Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
311 lines
13 KiB
311 lines
13 KiB
/* |
|
* upb - a minimalist implementation of protocol buffers. |
|
* |
|
* Copyright (c) 2010-2011 Google Inc. See LICENSE for details. |
|
* Author: Josh Haberman <jhaberman@gmail.com> |
|
* |
|
* Routines for reading and writing message data to an in-memory structure, |
|
* similar to a C struct. |
|
* |
|
* upb does not define one single message object that everyone must use. |
|
* Rather it defines an abstract interface for reading and writing members |
|
* of a message object, and all of the parsers and serializers use this |
|
* abstract interface. This allows upb's parsers and serializers to be used |
|
* regardless of what memory management scheme or synchronization model the |
|
* application is using. |
|
* |
|
* A standard set of accessors is provided for doing simple reads and writes at |
|
* a known offset into the message. These accessors should be used when |
|
* possible, because they are specially optimized -- for example, the JIT can |
|
* recognize them and emit specialized code instead of having to call the |
|
* function at all. The application can substitute its own accessors when the |
|
* standard accessors are not suitable. |
|
*/ |
|
|
|
#ifndef UPB_MSG_H |
|
#define UPB_MSG_H |
|
|
|
#include <stdlib.h> |
|
#include "upb/def.h" |
|
#include "upb/handlers.h" |
|
|
|
#ifdef __cplusplus |
|
extern "C" { |
|
#endif |
|
|
|
|
|
/* upb_accessor ***************************************************************/ |
|
|
|
// A upb_accessor is a table of function pointers for doing reads and writes |
|
// for one specific upb_fielddef. Each field has a separate accessor, which |
|
// lives in the fielddef. |
|
|
|
typedef bool upb_has_reader(const void *m, upb_value fval); |
|
typedef upb_value upb_value_reader(const void *m, upb_value fval); |
|
|
|
typedef const void *upb_seqbegin_handler(const void *s); |
|
typedef const void *upb_seqnext_handler(const void *s, const void *iter); |
|
typedef upb_value upb_seqget_handler(const void *iter); |
|
INLINE bool upb_seq_done(const void *iter) { return iter == NULL; } |
|
|
|
typedef struct _upb_accessor_vtbl { |
|
// Writers. These take an fval as a parameter because the callbacks are used |
|
// as upb_handlers, but the fval is always the fielddef for that field. |
|
upb_startfield_handler *startsubmsg; // Non-repeated submsg fields. |
|
upb_value_handler *set; // Non-repeated scalar fields. |
|
upb_startfield_handler *startseq; // Repeated fields only. |
|
upb_startfield_handler *appendsubmsg; // Repeated submsg fields. |
|
upb_value_handler *append; // Repeated scalar fields. |
|
|
|
// TODO: expect to also need endsubmsg and endseq. |
|
|
|
// Readers. |
|
upb_has_reader *has; |
|
upb_value_reader *getseq; |
|
upb_value_reader *get; |
|
upb_seqbegin_handler *seqbegin; |
|
upb_seqnext_handler *seqnext; |
|
upb_seqget_handler *seqget; |
|
} upb_accessor_vtbl; |
|
|
|
// Registers handlers for writing into a message of the given type. |
|
upb_mhandlers *upb_accessors_reghandlers(upb_handlers *h, const upb_msgdef *m); |
|
|
|
// Returns an stdmsg accessor for the given fielddef. |
|
upb_accessor_vtbl *upb_stdmsg_accessor(upb_fielddef *f); |
|
|
|
|
|
/* upb_msg/upb_seq ************************************************************/ |
|
|
|
// upb_msg and upb_seq allow for generic access to a message through its |
|
// accessor vtable. Note that these do *not* allow you to create, destroy, or |
|
// take references on the objects -- these operations are specifically outside |
|
// the scope of what the accessors define. |
|
|
|
// Clears all hasbits. |
|
// TODO: Add a separate function for setting primitive values back to their |
|
// defaults (but not strings, submessages, or arrays). |
|
void upb_msg_clear(void *msg, const upb_msgdef *md); |
|
|
|
INLINE void upb_msg_clearbit(void *msg, const upb_fielddef *f) { |
|
((char*)msg)[f->hasbit / 8] &= ~(1 << (f->hasbit % 8)); |
|
} |
|
|
|
// Could add a method that recursively clears submessages, strings, and |
|
// arrays if desired. This could be a win if you wanted to merge without |
|
// needing hasbits, because during parsing you would never clear submessages |
|
// or arrays. Also this could be desired to provide proto2 operations on |
|
// generated messages. |
|
|
|
INLINE bool upb_msg_has(const void *m, const upb_fielddef *f) { |
|
return f->accessor && f->accessor->has(m, f->fval); |
|
} |
|
|
|
// May only be called for fields that have accessors. |
|
INLINE upb_value upb_msg_get(const void *m, const upb_fielddef *f) { |
|
assert(f->accessor && !upb_isseq(f)); |
|
return f->accessor->get(m, f->fval); |
|
} |
|
|
|
// May only be called for fields that have accessors. |
|
INLINE upb_value upb_msg_getseq(const void *m, const upb_fielddef *f) { |
|
assert(f->accessor && upb_isseq(f)); |
|
return f->accessor->getseq(m, f->fval); |
|
} |
|
|
|
INLINE void upb_msg_set(void *m, const upb_fielddef *f, upb_value val) { |
|
assert(f->accessor); |
|
f->accessor->set(m, f->fval, val); |
|
} |
|
|
|
INLINE const void *upb_seq_begin(const void *s, const upb_fielddef *f) { |
|
assert(f->accessor); |
|
return f->accessor->seqbegin(s); |
|
} |
|
INLINE const void *upb_seq_next(const void *s, const void *iter, |
|
const upb_fielddef *f) { |
|
assert(f->accessor); |
|
assert(!upb_seq_done(iter)); |
|
return f->accessor->seqnext(s, iter); |
|
} |
|
INLINE upb_value upb_seq_get(const void *iter, const upb_fielddef *f) { |
|
assert(f->accessor); |
|
assert(!upb_seq_done(iter)); |
|
return f->accessor->seqget(iter); |
|
} |
|
|
|
INLINE bool upb_msg_has_named(const void *m, const upb_msgdef *md, |
|
const char *field_name) { |
|
const upb_fielddef *f = upb_msgdef_ntof(md, field_name); |
|
return f && upb_msg_has(m, f); |
|
} |
|
|
|
INLINE bool upb_msg_get_named(const void *m, const upb_msgdef *md, |
|
const char *field_name, upb_value *val) { |
|
const upb_fielddef *f = upb_msgdef_ntof(md, field_name); |
|
if (!f) return false; |
|
*val = upb_msg_get(m, f); |
|
return true; |
|
} |
|
|
|
|
|
/* upb_msgvisitor *************************************************************/ |
|
|
|
// A upb_msgvisitor reads data from an in-memory structure using its accessors, |
|
// pushing the results to a given set of upb_handlers. |
|
// TODO: not yet implemented. |
|
|
|
typedef struct { |
|
upb_fhandlers *fh; |
|
upb_fielddef *f; |
|
uint16_t msgindex; // Only when upb_issubmsg(f). |
|
} upb_msgvisitor_field; |
|
|
|
typedef struct { |
|
upb_msgvisitor_field *fields; |
|
int fields_len; |
|
} upb_msgvisitor_msg; |
|
|
|
typedef struct { |
|
uint16_t msgindex; |
|
uint16_t fieldindex; |
|
uint32_t arrayindex; // UINT32_MAX if not an array frame. |
|
} upb_msgvisitor_frame; |
|
|
|
typedef struct { |
|
upb_msgvisitor_msg *messages; |
|
int messages_len; |
|
upb_dispatcher dispatcher; |
|
} upb_msgvisitor; |
|
|
|
// Initializes a msgvisitor that will push data from messages of the given |
|
// msgdef to the given set of handlers. |
|
void upb_msgvisitor_init(upb_msgvisitor *v, upb_msgdef *md, upb_handlers *h); |
|
void upb_msgvisitor_uninit(upb_msgvisitor *v); |
|
|
|
void upb_msgvisitor_reset(upb_msgvisitor *v, void *m); |
|
void upb_msgvisitor_visit(upb_msgvisitor *v, upb_status *status); |
|
|
|
|
|
/* Standard writers. **********************************************************/ |
|
|
|
// Allocates a new stdmsg. |
|
void *upb_stdmsg_new(const upb_msgdef *md); |
|
|
|
// Recursively frees any strings or submessages that the message refers to. |
|
void upb_stdmsg_free(void *m, const upb_msgdef *md); |
|
|
|
void upb_stdmsg_sethas(void *_m, upb_value fval); |
|
|
|
// "hasbit" must be <= UPB_MAX_FIELDS. If it is <0, this field has no hasbit. |
|
upb_value upb_stdmsg_packfval(int16_t hasbit, uint16_t value_offset); |
|
upb_value upb_stdmsg_packfval_subm(int16_t hasbit, uint16_t value_offset, |
|
uint16_t subm_size, uint8_t subm_setbytes); |
|
|
|
// Value writers for every in-memory type: write the data to a known offset |
|
// from the closure "c" and set the hasbit (if any). |
|
// TODO: can we get away with having only one for int64, uint64, double, etc? |
|
// The main thing in the way atm is that the upb_value is strongly typed. |
|
// in debug mode. |
|
upb_flow_t upb_stdmsg_setint64(void *c, upb_value fval, upb_value val); |
|
upb_flow_t upb_stdmsg_setint32(void *c, upb_value fval, upb_value val); |
|
upb_flow_t upb_stdmsg_setuint64(void *c, upb_value fval, upb_value val); |
|
upb_flow_t upb_stdmsg_setuint32(void *c, upb_value fval, upb_value val); |
|
upb_flow_t upb_stdmsg_setdouble(void *c, upb_value fval, upb_value val); |
|
upb_flow_t upb_stdmsg_setfloat(void *c, upb_value fval, upb_value val); |
|
upb_flow_t upb_stdmsg_setbool(void *c, upb_value fval, upb_value val); |
|
upb_flow_t upb_stdmsg_setptr(void *c, upb_value fval, upb_value val); |
|
|
|
// Value writers for repeated fields: the closure points to a standard array |
|
// struct, appends the value to the end of the array, resizing with realloc() |
|
// if necessary. |
|
typedef struct { |
|
char *ptr; |
|
uint32_t len; // Number of elements present. |
|
uint32_t size; // Number of elements allocated. |
|
} upb_stdarray; |
|
|
|
void *upb_stdarray_append(upb_stdarray *a, size_t type_size); |
|
|
|
upb_flow_t upb_stdmsg_setint64_r(void *c, upb_value fval, upb_value val); |
|
upb_flow_t upb_stdmsg_setint32_r(void *c, upb_value fval, upb_value val); |
|
upb_flow_t upb_stdmsg_setuint64_r(void *c, upb_value fval, upb_value val); |
|
upb_flow_t upb_stdmsg_setuint32_r(void *c, upb_value fval, upb_value val); |
|
upb_flow_t upb_stdmsg_setdouble_r(void *c, upb_value fval, upb_value val); |
|
upb_flow_t upb_stdmsg_setfloat_r(void *c, upb_value fval, upb_value val); |
|
upb_flow_t upb_stdmsg_setbool_r(void *c, upb_value fval, upb_value val); |
|
upb_flow_t upb_stdmsg_setptr_r(void *c, upb_value fval, upb_value val); |
|
|
|
// Writers for C strings (NULL-terminated): we can find a char* at a known |
|
// offset from the closure "c". Calls realloc() on the pointer to allocate |
|
// the memory (TODO: investigate whether checking malloc_usable_size() would |
|
// be cheaper than realloc()). Also sets the hasbit, if any. |
|
// |
|
// Since the string is NULL terminated and does not store an explicit length, |
|
// these are not suitable for binary data that can contain NULLs. |
|
upb_flow_t upb_stdmsg_setcstr(void *c, upb_value fval, upb_value val); |
|
upb_flow_t upb_stdmsg_setcstr_r(void *c, upb_value fval, upb_value val); |
|
|
|
// Writers for length-delimited strings: we explicitly store the length, so |
|
// the data can contain NULLs. Stores the data using upb_stdarray |
|
// which is located at a known offset from the closure "c" (note that it |
|
// is included inline rather than pointed to). Also sets the hasbit, if any. |
|
upb_flow_t upb_stdmsg_setstr(void *c, upb_value fval, upb_value val); |
|
upb_flow_t upb_stdmsg_setstr_r(void *c, upb_value fval, upb_value val); |
|
|
|
// Writers for startseq and startmsg which allocate (or reuse, if possible) |
|
// a sub data structure (upb_stdarray or a submessage, respectively), |
|
// setting the hasbit. If the hasbit is already set, the existing data |
|
// structure is used verbatim. If the hasbit is not already set, the pointer |
|
// is checked for NULL. If it is NULL, a new substructure is allocated, |
|
// cleared, and used. If it is not NULL, the existing substructure is |
|
// cleared and reused. |
|
// |
|
// If there is no hasbit, we always behave as if the hasbit was not set, |
|
// so any existing data for this array or submessage is cleared. In most |
|
// cases this will be fine since each array or non-repeated submessage should |
|
// occur at most once in the stream. But if the client is using "concatenation |
|
// as merging", it will want to make sure hasbits are allocated so merges can |
|
// happen appropriately. |
|
// |
|
// If there was a demand for the behavior that absence of a hasbit acts as if |
|
// the bit was always set, we could provide that also. But Clear() would need |
|
// to act recursively, which is less efficient since it requires an extra pass |
|
// over the tree. |
|
upb_sflow_t upb_stdmsg_startseq(void *c, upb_value fval); |
|
upb_sflow_t upb_stdmsg_startsubmsg(void *c, upb_value fval); |
|
upb_sflow_t upb_stdmsg_startsubmsg_r(void *c, upb_value fval); |
|
|
|
|
|
/* Standard readers. **********************************************************/ |
|
|
|
bool upb_stdmsg_has(const void *c, upb_value fval); |
|
const void *upb_stdmsg_seqbegin(const void *c); |
|
|
|
upb_value upb_stdmsg_getint64(const void *c, upb_value fval); |
|
upb_value upb_stdmsg_getint32(const void *c, upb_value fval); |
|
upb_value upb_stdmsg_getuint64(const void *c, upb_value fval); |
|
upb_value upb_stdmsg_getuint32(const void *c, upb_value fval); |
|
upb_value upb_stdmsg_getdouble(const void *c, upb_value fval); |
|
upb_value upb_stdmsg_getfloat(const void *c, upb_value fval); |
|
upb_value upb_stdmsg_getbool(const void *c, upb_value fval); |
|
upb_value upb_stdmsg_getptr(const void *c, upb_value fval); |
|
|
|
const void *upb_stdmsg_8byte_seqnext(const void *c, const void *iter); |
|
const void *upb_stdmsg_4byte_seqnext(const void *c, const void *iter); |
|
const void *upb_stdmsg_1byte_seqnext(const void *c, const void *iter); |
|
|
|
upb_value upb_stdmsg_seqgetint64(const void *c); |
|
upb_value upb_stdmsg_seqgetint32(const void *c); |
|
upb_value upb_stdmsg_seqgetuint64(const void *c); |
|
upb_value upb_stdmsg_seqgetuint32(const void *c); |
|
upb_value upb_stdmsg_seqgetdouble(const void *c); |
|
upb_value upb_stdmsg_seqgetfloat(const void *c); |
|
upb_value upb_stdmsg_seqgetbool(const void *c); |
|
upb_value upb_stdmsg_seqgetptr(const void *c); |
|
|
|
#ifdef __cplusplus |
|
} /* extern "C" */ |
|
#endif |
|
|
|
#endif
|
|
|