->m, UPB_MAPENTRY_VALUE); |
|
p->top->is_mapentry = true; /* set up to pop frame after value is parsed. */ |
|
p->top->mapfield = mapfield; |
|
if (p->top->f == NULL) { |
|
upb_status_seterrmsg(&p->status, "mapentry message has no value"); |
|
upb_env_reporterror(p->env, &p->status); |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static bool end_membername(upb_json_parser *p) { |
|
assert(!p->top->f); |
|
|
|
if (p->top->is_map) { |
|
return handle_mapentry(p); |
|
} else { |
|
size_t len; |
|
const char *buf = accumulate_getptr(p, &len); |
|
const upb_fielddef *f = upb_msgdef_ntof(p->top->m, buf, len); |
|
|
|
if (!f) { |
|
/* TODO(haberman): Ignore unknown fields if requested/configured to do |
|
* so. */ |
|
upb_status_seterrf(&p->status, "No such field: %.*s\n", (int)len, buf); |
|
upb_env_reporterror(p->env, &p->status); |
|
return false; |
|
} |
|
|
|
p->top->f = f; |
|
multipart_end(p); |
|
|
|
return true; |
|
} |
|
} |
|
|
|
static void end_member(upb_json_parser *p) { |
|
/* If we just parsed a map-entry value, end that frame too. */ |
|
if (p->top->is_mapentry) { |
|
upb_status s = UPB_STATUS_INIT; |
|
upb_selector_t sel; |
|
bool ok; |
|
const upb_fielddef *mapfield; |
|
|
|
assert(p->top > p->stack); |
|
/* send ENDMSG on submsg. */ |
|
upb_sink_endmsg(&p->top->sink, &s); |
|
mapfield = p->top->mapfield; |
|
|
|
/* send ENDSUBMSG in repeated-field-of-mapentries frame. */ |
|
p->top--; |
|
ok = upb_handlers_getselector(mapfield, UPB_HANDLER_ENDSUBMSG, &sel); |
|
UPB_ASSERT_VAR(ok, ok); |
|
upb_sink_endsubmsg(&p->top->sink, sel); |
|
} |
|
|
|
p->top->f = NULL; |
|
} |
|
|
|
static bool start_subobject(upb_json_parser *p) { |
|
assert(p->top->f); |
|
|
|
if (upb_fielddef_ismap(p->top->f)) { |
|
upb_jsonparser_frame *inner; |
|
upb_selector_t sel; |
|
|
|
/* Beginning of a map. Start a new parser frame in a repeated-field |
|
* context. */ |
|
if (!check_stack(p)) return false; |
|
|
|
inner = p->top + 1; |
|
sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ); |
|
upb_sink_startseq(&p->top->sink, sel, &inner->sink); |
|
inner->m = upb_fielddef_msgsubdef(p->top->f); |
|
inner->mapfield = p->top->f; |
|
inner->f = NULL; |
|
inner->is_map = true; |
|
inner->is_mapentry = false; |
|
p->top = inner; |
|
|
|
return true; |
|
} else if (upb_fielddef_issubmsg(p->top->f)) { |
|
upb_jsonparser_frame *inner; |
|
upb_selector_t sel; |
|
|
|
/* Beginning of a subobject. Start a new parser frame in the submsg |
|
* context. */ |
|
if (!check_stack(p)) return false; |
|
|
|
inner = p->top + 1; |
|
|
|
sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG); |
|
upb_sink_startsubmsg(&p->top->sink, sel, &inner->sink); |
|
inner->m = upb_fielddef_msgsubdef(p->top->f); |
|
inner->f = NULL; |
|
inner->is_map = false; |
|
inner->is_mapentry = false; |
|
p->top = inner; |
|
|
|
return true; |
|
} else { |
|
upb_status_seterrf(&p->status, |
|
"Object specified for non-message/group field: %s", |
|
upb_fielddef_name(p->top->f)); |
|
upb_env_reporterror(p->env, &p->status); |
|
return false; |
|
} |
|
} |
|
|
|
static void end_subobject(upb_json_parser *p) { |
|
if (p->top->is_map) { |
|
upb_selector_t sel; |
|
p->top--; |
|
sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ); |
|
upb_sink_endseq(&p->top->sink, sel); |
|
} else { |
|
upb_selector_t sel; |
|
p->top--; |
|
sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSUBMSG); |
|
upb_sink_endsubmsg(&p->top->sink, sel); |
|
} |
|
} |
|
|
|
static bool start_array(upb_json_parser *p) { |
|
upb_jsonparser_frame *inner; |
|
upb_selector_t sel; |
|
|
|
assert(p->top->f); |
|
|
|
if (!upb_fielddef_isseq(p->top->f)) { |
|
upb_status_seterrf(&p->status, |
|
"Array specified for non-repeated field: %s", |
|
upb_fielddef_name(p->top->f)); |
|
upb_env_reporterror(p->env, &p->status); |
|
return false; |
|
} |
|
|
|
if (!check_stack(p)) return false; |
|
|
|
inner = p->top + 1; |
|
sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ); |
|
upb_sink_startseq(&p->top->sink, sel, &inner->sink); |
|
inner->m = p->top->m; |
|
inner->f = p->top->f; |
|
inner->is_map = false; |
|
inner->is_mapentry = false; |
|
p->top = inner; |
|
|
|
return true; |
|
} |
|
|
|
static void end_array(upb_json_parser *p) { |
|
upb_selector_t sel; |
|
|
|
assert(p->top > p->stack); |
|
|
|
p->top--; |
|
sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ); |
|
upb_sink_endseq(&p->top->sink, sel); |
|
} |
|
|
|
static void start_object(upb_json_parser *p) { |
|
if (!p->top->is_map) { |
|
upb_sink_startmsg(&p->top->sink); |
|
} |
|
} |
|
|
|
static void end_object(upb_json_parser *p) { |
|
if (!p->top->is_map) { |
|
upb_status status; |
|
upb_status_clear(&status); |
|
upb_sink_endmsg(&p->top->sink, &status); |
|
if (!upb_ok(&status)) { |
|
upb_env_reporterror(p->env, &status); |
|
} |
|
} |
|
} |
|
|
|
|
|
#define CHECK_RETURN_TOP(x) if (!(x)) goto error |
|
|
|
|
|
/* The actual parser **********************************************************/ |
|
|
|
/* What follows is the Ragel parser itself. The language is specified in Ragel |
|
* and the actions call our C functions above. |
|
* |
|
* Ragel has an extensive set of functionality, and we use only a small part of |
|
* it. There are many action types but we only use a few: |
|
* |
|
* ">" -- transition into a machine |
|
* "%" -- transition out of a machine |
|
* "@" -- transition into a final state of a machine. |
|
* |
|
* "@" transitions are tricky because a machine can transition into a final |
|
* state repeatedly. But in some cases we know this can't happen, for example |
|
* a string which is delimited by a final '"' can only transition into its |
|
* final state once, when the closing '"' is seen. */ |
|
|
|
|
|
#line 1218 "upb/json/parser.rl" |
|
|
|
|
|
|
|
#line 1130 "upb/json/parser.c" |
|
static const char _json_actions[] = { |
|
0, 1, 0, 1, 2, 1, 3, 1, |
|
5, 1, 6, 1, 7, 1, 8, 1, |
|
10, 1, 12, 1, 13, 1, 14, 1, |
|
15, 1, 16, 1, 17, 1, 21, 1, |
|
25, 1, 27, 2, 3, 8, 2, 4, |
|
5, 2, 6, 2, 2, 6, 8, 2, |
|
11, 9, 2, 13, 15, 2, 14, 15, |
|
2, 18, 1, 2, 19, 27, 2, 20, |
|
9, 2, 22, 27, 2, 23, 27, 2, |
|
24, 27, 2, 26, 27, 3, 14, 11, |
|
9 |
|
}; |
|
|
|
static const unsigned char _json_key_offsets[] = { |
|
0, 0, 4, 9, 14, 15, 19, 24, |
|
29, 34, 38, 42, 45, 48, 50, 54, |
|
58, 60, 62, 67, 69, 71, 80, 86, |
|
92, 98, 104, 106, 115, 116, 116, 116, |
|
121, 126, 131, 132, 133, 134, 135, 135, |
|
136, 137, 138, 138, 139, 140, 141, 141, |
|
146, 151, 152, 156, 161, 166, 171, 175, |
|
175, 178, 178, 178 |
|
}; |
|
|
|
static const char _json_trans_keys[] = { |
|
32, 123, 9, 13, 32, 34, 125, 9, |
|
13, 32, 34, 125, 9, 13, 34, 32, |
|
58, 9, 13, 32, 93, 125, 9, 13, |
|
32, 44, 125, 9, 13, 32, 44, 125, |
|
9, 13, 32, 34, 9, 13, 45, 48, |
|
49, 57, 48, 49, 57, 46, 69, 101, |
|
48, 57, 69, 101, 48, 57, 43, 45, |
|
48, 57, 48, 57, 48, 57, 46, 69, |
|
101, 48, 57, 34, 92, 34, 92, 34, |
|
47, 92, 98, 102, 110, 114, 116, 117, |
|
48, 57, 65, 70, 97, 102, 48, 57, |
|
65, 70, 97, 102, 48, 57, 65, 70, |
|
97, 102, 48, 57, 65, 70, 97, 102, |
|
34, 92, 34, 45, 91, 102, 110, 116, |
|
123, 48, 57, 34, 32, 93, 125, 9, |
|
13, 32, 44, 93, 9, 13, 32, 93, |
|
125, 9, 13, 97, 108, 115, 101, 117, |
|
108, 108, 114, 117, 101, 32, 34, 125, |
|
9, 13, 32, 34, 125, 9, 13, 34, |
|
32, 58, 9, 13, 32, 93, 125, 9, |
|
13, 32, 44, 125, 9, 13, 32, 44, |
|
125, 9, 13, 32, 34, 9, 13, 32, |
|
9, 13, 0 |
|
}; |
|
|
|
static const char _json_single_lengths[] = { |
|
0, 2, 3, 3, 1, 2, 3, 3, |
|
3, 2, 2, 1, 3, 0, 2, 2, |
|
0, 0, 3, 2, 2, 9, 0, 0, |
|
0, 0, 2, 7, 1, 0, 0, 3, |
|
3, 3, 1, 1, 1, 1, 0, 1, |
|
1, 1, 0, 1, 1, 1, 0, 3, |
|
3, 1, 2, 3, 3, 3, 2, 0, |
|
1, 0, 0, 0 |
|
}; |
|
|
|
static const char _json_range_lengths[] = { |
|
0, 1, 1, 1, 0, 1, 1, 1, |
|
1, 1, 1, 1, 0, 1, 1, 1, |
|
1, 1, 1, 0, 0, 0, 3, 3, |
|
3, 3, 0, 1, 0, 0, 0, 1, |
|
1, 1, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 1, |
|
1, 0, 1, 1, 1, 1, 1, 0, |
|
1, 0, 0, 0 |
|
}; |
|
|
|
static const short _json_index_offsets[] = { |
|
0, 0, 4, 9, 14, 16, 20, 25, |
|
30, 35, 39, 43, 46, 50, 52, 56, |
|
60, 62, 64, 69, 72, 75, 85, 89, |
|
93, 97, 101, 104, 113, 115, 116, 117, |
|
122, 127, 132, 134, 136, 138, 140, 141, |
|
143, 145, 147, 148, 150, 152, 154, 155, |
|
160, 165, 167, 171, 176, 181, 186, 190, |
|
191, 194, 195, 196 |
|
}; |
|
|
|
static const char _json_indicies[] = { |
|
0, 2, 0, 1, 3, 4, 5, 3, |
|
1, 6, 7, 8, 6, 1, 9, 1, |
|
10, 11, 10, 1, 11, 1, 1, 11, |
|
12, 13, 14, 15, 13, 1, 16, 17, |
|
8, 16, 1, 17, 7, 17, 1, 18, |
|
19, 20, 1, 19, 20, 1, 22, 23, |
|
23, 21, 24, 1, 23, 23, 24, 21, |
|
25, 25, 26, 1, 26, 1, 26, 21, |
|
22, 23, 23, 20, 21, 28, 29, 27, |
|
31, 32, 30, 33, 33, 33, 33, 33, |
|
33, 33, 33, 34, 1, 35, 35, 35, |
|
1, 36, 36, 36, 1, 37, 37, 37, |
|
1, 38, 38, 38, 1, 40, 41, 39, |
|
42, 43, 44, 45, 46, 47, 48, 43, |
|
1, 49, 1, 50, 51, 53, 54, 1, |
|
53, 52, 55, 56, 54, 55, 1, 56, |
|
1, 1, 56, 52, 57, 1, 58, 1, |
|
59, 1, 60, 1, 61, 62, 1, 63, |
|
1, 64, 1, 65, 66, 1, 67, 1, |
|
68, 1, 69, 70, 71, 72, 70, 1, |
|
73, 74, 75, 73, 1, 76, 1, 77, |
|
78, 77, 1, 78, 1, 1, 78, 79, |
|
80, 81, 82, 80, 1, 83, 84, 75, |
|
83, 1, 84, 74, 84, 1, 85, 86, |
|
86, 1, 1, 1, 1, 0 |
|
}; |
|
|
|
static const char _json_trans_targs[] = { |
|
1, 0, 2, 3, 4, 56, 3, 4, |
|
56, 5, 5, 6, 7, 8, 9, 56, |
|
8, 9, 11, 12, 18, 57, 13, 15, |
|
14, 16, 17, 20, 58, 21, 20, 58, |
|
21, 19, 22, 23, 24, 25, 26, 20, |
|
58, 21, 28, 30, 31, 34, 39, 43, |
|
47, 29, 59, 59, 32, 31, 29, 32, |
|
33, 35, 36, 37, 38, 59, 40, 41, |
|
42, 59, 44, 45, 46, 59, 48, 49, |
|
55, 48, 49, 55, 50, 50, 51, 52, |
|
53, 54, 55, 53, 54, 59, 56 |
|
}; |
|
|
|
static const char _json_trans_actions[] = { |
|
0, 0, 0, 21, 77, 53, 0, 47, |
|
23, 17, 0, 0, 15, 19, 19, 50, |
|
0, 0, 0, 0, 0, 1, 0, 0, |
|
0, 0, 0, 3, 13, 0, 0, 35, |
|
5, 11, 0, 38, 7, 7, 7, 41, |
|
44, 9, 62, 56, 25, 0, 0, 0, |
|
31, 29, 33, 59, 15, 0, 27, 0, |
|
0, 0, 0, 0, 0, 68, 0, 0, |
|
0, 71, 0, 0, 0, 65, 21, 77, |
|
53, 0, 47, 23, 17, 0, 0, 15, |
|
19, 19, 50, 0, 0, 74, 0 |
|
}; |
|
|
|
static const int json_start = 1; |
|
|
|
static const int json_en_number_machine = 10; |
|
static const int json_en_string_machine = 19; |
|
static const int json_en_value_machine = 27; |
|
static const int json_en_main = 1; |
|
|
|
|
|
#line 1221 "upb/json/parser.rl" |
|
|
|
size_t parse(void *closure, const void *hd, const char *buf, size_t size, |
|
const upb_bufhandle *handle) { |
|
upb_json_parser *parser = closure; |
|
|
|
/* Variables used by Ragel's generated code. */ |
|
int cs = parser->current_state; |
|
int *stack = parser->parser_stack; |
|
int top = parser->parser_top; |
|
|
|
const char *p = buf; |
|
const char *pe = buf + size; |
|
|
|
parser->handle = handle; |
|
|
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(handle); |
|
|
|
capture_resume(parser, buf); |
|
|
|
|
|
#line 1301 "upb/json/parser.c" |
|
{ |
|
int _klen; |
|
unsigned int _trans; |
|
const char *_acts; |
|
unsigned int _nacts; |
|
const char *_keys; |
|
|
|
if ( p == pe ) |
|
goto _test_eof; |
|
if ( cs == 0 ) |
|
goto _out; |
|
_resume: |
|
_keys = _json_trans_keys + _json_key_offsets[cs]; |
|
_trans = _json_index_offsets[cs]; |
|
|
|
_klen = _json_single_lengths[cs]; |
|
if ( _klen > 0 ) { |
|
const char *_lower = _keys; |
|
const char *_mid; |
|
const char *_upper = _keys + _klen - 1; |
|
while (1) { |
|
if ( _upper < _lower ) |
|
break; |
|
|
|
_mid = _lower + ((_upper-_lower) >> 1); |
|
if ( (*p) < *_mid ) |
|
_upper = _mid - 1; |
|
else if ( (*p) > *_mid ) |
|
_lower = _mid + 1; |
|
else { |
|
_trans += (unsigned int)(_mid - _keys); |
|
goto _match; |
|
} |
|
} |
|
_keys += _klen; |
|
_trans += _klen; |
|
} |
|
|
|
_klen = _json_range_lengths[cs]; |
|
if ( _klen > 0 ) { |
|
const char *_lower = _keys; |
|
const char *_mid; |
|
const char *_upper = _keys + (_klen<<1) - 2; |
|
while (1) { |
|
if ( _upper < _lower ) |
|
break; |
|
|
|
_mid = _lower + (((_upper-_lower) >> 1) & ~1); |
|
if ( (*p) < _mid[0] ) |
|
_upper = _mid - 2; |
|
else if ( (*p) > _mid[1] ) |
|
_lower = _mid + 2; |
|
else { |
|
_trans += (unsigned int)((_mid - _keys)>>1); |
|
goto _match; |
|
} |
|
} |
|
_trans += _klen; |
|
} |
|
|
|
_match: |
|
_trans = _json_indicies[_trans]; |
|
cs = _json_trans_targs[_trans]; |
|
|
|
if ( _json_trans_actions[_trans] == 0 ) |
|
goto _again; |
|
|
|
_acts = _json_actions + _json_trans_actions[_trans]; |
|
_nacts = (unsigned int) *_acts++; |
|
while ( _nacts-- > 0 ) |
|
{ |
|
switch ( *_acts++ ) |
|
{ |
|
case 0: |
|
#line 1133 "upb/json/parser.rl" |
|
{ p--; {cs = stack[--top]; goto _again;} } |
|
break; |
|
case 1: |
|
#line 1134 "upb/json/parser.rl" |
|
{ p--; {stack[top++] = cs; cs = 10; goto _again;} } |
|
break; |
|
case 2: |
|
#line 1138 "upb/json/parser.rl" |
|
{ start_text(parser, p); } |
|
break; |
|
case 3: |
|
#line 1139 "upb/json/parser.rl" |
|
{ CHECK_RETURN_TOP(end_text(parser, p)); } |
|
break; |
|
case 4: |
|
#line 1145 "upb/json/parser.rl" |
|
{ start_hex(parser); } |
|
break; |
|
case 5: |
|
#line 1146 "upb/json/parser.rl" |
|
{ hexdigit(parser, p); } |
|
break; |
|
case 6: |
|
#line 1147 "upb/json/parser.rl" |
|
{ CHECK_RETURN_TOP(end_hex(parser)); } |
|
break; |
|
case 7: |
|
#line 1153 "upb/json/parser.rl" |
|
{ CHECK_RETURN_TOP(escape(parser, p)); } |
|
break; |
|
case 8: |
|
#line 1159 "upb/json/parser.rl" |
|
{ p--; {cs = stack[--top]; goto _again;} } |
|
break; |
|
case 9: |
|
#line 1162 "upb/json/parser.rl" |
|
{ {stack[top++] = cs; cs = 19; goto _again;} } |
|
break; |
|
case 10: |
|
#line 1164 "upb/json/parser.rl" |
|
{ p--; {stack[top++] = cs; cs = 27; goto _again;} } |
|
break; |
|
case 11: |
|
#line 1169 "upb/json/parser.rl" |
|
{ start_member(parser); } |
|
break; |
|
case 12: |
|
#line 1170 "upb/json/parser.rl" |
|
{ CHECK_RETURN_TOP(end_membername(parser)); } |
|
break; |
|
case 13: |
|
#line 1173 "upb/json/parser.rl" |
|
{ end_member(parser); } |
|
break; |
|
case 14: |
|
#line 1179 "upb/json/parser.rl" |
|
{ start_object(parser); } |
|
break; |
|
case 15: |
|
#line 1182 "upb/json/parser.rl" |
|
{ end_object(parser); } |
|
break; |
|
case 16: |
|
#line 1188 "upb/json/parser.rl" |
|
{ CHECK_RETURN_TOP(start_array(parser)); } |
|
break; |
|
case 17: |
|
#line 1192 "upb/json/parser.rl" |
|
{ end_array(parser); } |
|
break; |
|
case 18: |
|
#line 1197 "upb/json/parser.rl" |
|
{ start_number(parser, p); } |
|
break; |
|
case 19: |
|
#line 1198 "upb/json/parser.rl" |
|
{ CHECK_RETURN_TOP(end_number(parser, p)); } |
|
break; |
|
case 20: |
|
#line 1200 "upb/json/parser.rl" |
|
{ CHECK_RETURN_TOP(start_stringval(parser)); } |
|
break; |
|
case 21: |
|
#line 1201 "upb/json/parser.rl" |
|
{ CHECK_RETURN_TOP(end_stringval(parser)); } |
|
break; |
|
case 22: |
|
#line 1203 "upb/json/parser.rl" |
|
{ CHECK_RETURN_TOP(parser_putbool(parser, true)); } |
|
break; |
|
case 23: |
|
#line 1205 "upb/json/parser.rl" |
|
{ CHECK_RETURN_TOP(parser_putbool(parser, false)); } |
|
break; |
|
case 24: |
|
#line 1207 "upb/json/parser.rl" |
|
{ /* null value */ } |
|
break; |
|
case 25: |
|
#line 1209 "upb/json/parser.rl" |
|
{ CHECK_RETURN_TOP(start_subobject(parser)); } |
|
break; |
|
case 26: |
|
#line 1210 "upb/json/parser.rl" |
|
{ end_subobject(parser); } |
|
break; |
|
case 27: |
|
#line 1215 "upb/json/parser.rl" |
|
{ p--; {cs = stack[--top]; goto _again;} } |
|
break; |
|
#line 1487 "upb/json/parser.c" |
|
} |
|
} |
|
|
|
_again: |
|
if ( cs == 0 ) |
|
goto _out; |
|
if ( ++p != pe ) |
|
goto _resume; |
|
_test_eof: {} |
|
_out: {} |
|
} |
|
|
|
#line 1242 "upb/json/parser.rl" |
|
|
|
if (p != pe) { |
|
upb_status_seterrf(&parser->status, "Parse error at %s\n", p); |
|
upb_env_reporterror(parser->env, &parser->status); |
|
} else { |
|
capture_suspend(parser, &p); |
|
} |
|
|
|
error: |
|
/* Save parsing state back to parser. */ |
|
parser->current_state = cs; |
|
parser->parser_top = top; |
|
|
|
return p - buf; |
|
} |
|
|
|
bool end(void *closure, const void *hd) { |
|
UPB_UNUSED(closure); |
|
UPB_UNUSED(hd); |
|
|
|
/* Prevent compile warning on unused static constants. */ |
|
UPB_UNUSED(json_start); |
|
UPB_UNUSED(json_en_number_machine); |
|
UPB_UNUSED(json_en_string_machine); |
|
UPB_UNUSED(json_en_value_machine); |
|
UPB_UNUSED(json_en_main); |
|
return true; |
|
} |
|
|
|
static void json_parser_reset(upb_json_parser *p) { |
|
int cs; |
|
int top; |
|
|
|
p->top = p->stack; |
|
p->top->f = NULL; |
|
p->top->is_map = false; |
|
p->top->is_mapentry = false; |
|
|
|
/* Emit Ragel initialization of the parser. */ |
|
|
|
#line 1541 "upb/json/parser.c" |
|
{ |
|
cs = json_start; |
|
top = 0; |
|
} |
|
|
|
#line 1282 "upb/json/parser.rl" |
|
p->current_state = cs; |
|
p->parser_top = top; |
|
accumulate_clear(p); |
|
p->multipart_state = MULTIPART_INACTIVE; |
|
p->capture = NULL; |
|
p->accumulated = NULL; |
|
upb_status_clear(&p->status); |
|
} |
|
|
|
|
|
/* Public API *****************************************************************/ |
|
|
|
upb_json_parser *upb_json_parser_create(upb_env *env, upb_sink *output) { |
|
#ifndef NDEBUG |
|
const size_t size_before = upb_env_bytesallocated(env); |
|
#endif |
|
upb_json_parser *p = upb_env_malloc(env, sizeof(upb_json_parser)); |
|
if (!p) return false; |
|
|
|
p->env = env; |
|
p->limit = p->stack + UPB_JSON_MAX_DEPTH; |
|
p->accumulate_buf = NULL; |
|
p->accumulate_buf_size = 0; |
|
upb_byteshandler_init(&p->input_handler_); |
|
upb_byteshandler_setstring(&p->input_handler_, parse, NULL); |
|
upb_byteshandler_setendstr(&p->input_handler_, end, NULL); |
|
upb_bytessink_reset(&p->input_, &p->input_handler_, p); |
|
|
|
json_parser_reset(p); |
|
upb_sink_reset(&p->top->sink, output->handlers, output->closure); |
|
p->top->m = upb_handlers_msgdef(output->handlers); |
|
|
|
/* If this fails, uncomment and increase the value in parser.h. */ |
|
/* fprintf(stderr, "%zd\n", upb_env_bytesallocated(env) - size_before); */ |
|
assert(upb_env_bytesallocated(env) - size_before <= UPB_JSON_PARSER_SIZE); |
|
return p; |
|
} |
|
|
|
upb_bytessink *upb_json_parser_input(upb_json_parser *p) { |
|
return &p->input_; |
|
} |
|
/* |
|
** This currently uses snprintf() to format primitives, and could be optimized |
|
** further. |
|
*/ |
|
|
|
|
|
#include <stdlib.h> |
|
#include <stdio.h> |
|
#include <string.h> |
|
#include <stdint.h> |
|
|
|
struct upb_json_printer { |
|
upb_sink input_; |
|
/* BytesSink closure. */ |
|
void *subc_; |
|
upb_bytessink *output_; |
|
|
|
/* We track the depth so that we know when to emit startstr/endstr on the |
|
* output. */ |
|
int depth_; |
|
|
|
/* Have we emitted the first element? This state is necessary to emit commas |
|
* without leaving a trailing comma in arrays/maps. We keep this state per |
|
* frame depth. |
|
* |
|
* Why max_depth * 2? UPB_MAX_HANDLER_DEPTH counts depth as nested messages. |
|
* We count frames (contexts in which we separate elements by commas) as both |
|
* repeated fields and messages (maps), and the worst case is a |
|
* message->repeated field->submessage->repeated field->... nesting. */ |
|
bool first_elem_[UPB_MAX_HANDLER_DEPTH * 2]; |
|
}; |
|
|
|
/* StringPiece; a pointer plus a length. */ |
|
typedef struct { |
|
const char *ptr; |
|
size_t len; |
|
} strpc; |
|
|
|
strpc *newstrpc(upb_handlers *h, const upb_fielddef *f) { |
|
strpc *ret = malloc(sizeof(*ret)); |
|
ret->ptr = upb_fielddef_name(f); |
|
ret->len = strlen(ret->ptr); |
|
upb_handlers_addcleanup(h, ret, free); |
|
return ret; |
|
} |
|
|
|
/* ------------ JSON string printing: values, maps, arrays ------------------ */ |
|
|
|
static void print_data( |
|
upb_json_printer *p, const char *buf, unsigned int len) { |
|
/* TODO: Will need to change if we support pushback from the sink. */ |
|
size_t n = upb_bytessink_putbuf(p->output_, p->subc_, buf, len, NULL); |
|
UPB_ASSERT_VAR(n, n == len); |
|
} |
|
|
|
static void print_comma(upb_json_printer *p) { |
|
if (!p->first_elem_[p->depth_]) { |
|
print_data(p, ",", 1); |
|
} |
|
p->first_elem_[p->depth_] = false; |
|
} |
|
|
|
/* Helpers that print properly formatted elements to the JSON output stream. */ |
|
|
|
/* Used for escaping control chars in strings. */ |
|
static const char kControlCharLimit = 0x20; |
|
|
|
UPB_INLINE bool is_json_escaped(char c) { |
|
/* See RFC 4627. */ |
|
unsigned char uc = (unsigned char)c; |
|
return uc < kControlCharLimit || uc == '"' || uc == '\\'; |
|
} |
|
|
|
UPB_INLINE char* json_nice_escape(char c) { |
|
switch (c) { |
|
case '"': return "\\\""; |
|
case '\\': return "\\\\"; |
|
case '\b': return "\\b"; |
|
case '\f': return "\\f"; |
|
case '\n': return "\\n"; |
|
case '\r': return "\\r"; |
|
case '\t': return "\\t"; |
|
default: return NULL; |
|
} |
|
} |
|
|
|
/* Write a properly escaped string chunk. The surrounding quotes are *not* |
|
* printed; this is so that the caller has the option of emitting the string |
|
* content in chunks. */ |
|
static void putstring(upb_json_printer *p, const char *buf, unsigned int len) { |
|
const char* unescaped_run = NULL; |
|
unsigned int i; |
|
for (i = 0; i < len; i++) { |
|
char c = buf[i]; |
|
/* Handle escaping. */ |
|
if (is_json_escaped(c)) { |
|
/* Use a "nice" escape, like \n, if one exists for this character. */ |
|
const char* escape = json_nice_escape(c); |
|
/* If we don't have a specific 'nice' escape code, use a \uXXXX-style |
|
* escape. */ |
|
char escape_buf[8]; |
|
if (!escape) { |
|
unsigned char byte = (unsigned char)c; |
|
_upb_snprintf(escape_buf, sizeof(escape_buf), "\\u%04x", (int)byte); |
|
escape = escape_buf; |
|
} |
|
|
|
/* N.B. that we assume that the input encoding is equal to the output |
|
* encoding (both UTF-8 for now), so for chars >= 0x20 and != \, ", we |
|
* can simply pass the bytes through. */ |
|
|
|
/* If there's a current run of unescaped chars, print that run first. */ |
|
if (unescaped_run) { |
|
print_data(p, unescaped_run, &buf[i] - unescaped_run); |
|
unescaped_run = NULL; |
|
} |
|
/* Then print the escape code. */ |
|
print_data(p, escape, strlen(escape)); |
|
} else { |
|
/* Add to the current unescaped run of characters. */ |
|
if (unescaped_run == NULL) { |
|
unescaped_run = &buf[i]; |
|
} |
|
} |
|
} |
|
|
|
/* If the string ended in a run of unescaped characters, print that last run. */ |
|
if (unescaped_run) { |
|
print_data(p, unescaped_run, &buf[len] - unescaped_run); |
|
} |
|
} |
|
|
|
#define CHKLENGTH(x) if (!(x)) return -1; |
|
|
|
/* Helpers that format floating point values according to our custom formats. |
|
* Right now we use %.8g and %.17g for float/double, respectively, to match |
|
* proto2::util::JsonFormat's defaults. May want to change this later. */ |
|
|
|
static size_t fmt_double(double val, char* buf, size_t length) { |
|
size_t n = _upb_snprintf(buf, length, "%.17g", val); |
|
CHKLENGTH(n > 0 && n < length); |
|
return n; |
|
} |
|
|
|
static size_t fmt_float(float val, char* buf, size_t length) { |
|
size_t n = _upb_snprintf(buf, length, "%.8g", val); |
|
CHKLENGTH(n > 0 && n < length); |
|
return n; |
|
} |
|
|
|
static size_t fmt_bool(bool val, char* buf, size_t length) { |
|
size_t n = _upb_snprintf(buf, length, "%s", (val ? "true" : "false")); |
|
CHKLENGTH(n > 0 && n < length); |
|
return n; |
|
} |
|
|
|
static size_t fmt_int64(long val, char* buf, size_t length) { |
|
size_t n = _upb_snprintf(buf, length, "%ld", val); |
|
CHKLENGTH(n > 0 && n < length); |
|
return n; |
|
} |
|
|
|
static size_t fmt_uint64(unsigned long long val, char* buf, size_t length) { |
|
size_t n = _upb_snprintf(buf, length, "%llu", val); |
|
CHKLENGTH(n > 0 && n < length); |
|
return n; |
|
} |
|
|
|
/* Print a map key given a field name. Called by scalar field handlers and by |
|
* startseq for repeated fields. */ |
|
static bool putkey(void *closure, const void *handler_data) { |
|
upb_json_printer *p = closure; |
|
const strpc *key = handler_data; |
|
print_comma(p); |
|
print_data(p, "\"", 1); |
|
putstring(p, key->ptr, key->len); |
|
print_data(p, "\":", 2); |
|
return true; |
|
} |
|
|
|
#define CHKFMT(val) if ((val) == (size_t)-1) return false; |
|
#define CHK(val) if (!(val)) return false; |
|
|
|
#define TYPE_HANDLERS(type, fmt_func) \ |
|
static bool put##type(void *closure, const void *handler_data, type val) { \ |
|
upb_json_printer *p = closure; \ |
|
char data[64]; \ |
|
size_t length = fmt_func(val, data, sizeof(data)); \ |
|
UPB_UNUSED(handler_data); \ |
|
CHKFMT(length); \ |
|
print_data(p, data, length); \ |
|
return true; \ |
|
} \ |
|
static bool scalar_##type(void *closure, const void *handler_data, \ |
|
type val) { \ |
|
CHK(putkey(closure, handler_data)); \ |
|
CHK(put##type(closure, handler_data, val)); \ |
|
return true; \ |
|
} \ |
|
static bool repeated_##type(void *closure, const void *handler_data, \ |
|
type val) { \ |
|
upb_json_printer *p = closure; \ |
|
print_comma(p); \ |
|
CHK(put##type(closure, handler_data, val)); \ |
|
return true; \ |
|
} |
|
|
|
#define TYPE_HANDLERS_MAPKEY(type, fmt_func) \ |
|
static bool putmapkey_##type(void *closure, const void *handler_data, \ |
|
type val) { \ |
|
upb_json_printer *p = closure; \ |
|
print_data(p, "\"", 1); \ |
|
CHK(put##type(closure, handler_data, val)); \ |
|
print_data(p, "\":", 2); \ |
|
return true; \ |
|
} |
|
|
|
TYPE_HANDLERS(double, fmt_double) |
|
TYPE_HANDLERS(float, fmt_float) |
|
TYPE_HANDLERS(bool, fmt_bool) |
|
TYPE_HANDLERS(int32_t, fmt_int64) |
|
TYPE_HANDLERS(uint32_t, fmt_int64) |
|
TYPE_HANDLERS(int64_t, fmt_int64) |
|
TYPE_HANDLERS(uint64_t, fmt_uint64) |
|
|
|
/* double and float are not allowed to be map keys. */ |
|
TYPE_HANDLERS_MAPKEY(bool, fmt_bool) |
|
TYPE_HANDLERS_MAPKEY(int32_t, fmt_int64) |
|
TYPE_HANDLERS_MAPKEY(uint32_t, fmt_int64) |
|
TYPE_HANDLERS_MAPKEY(int64_t, fmt_int64) |
|
TYPE_HANDLERS_MAPKEY(uint64_t, fmt_uint64) |
|
|
|
#undef TYPE_HANDLERS |
|
#undef TYPE_HANDLERS_MAPKEY |
|
|
|
typedef struct { |
|
void *keyname; |
|
const upb_enumdef *enumdef; |
|
} EnumHandlerData; |
|
|
|
static bool scalar_enum(void *closure, const void *handler_data, |
|
int32_t val) { |
|
const EnumHandlerData *hd = handler_data; |
|
upb_json_printer *p = closure; |
|
const char *symbolic_name; |
|
|
|
CHK(putkey(closure, hd->keyname)); |
|
|
|
symbolic_name = upb_enumdef_iton(hd->enumdef, val); |
|
if (symbolic_name) { |
|
print_data(p, "\"", 1); |
|
putstring(p, symbolic_name, strlen(symbolic_name)); |
|
print_data(p, "\"", 1); |
|
} else { |
|
putint32_t(closure, NULL, val); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static void print_enum_symbolic_name(upb_json_printer *p, |
|
const upb_enumdef *def, |
|
int32_t val) { |
|
const char *symbolic_name = upb_enumdef_iton(def, val); |
|
if (symbolic_name) { |
|
print_data(p, "\"", 1); |
|
putstring(p, symbolic_name, strlen(symbolic_name)); |
|
print_data(p, "\"", 1); |
|
} else { |
|
putint32_t(p, NULL, val); |
|
} |
|
} |
|
|
|
static bool repeated_enum(void *closure, const void *handler_data, |
|
int32_t val) { |
|
const EnumHandlerData *hd = handler_data; |
|
upb_json_printer *p = closure; |
|
print_comma(p); |
|
|
|
print_enum_symbolic_name(p, hd->enumdef, val); |
|
|
|
return true; |
|
} |
|
|
|
static bool mapvalue_enum(void *closure, const void *handler_data, |
|
int32_t val) { |
|
const EnumHandlerData *hd = handler_data; |
|
upb_json_printer *p = closure; |
|
|
|
print_enum_symbolic_name(p, hd->enumdef, val); |
|
|
|
return true; |
|
} |
|
|
|
static void *scalar_startsubmsg(void *closure, const void *handler_data) { |
|
return putkey(closure, handler_data) ? closure : UPB_BREAK; |
|
} |
|
|
|
static void *repeated_startsubmsg(void *closure, const void *handler_data) { |
|
upb_json_printer *p = closure; |
|
UPB_UNUSED(handler_data); |
|
print_comma(p); |
|
return closure; |
|
} |
|
|
|
static void start_frame(upb_json_printer *p) { |
|
p->depth_++; |
|
p->first_elem_[p->depth_] = true; |
|
print_data(p, "{", 1); |
|
} |
|
|
|
static void end_frame(upb_json_printer *p) { |
|
print_data(p, "}", 1); |
|
p->depth_--; |
|
} |
|
|
|
static bool printer_startmsg(void *closure, const void *handler_data) { |
|
upb_json_printer *p = closure; |
|
UPB_UNUSED(handler_data); |
|
if (p->depth_ == 0) { |
|
upb_bytessink_start(p->output_, 0, &p->subc_); |
|
} |
|
start_frame(p); |
|
return true; |
|
} |
|
|
|
static bool printer_endmsg(void *closure, const void *handler_data, upb_status *s) { |
|
upb_json_printer *p = closure; |
|
UPB_UNUSED(handler_data); |
|
UPB_UNUSED(s); |
|
end_frame(p); |
|
if (p->depth_ == 0) { |
|
upb_bytessink_end(p->output_); |
|
} |
|
return true; |
|
} |
|
|
|
static void *startseq(void *closure, const void *handler_data) { |
|
upb_json_printer *p = closure; |
|
CHK(putkey(closure, handler_data)); |
|
p->depth_++; |
|
p->first_elem_[p->depth_] = true; |
|
print_data(p, "[", 1); |
|
return closure; |
|
} |
|
|
|
static bool endseq(void *closure, const void *handler_data) { |
|
upb_json_printer *p = closure; |
|
UPB_UNUSED(handler_data); |
|
print_data(p, "]", 1); |
|
p->depth_--; |
|
return true; |
|
} |
|
|
|
static void *startmap(void *closure, const void *handler_data) { |
|
upb_json_printer *p = closure; |
|
CHK(putkey(closure, handler_data)); |
|
p->depth_++; |
|
p->first_elem_[p->depth_] = true; |
|
print_data(p, "{", 1); |
|
return closure; |
|
} |
|
|
|
static bool endmap(void *closure, const void *handler_data) { |
|
upb_json_printer *p = closure; |
|
UPB_UNUSED(handler_data); |
|
print_data(p, "}", 1); |
|
p->depth_--; |
|
return true; |
|
} |
|
|
|
static size_t putstr(void *closure, const void *handler_data, const char *str, |
|
size_t len, const upb_bufhandle *handle) { |
|
upb_json_printer *p = closure; |
|
UPB_UNUSED(handler_data); |
|
UPB_UNUSED(handle); |
|
putstring(p, str, len); |
|
return len; |
|
} |
|
|
|
/* This has to Base64 encode the bytes, because JSON has no "bytes" type. */ |
|
static size_t putbytes(void *closure, const void *handler_data, const char *str, |
|
size_t len, const upb_bufhandle *handle) { |
|
upb_json_printer *p = closure; |
|
|
|
/* This is the regular base64, not the "web-safe" version. */ |
|
static const char base64[] = |
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; |
|
|
|
/* Base64-encode. */ |
|
char data[16000]; |
|
const char *limit = data + sizeof(data); |
|
const unsigned char *from = (const unsigned char*)str; |
|
char *to = data; |
|
size_t remaining = len; |
|
size_t bytes; |
|
|
|
UPB_UNUSED(handler_data); |
|
UPB_UNUSED(handle); |
|
|
|
while (remaining > 2) { |
|
/* TODO(haberman): handle encoded lengths > sizeof(data) */ |
|
UPB_ASSERT_VAR(limit, (limit - to) >= 4); |
|
|
|
to[0] = base64[from[0] >> 2]; |
|
to[1] = base64[((from[0] & 0x3) << 4) | (from[1] >> 4)]; |
|
to[2] = base64[((from[1] & 0xf) << 2) | (from[2] >> 6)]; |
|
to[3] = base64[from[2] & 0x3f]; |
|
|
|
remaining -= 3; |
|
to += 4; |
|
from += 3; |
|
} |
|
|
|
switch (remaining) { |
|
case 2: |
|
to[0] = base64[from[0] >> 2]; |
|
to[1] = base64[((from[0] & 0x3) << 4) | (from[1] >> 4)]; |
|
to[2] = base64[(from[1] & 0xf) << 2]; |
|
to[3] = '='; |
|
to += 4; |
|
from += 2; |
|
break; |
|
case 1: |
|
to[0] = base64[from[0] >> 2]; |
|
to[1] = base64[((from[0] & 0x3) << 4)]; |
|
to[2] = '='; |
|
to[3] = '='; |
|
to += 4; |
|
from += 1; |
|
break; |
|
} |
|
|
|
bytes = to - data; |
|
print_data(p, "\"", 1); |
|
putstring(p, data, bytes); |
|
print_data(p, "\"", 1); |
|
return len; |
|
} |
|
|
|
static void *scalar_startstr(void *closure, const void *handler_data, |
|
size_t size_hint) { |
|
upb_json_printer *p = closure; |
|
UPB_UNUSED(handler_data); |
|
UPB_UNUSED(size_hint); |
|
CHK(putkey(closure, handler_data)); |
|
print_data(p, "\"", 1); |
|
return p; |
|
} |
|
|
|
static size_t scalar_str(void *closure, const void *handler_data, |
|
const char *str, size_t len, |
|
const upb_bufhandle *handle) { |
|
CHK(putstr(closure, handler_data, str, len, handle)); |
|
return len; |
|
} |
|
|
|
static bool scalar_endstr(void *closure, const void *handler_data) { |
|
upb_json_printer *p = closure; |
|
UPB_UNUSED(handler_data); |
|
print_data(p, "\"", 1); |
|
return true; |
|
} |
|
|
|
static void *repeated_startstr(void *closure, const void *handler_data, |
|
size_t size_hint) { |
|
upb_json_printer *p = closure; |
|
UPB_UNUSED(handler_data); |
|
UPB_UNUSED(size_hint); |
|
print_comma(p); |
|
print_data(p, "\"", 1); |
|
return p; |
|
} |
|
|
|
static size_t repeated_str(void *closure, const void *handler_data, |
|
const char *str, size_t len, |
|
const upb_bufhandle *handle) { |
|
CHK(putstr(closure, handler_data, str, len, handle)); |
|
return len; |
|
} |
|
|
|
static bool repeated_endstr(void *closure, const void *handler_data) { |
|
upb_json_printer *p = closure; |
|
UPB_UNUSED(handler_data); |
|
print_data(p, "\"", 1); |
|
return true; |
|
} |
|
|
|
static void *mapkeyval_startstr(void *closure, const void *handler_data, |
|
size_t size_hint) { |
|
upb_json_printer *p = closure; |
|
UPB_UNUSED(handler_data); |
|
UPB_UNUSED(size_hint); |
|
print_data(p, "\"", 1); |
|
return p; |
|
} |
|
|
|
static size_t mapkey_str(void *closure, const void *handler_data, |
|
const char *str, size_t len, |
|
const upb_bufhandle *handle) { |
|
CHK(putstr(closure, handler_data, str, len, handle)); |
|
return len; |
|
} |
|
|
|
static bool mapkey_endstr(void *closure, const void *handler_data) { |
|
upb_json_printer *p = closure; |
|
UPB_UNUSED(handler_data); |
|
print_data(p, "\":", 2); |
|
return true; |
|
} |
|
|
|
static bool mapvalue_endstr(void *closure, const void *handler_data) { |
|
upb_json_printer *p = closure; |
|
UPB_UNUSED(handler_data); |
|
print_data(p, "\"", 1); |
|
return true; |
|
} |
|
|
|
static size_t scalar_bytes(void *closure, const void *handler_data, |
|
const char *str, size_t len, |
|
const upb_bufhandle *handle) { |
|
CHK(putkey(closure, handler_data)); |
|
CHK(putbytes(closure, handler_data, str, len, handle)); |
|
return len; |
|
} |
|
|
|
static size_t repeated_bytes(void *closure, const void *handler_data, |
|
const char *str, size_t len, |
|
const upb_bufhandle *handle) { |
|
upb_json_printer *p = closure; |
|
print_comma(p); |
|
CHK(putbytes(closure, handler_data, str, len, handle)); |
|
return len; |
|
} |
|
|
|
static size_t mapkey_bytes(void *closure, const void *handler_data, |
|
const char *str, size_t len, |
|
const upb_bufhandle *handle) { |
|
upb_json_printer *p = closure; |
|
CHK(putbytes(closure, handler_data, str, len, handle)); |
|
print_data(p, ":", 1); |
|
return len; |
|
} |
|
|
|
static void set_enum_hd(upb_handlers *h, |
|
const upb_fielddef *f, |
|
upb_handlerattr *attr) { |
|
EnumHandlerData *hd = malloc(sizeof(EnumHandlerData)); |
|
hd->enumdef = (const upb_enumdef *)upb_fielddef_subdef(f); |
|
hd->keyname = newstrpc(h, f); |
|
upb_handlers_addcleanup(h, hd, free); |
|
upb_handlerattr_sethandlerdata(attr, hd); |
|
} |
|
|
|
/* Set up handlers for a mapentry submessage (i.e., an individual key/value pair |
|
* in a map). |
|
* |
|
* TODO: Handle missing key, missing value, out-of-order key/value, or repeated |
|
* key or value cases properly. The right way to do this is to allocate a |
|
* temporary structure at the start of a mapentry submessage, store key and |
|
* value data in it as key and value handlers are called, and then print the |
|
* key/value pair once at the end of the submessage. If we don't do this, we |
|
* should at least detect the case and throw an error. However, so far all of |
|
* our sources that emit mapentry messages do so canonically (with one key |
|
* field, and then one value field), so this is not a pressing concern at the |
|
* moment. */ |
|
void printer_sethandlers_mapentry(const void *closure, upb_handlers *h) { |
|
const upb_msgdef *md = upb_handlers_msgdef(h); |
|
|
|
/* A mapentry message is printed simply as '"key": value'. Rather than |
|
* special-case key and value for every type below, we just handle both |
|
* fields explicitly here. */ |
|
const upb_fielddef* key_field = upb_msgdef_itof(md, UPB_MAPENTRY_KEY); |
|
const upb_fielddef* value_field = upb_msgdef_itof(md, UPB_MAPENTRY_VALUE); |
|
|
|
upb_handlerattr empty_attr = UPB_HANDLERATTR_INITIALIZER; |
|
|
|
UPB_UNUSED(closure); |
|
|
|
switch (upb_fielddef_type(key_field)) { |
|
case UPB_TYPE_INT32: |
|
upb_handlers_setint32(h, key_field, putmapkey_int32_t, &empty_attr); |
|
break; |
|
case UPB_TYPE_INT64: |
|
upb_handlers_setint64(h, key_field, putmapkey_int64_t, &empty_attr); |
|
break; |
|
case UPB_TYPE_UINT32: |
|
upb_handlers_setuint32(h, key_field, putmapkey_uint32_t, &empty_attr); |
|
break; |
|
case UPB_TYPE_UINT64: |
|
upb_handlers_setuint64(h, key_field, putmapkey_uint64_t, &empty_attr); |
|
break; |
|
case UPB_TYPE_BOOL: |
|
upb_handlers_setbool(h, key_field, putmapkey_bool, &empty_attr); |
|
break; |
|
case UPB_TYPE_STRING: |
|
upb_handlers_setstartstr(h, key_field, mapkeyval_startstr, &empty_attr); |
|
upb_handlers_setstring(h, key_field, mapkey_str, &empty_attr); |
|
upb_handlers_setendstr(h, key_field, mapkey_endstr, &empty_attr); |
|
break; |
|
case UPB_TYPE_BYTES: |
|
upb_handlers_setstring(h, key_field, mapkey_bytes, &empty_attr); |
|
break; |
|
default: |
|
assert(false); |
|
break; |
|
} |
|
|
|
switch (upb_fielddef_type(value_field)) { |
|
case UPB_TYPE_INT32: |
|
upb_handlers_setint32(h, value_field, putint32_t, &empty_attr); |
|
break; |
|
case UPB_TYPE_INT64: |
|
upb_handlers_setint64(h, value_field, putint64_t, &empty_attr); |
|
break; |
|
case UPB_TYPE_UINT32: |
|
upb_handlers_setuint32(h, value_field, putuint32_t, &empty_attr); |
|
break; |
|
case UPB_TYPE_UINT64: |
|
upb_handlers_setuint64(h, value_field, putuint64_t, &empty_attr); |
|
break; |
|
case UPB_TYPE_BOOL: |
|
upb_handlers_setbool(h, value_field, putbool, &empty_attr); |
|
break; |
|
case UPB_TYPE_FLOAT: |
|
upb_handlers_setfloat(h, value_field, putfloat, &empty_attr); |
|
break; |
|
case UPB_TYPE_DOUBLE: |
|
upb_handlers_setdouble(h, value_field, putdouble, &empty_attr); |
|
break; |
|
case UPB_TYPE_STRING: |
|
upb_handlers_setstartstr(h, value_field, mapkeyval_startstr, &empty_attr); |
|
upb_handlers_setstring(h, value_field, putstr, &empty_attr); |
|
upb_handlers_setendstr(h, value_field, mapvalue_endstr, &empty_attr); |
|
break; |
|
case UPB_TYPE_BYTES: |
|
upb_handlers_setstring(h, value_field, putbytes, &empty_attr); |
|
break; |
|
case UPB_TYPE_ENUM: { |
|
upb_handlerattr enum_attr = UPB_HANDLERATTR_INITIALIZER; |
|
set_enum_hd(h, value_field, &enum_attr); |
|
upb_handlers_setint32(h, value_field, mapvalue_enum, &enum_attr); |
|
upb_handlerattr_uninit(&enum_attr); |
|
break; |
|
} |
|
case UPB_TYPE_MESSAGE: |
|
/* No handler necessary -- the submsg handlers will print the message |
|
* as appropriate. */ |
|
break; |
|
} |
|
|
|
upb_handlerattr_uninit(&empty_attr); |
|
} |
|
|
|
void printer_sethandlers(const void *closure, upb_handlers *h) { |
|
const upb_msgdef *md = upb_handlers_msgdef(h); |
|
bool is_mapentry = upb_msgdef_mapentry(md); |
|
upb_handlerattr empty_attr = UPB_HANDLERATTR_INITIALIZER; |
|
upb_msg_field_iter i; |
|
|
|
UPB_UNUSED(closure); |
|
|
|
if (is_mapentry) { |
|
/* mapentry messages are sufficiently different that we handle them |
|
* separately. */ |
|
printer_sethandlers_mapentry(closure, h); |
|
return; |
|
} |
|
|
|
upb_handlers_setstartmsg(h, printer_startmsg, &empty_attr); |
|
upb_handlers_setendmsg(h, printer_endmsg, &empty_attr); |
|
|
|
#define TYPE(type, name, ctype) \ |
|
case type: \ |
|
if (upb_fielddef_isseq(f)) { \ |
|
upb_handlers_set##name(h, f, repeated_##ctype, &empty_attr); \ |
|
} else { \ |
|
upb_handlers_set##name(h, f, scalar_##ctype, &name_attr); \ |
|
} \ |
|
break; |
|
|
|
upb_msg_field_begin(&i, md); |
|
for(; !upb_msg_field_done(&i); upb_msg_field_next(&i)) { |
|
const upb_fielddef *f = upb_msg_iter_field(&i); |
|
|
|
upb_handlerattr name_attr = UPB_HANDLERATTR_INITIALIZER; |
|
upb_handlerattr_sethandlerdata(&name_attr, newstrpc(h, f)); |
|
|
|
if (upb_fielddef_ismap(f)) { |
|
upb_handlers_setstartseq(h, f, startmap, &name_attr); |
|
upb_handlers_setendseq(h, f, endmap, &name_attr); |
|
} else if (upb_fielddef_isseq(f)) { |
|
upb_handlers_setstartseq(h, f, startseq, &name_attr); |
|
upb_handlers_setendseq(h, f, endseq, &empty_attr); |
|
} |
|
|
|
switch (upb_fielddef_type(f)) { |
|
TYPE(UPB_TYPE_FLOAT, float, float); |
|
TYPE(UPB_TYPE_DOUBLE, double, double); |
|
TYPE(UPB_TYPE_BOOL, bool, bool); |
|
TYPE(UPB_TYPE_INT32, int32, int32_t); |
|
TYPE(UPB_TYPE_UINT32, uint32, uint32_t); |
|
TYPE(UPB_TYPE_INT64, int64, int64_t); |
|
TYPE(UPB_TYPE_UINT64, uint64, uint64_t); |
|
case UPB_TYPE_ENUM: { |
|
/* For now, we always emit symbolic names for enums. We may want an |
|
* option later to control this behavior, but we will wait for a real |
|
* need first. */ |
|
upb_handlerattr enum_attr = UPB_HANDLERATTR_INITIALIZER; |
|
set_enum_hd(h, f, &enum_attr); |
|
|
|
if (upb_fielddef_isseq(f)) { |
|
upb_handlers_setint32(h, f, repeated_enum, &enum_attr); |
|
} else { |
|
upb_handlers_setint32(h, f, scalar_enum, &enum_attr); |
|
} |
|
|
|
upb_handlerattr_uninit(&enum_attr); |
|
break; |
|
} |
|
case UPB_TYPE_STRING: |
|
if (upb_fielddef_isseq(f)) { |
|
upb_handlers_setstartstr(h, f, repeated_startstr, &empty_attr); |
|
upb_handlers_setstring(h, f, repeated_str, &empty_attr); |
|
upb_handlers_setendstr(h, f, repeated_endstr, &empty_attr); |
|
} else { |
|
upb_handlers_setstartstr(h, f, scalar_startstr, &name_attr); |
|
upb_handlers_setstring(h, f, scalar_str, &empty_attr); |
|
upb_handlers_setendstr(h, f, scalar_endstr, &empty_attr); |
|
} |
|
break; |
|
case UPB_TYPE_BYTES: |
|
/* XXX: this doesn't support strings that span buffers yet. The base64 |
|
* encoder will need to be made resumable for this to work properly. */ |
|
if (upb_fielddef_isseq(f)) { |
|
upb_handlers_setstring(h, f, repeated_bytes, &empty_attr); |
|
} else { |
|
upb_handlers_setstring(h, f, scalar_bytes, &name_attr); |
|
} |
|
break; |
|
case UPB_TYPE_MESSAGE: |
|
if (upb_fielddef_isseq(f)) { |
|
upb_handlers_setstartsubmsg(h, f, repeated_startsubmsg, &name_attr); |
|
} else { |
|
upb_handlers_setstartsubmsg(h, f, scalar_startsubmsg, &name_attr); |
|
} |
|
break; |
|
} |
|
|
|
upb_handlerattr_uninit(&name_attr); |
|
} |
|
|
|
upb_handlerattr_uninit(&empty_attr); |
|
#undef TYPE |
|
} |
|
|
|
static void json_printer_reset(upb_json_printer *p) { |
|
p->depth_ = 0; |
|
} |
|
|
|
|
|
/* Public API *****************************************************************/ |
|
|
|
upb_json_printer *upb_json_printer_create(upb_env *e, const upb_handlers *h, |
|
upb_bytessink *output) { |
|
#ifndef NDEBUG |
|
size_t size_before = upb_env_bytesallocated(e); |
|
#endif |
|
|
|
upb_json_printer *p = upb_env_malloc(e, sizeof(upb_json_printer)); |
|
if (!p) return NULL; |
|
|
|
p->output_ = output; |
|
json_printer_reset(p); |
|
upb_sink_reset(&p->input_, h, p); |
|
|
|
/* If this fails, increase the value in printer.h. */ |
|
assert(upb_env_bytesallocated(e) - size_before <= UPB_JSON_PRINTER_SIZE); |
|
return p; |
|
} |
|
|
|
upb_sink *upb_json_printer_input(upb_json_printer *p) { |
|
return &p->input_; |
|
} |
|
|
|
const upb_handlers *upb_json_printer_newhandlers(const upb_msgdef *md, |
|
const void *owner) { |
|
return upb_handlers_newfrozen(md, owner, printer_sethandlers, NULL); |
|
}
|
|
|